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HYPERHOLOMORPHICITY OF MULTISPLIT FUNCTIONS

FARID MESSELMI

Abstract. The purpose of this work is to propose a contribution to the study
of the multisplit functions. In details we are interested in the study of the
hyperholomorphicity of multisplit functions, we propose an extension of the
famous Cauchy-Riemann formulas. We show some interesting results regarding

continuation of multisplit functions and that of real functions to multisplit
algebra. Moreover, we introduce the concept of co-hyperholomorphicity for
multisplit function. basing on the generalized Dirac operator.

1. Introduction

The concept of multisplit numbers has been introduced for the first time in
the reference [9] as the generalization of hyperbolic or split numbers in higher
dimensions. The main key point was to introduce a unit number satisfying hn = 1
and create, inspiring from the concepts of multicomplex and multidual number
see for more details [3, 5, 8, 10], the space of multisplit numbers of order n. It
is also proved in [9] that the set of multispit numbers forms a n−dimensional
associative, commutative and unitary generalized Clifford Algebra and posses a
matrix representation involving circular matrices. Additionally, many important
algebraic properties of multisplit numbers were provided in the already quoted
reference.

V. V. Kisil [5] develops a theory of function of split variables and provides the
generalization of the concepts of holomorphic functions, Cauchy-Riemann formulas
and some other interesting notions.

The main purpose of the present paper is to extend and promote the research
on the theory of hyperbolic functions to multisplit functions. Indeed, we begin by
generalize the concept of hyperholomorphcity, will-known in Clifford analysis, see
[4, 7, 10], to the case of multisplit functions. We also focus on the generalization
of the Cauchy-Riemann formulas as well as few properties of hyperholomorphic
functions. Moreover, we introduce the conjugate variables and we try to formulate
using them the obtained properties. In addition, we prove maximum principle
and we focus on the astablishment of some statement concerning the continuation
of multisplit functions and that of real functions to multisplit algebra were also
obtained. Furthermore, we introduce the concept of co-hyperholomorphicity for
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multisplit functions by the means of Dirac’s operator and we show that every co-
hyperholomorphic function satisfies Cauchy’s condition.

2. Preliminaries

According to the work of F. Messelmi [9], let us state some basic facts of multisplit
numbers.

A multisplit number z is an ordered n−tuple of real numbers (x0, x1, ..., xn−1)
associated with the real unit 1 and the powers of the multisplit unit h, such that
h satisfies hn = 1 where it differs from the real roots of the equation sn = 1. A
multisplit number is usually denoted in the form

z =

n−1∑
i=0

xih
i. (2.1)

for which we admit that h0 = 1.
We denote by MHn−1 the set of multisplit numbers given by

MHn−1 =

{
z =

n−1∑
i=0

xih
i | xi ∈ R and hn = 1

}
(2.2)

If n = 1, MH0 = R and if n = 2, MH1 is the Clifford algebra of hyperbolic num-
bers or split numbers, see for more details regarding split numbers the references
[11]. Moreover, the multisplit numbers form a commutative ring with characteristic
0. Moreover the inherited multiplication gives the multisplit numbers the structure
of n−dimensional associative, commutative and unitary generalized Clifford Alge-
bra.

It is also shown in the reference [9] that every multisplit number possess a matrix
representation, formulated as follows.

Let us denote by Cn (R) the subset of Mn (R) constituted of circulant matrices,
it means that

Cn (R) =


A = (aij) ∈ Mn (R) | A =


a1 an an−1 . . . a2
a2 a1 an . . . a3
a3 a2 a1 . . . a4
...

...
...

. . .
...

an an−1 an−2 . . . a1


where aij ∈ R, 1 ≤ i, j ≤ n} .

It is well known that Cn (R) is a subring of Mn (R) which forms a n−dimensional
associative, commutative and unitary Algebra, see [6]. Let us introduce the map-
ping given by

R : MHn−1 −→ Cn (R) ,

R
(

n−1∑
i=0

xih
i

)
=


x0 xn−1 xn−2 . . . x1

x1 x0 xn−1 . . . x2

x2 x1 x0 . . . x3

...
...

...
. . .

...
xn−1 xn−2 xn−3 . . . x0


(2.3)

R is called the matrix representation of multisplit numbers. Notice that the
algebras MHn−1 and Cn (R) are R−isomorphic.
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Denoting by C0
n (R) the subset of Cn (R) defined as

C0
n (R) = {A ∈ Cn (R) | det (A) = 0} .

It is clear that Cn (R)− C0
n (R) is a multiplicative subgroup of GL (n, R) .

The null part of MHn−1 was defined as the set Dn−1 given by

Dn−1 = R−1
(
C0
n (R)

)
, (2.4)

consisting of the zero divisors of MHn−1.
As consequence, the subset of MHn−1 given by MH∗

n−1 = MHn−1 − Dn−1 is a
multiplicative group.

Furthermore, The conjugate of a multisplit number z =
n−1∑
i=0

xih
i was defined by

the formula

zz̄ = det (R (z)) . (2.5)

The following formula has been also shown

z̄ =
1

n

(
∂ det (R (z))

∂x0
+

n−1∑
i=1

∂ det (R (z))

∂xn−i
hi

)
. (2.6)

The concept of multisplit conjugation was allow us to construct a structure of
modulus over the multisplit algebra MHn−1, given by fonctionnelle{

P : MHn−1 −→ R+,
P (z) = det (R (z)) = zz̄.

(2.7)

There is no chance that the modulus P induces a norm over the algebra MHn−1.
However, we can build a seminorm as

∥z∥MHn−1
= |zz̄|

1
n (2.8)

By virtue of the formula (2.8), we can affirm that the map{ (
MH∗

n−1,×
)
−→

(
R∗

+,×
)
,

z 7−→ ∥z∥MHn−1
,

(2.9)

is a homomorphism of groups where its kernel is given by

ker
(
∥.∥MHn−1

)
= SMHn−1 (0, 1) . (2.10)

3. Multisplit Function

Let Ω be a subset of Rn, we denote by L (Ω) the subset of MHn−1 defined as
follows

L (Ω) =

{
z =

n−1∑
i=0

xih
i | (x0, x1, ..., xn−1) ∈ Ω

}
. (3.1)

It results that L is an isomorphism of vector spaces and the set MHn−1 could
be identified with Rn.

From now on we will denote by Ω an open subset of Rn.
Definition 1. A multisplit function is a mapping from a subset L (Ω) ⊂ MHn−1

to MHn−1.

Let t =
n−1∑
i=0

yih
i ∈ L (Ω) and f : L (Ω) −→ MHn−1 a multisplit function.
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Definition 2. We say that the multisplit function f is continuous at t if

lim
z→t

f (z) = f (t) .

where the limit is calculated component by component, it means

lim
z→t

f (z) = lim
xi→yi i=0,...,n

f (z) , (3.2)

where z =
n−1∑
i=0

xih
i.

Definition 3. The function f is continuous in L (Ω) ⊂ MHn−1 if it is continuous
at every point of L (Ω) .

Definition 4. The multisplit function f is said to be differentiable in the mul-

tisplit sense at t =
n∑

i=0

yih
i if the following limit exists

df

dz
(t) = lim

z→t

f (z)− f (t)

z − t
. (3.3)

Notice here that we must impose the condition z − t ∈ MH∗
n−1. The limit df

dz (t)
is said to be the derivative of f at the point t.

If f is differentiable for all points in L (U) where U is a neighbourhood of L−1 (t) ,
then f is called hyperholomorphic at t.

Definition 5. The function f is hyperholomorphic in L (Ω) ⊂ MHn−1 if it is
hyperholomorphic at every point of L (Ω) .

In the following results we generalize the Cauchy-Riemann formulas to multisplit
functions.

Theorem 1. Let f be a multisplit function in L (Ω) ⊂ MHn−1, which can be
written in terms of its real and multisplit parts as

f (z) =

n−1∑
i=0

fi (x0, x1, ..., xn−1)h
i. (3.4)

Then, f is hyperholomorphic in L (Ω) ⊂ MHn−1 if and only if its partial deriva-
tives satisfy

∂f

∂xi
= hi ∂f

∂x0
∀i = 1, ..., n− 1. (3.5)

Proof. Let us assume that the function f is hyperholomorphic. Since the limit
(3.3) has to be always the same for all the paths going to t it has in particular
to exist for the n particular paths in which xi − yi, i = 0, ..., n − 1, such that

z =
n−1∑
i=0

xih
i, t =

n−1∑
i=0

yih
i and z − t ∈ MH∗

n−1. Hence, one has that

lim
z→t

f (z)− f (t)

z − t
= lim

xi→yi

f (z)− f (t)

xihi − yihi
i = 1, ..., n− 1

= lim
x0→y0

f (z)− f (t)

x0 − y0
.

Thus, the relation (3.5) follows.
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Conversely, suppose that the formula (3.5) holds. The differential of f at t =
n−1∑
i=0

yih
i ∈ L (Ω) can be computed as

f (z + t)− f (z) =

n−1∑
i=0

(fi (x0 + y0, ..., xn−1 + yn−1)− fi (x0, ..., xn−1))h
i

=

n−1∑
i=0

n−1∑
j=0

(
∂fi
∂xj

yj + o (yj)

)
hi

=
n−1∑
j=0

yj
∂f

∂xj
+

n−1∑
i=0

n−1∑
j=0

o (yj)h
i

Thus, we can infer by virtue of (3.5) that

f (z + t)− f (z) =
∂f

∂x0

n−1∑
j=0

yjh
j +

n−1∑
i,j=0

o (yj)h
i

=
∂f

∂x0
t+

(
n−1∑
i=0

hi

)
o

 n−1∑
i,j=0

yj

 .

Which permis us to deduce that the function is f is hyperholomorphic.
In addition, we deduce from the above relation that

df

dz
=

∂f

∂x0
. (3.6)

Theorem 2 (Cauchy-Riemann Formulas). Let f (z) =
n−1∑
i=0

fi (x0, x1, ..., xn−1)h
i

be a multisplit function in L (Ω) . Then, f is hyperholomorphic in L (Ω) if and only
if the partial derivatives of the functions fi, i = 0, ...n− 1 satisfy

∂fi
∂x0

=


∂fk

∂xn+k−i+1
for k = 0, ..., i− 1,

∂fk
∂xk−i

for k = i, ..., n.

(3.7)

Proof. We get by employing formula (3.5)

n−1∑
i=0

∂fi
∂xj

hi = hj
n−1∑
i=0

∂fi
∂x0

hi.

So, for every j = 1, ..n− 1 we obtain

∂f0
∂xj

+
∂f1
∂xj

h+ ...+
∂fn−1

∂xj
hn−1 =

∂fn−j

∂x0
+

∂fn−j+1

∂x0
h+ ...+

∂fn−1

∂x0
hj−1

+
∂f0
∂x0

hj +
∂f1
∂x0

hj+1 + ...+
∂fn−j−1

∂x0
hn−1.

Thus, the result will be done.

Proposition 3. Let f (z) =
n−1∑
i=0

fi (x0, x1, ..., xn−1)h
i be a multisplit function

in L (Ω) ⊂ MHn−1. If f is hyperholomorphic in L (Ω) , then its partial derivatives



300 F. MESSELMI EJMAA-2018/6(2)

satisfy the following partial differential system

∂nf

∂xn
j

− ∂nf

∂xn
0

= 0 ∀j = 1, ..., n− 1. (3.8)

Further, if there exists two integers k and j such that kj = n then

∂kf

∂xk
j

− ∂kf

∂xk
0

= 0. (3.9)

The proof is a direct consequence of formula (3.5).
We deduce from this proposition that the partial derivatives of the functions fi

solve the partial differential systems

∂nfi
∂xn

j

− ∂nfi
∂xn

0

= 0 ∀i = 0, ..., n− 1 and ∀j = 1, ..., n− 1. (3.10)

The following result can be easily established as an immediate consequence of
the Cauchy-Riemann formulas.

Proposition 4. Let f (z) =
n−1∑
i=0

fih
i be a multisplit function in L (Ω) ⊂ MHn−1.

Suppose that f is hyperholomorphic in L (Ω) . Then the following formula holds

∂

∂xj

n−1∑
i=0

fi =

n−1∑
k=0

∂fm
∂xk

∀j,m = 0, ..., n− 1. (3.11)

Define now the concept conjugate variables by the formulas

η0 = z = x0 + x1h+ x2h
2 + ...+ xn−1h

n−1,
η1 = −x0h

n−1 + x1 − x2h− ...− xn−1h
n−2,

η2 = −x0h
n−2 − x1h

n−1 + x2 − x3h− ...− xn−1h
n−3,

...
ηn−1 = −x0h− x1h

2 − ...− xn−2h
n−1 + xn−1.

(3.12)

These equations can be also written in matrix form as
η0
η1
η2
...

ηn−1

 =


1 h h2 . . . hn−1

−hn−1 1 −h . . . −hn−2

−hn−2 −hn−1 1 . . . −hn−3

...
...

...
. . .

...
−h −h2 . . . −hn−1 1




x0

x1

x2

...
xn−1

 . (3.13)

Proposition 5. The following formulas hold

dx0 =
1

2

(
(3− n) dη0 −

n−1∑
i=1

hidηi

)
, (3.14)

dxi =
1

2

(
hn−idη0 + dηi

)
for i = 1, ..., n− 1. (3.15)

Proof. It is clear according to the definition of conjugate variables that

η0 − hη1 = 2x0 + 2
n−1∑
i=2

hixi. (3.16)
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Moreover, one finds for each i = 1, ..., n− 1

xi =
1

2hi

(
hiηi + η0

)
=

1

2

(
ηi + hn−iη0

)
.

So, formula (3.14) easily follows. To prove the formula (3.15) it is enough to
put the two expression (3.15) and (3.16) together and use some simple algebraic
manipulations.

We will introduce in the following the notion of the conjugate partial derivatives.
To this aim, we check keeping in mind the previous proposition that the total
derivative of f can be written in terms of conjugate variables

df =

n−1∑
i=0

∂f

∂xi
dxi

=
1

2

∂f

∂x0

(
(3− n) dη0 −

n−1∑
i=1

hidηi

)
+

1

2

n−1∑
i=1

∂f

∂xi

(
hn−idη0 + dηi

)
=

1

2

(
(3− n)

∂f

∂x0
+

n−1∑
i=1

hn−i ∂f

∂xi

)
dη0 +

1

2

n−1∑
i=1

(
∂f

∂xi
− hi ∂f

∂x0

)
dηi.

Hence, we can introduce the concept of conjugate partial derivatives as

∂

∂η0
=

1

2

(
(3− n)

∂

∂x0
+

n−1∑
i=1

hn−i ∂

∂xi

)
, (3.17)

∂

∂ηi
=

1

2

(
∂

∂xi
− hi ∂

∂x0

)
for i = 1, ..., n− 1. (3.18)

The following is a direct consequence of Theorem 1.
Proposition 6. A multisplit function f is hyperholomorphic if and only if it

fulfills the relations
∂f

∂η0
=

df

dz
and

∂f

∂ηi
= 0 for i = 1, ..., n− 1, (3.19)

In the next we show a statment regarding multisplit constant functions.
Proposition 7. Denote by Ω an open and connected set of Rn. Let f be an

hyperholomorphic function defined in L (Ω) .

If
df

dz
= 0 in L (Ω) then f =constant.

Proof. If
df

dz
= 0 then

∂f

∂x0
= 0. Thus, applying Theorem 1 it comes

∂fi
∂xj

= 0

for every i, j = 1, ..., n− 1. So, since Ω is connected we can infer that f =constant.
Theorem 8 (Maximum principle). Denote by Ω an open set of Rn with

piecewise differentiable boundary ∂Ω such that ∂Ω = Γ1 ∪Γ2 where Γ1 and Γ2 are

two measurable parts satisfying Γ1 ∩ Γ2 = ∅. Let f (z) =
n−1∑
i=0

fih
i be an hyperholo-

morphic function in L (Ω) , verifies f = 0 on L (Γ1) , then f = 0 in L (Ω) .
Proof. Formula (3.11) allows us to find

∂

∂xj

n−1∑
i=0

fi =
∂

∂x0

n−1∑
i=0

fi ∀j = 1, ..., n− 1. (3.20)
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Since f = 0 on L (Γ1) , we can infer
n−1∑
i=0

fi = 0 on ∂Ω. So, under this boundary

condition the solution of the linear partial differential system (3.20) will be given

by
n−1∑
i=0

fi = 0. Thus, one can be write the function f as

f (z) =
n−2∑
i=0

fih
i −

(
n−2∑
i=0

fi

)
hn−1. (3.21)

Furthermore, again by using formula (3.11) one obtains

n−1∑
j=0

∂fi
∂xj

=
n−1∑
j=0

∂f0
∂xj

∀i = 1, ..., n− 1. (3.22)

In particular, for i = n− 1 it follows, thanks to (3.21)

−
n−1∑
j=0

∂

∂xj

(
n−2∑
k=0

fk

)
=

n−1∑
j=0

∂f0
∂xj

. (3.23)

Then one can find, puting together equation (3.22) for i = 1, ..., n− 2 and (3.23)

n−1∑
j=0

∂f0
∂xj

= 0.

This yields, under the boundary condition f0 = 0 on Γ1,

f0 = 0 on Ω.

Thus, by (3.22)
n−1∑
j=0

∂fi
∂xj

= 0 ∀i = 1, ..., n− 1.

So, the fact that fi = 0 on Γ1 permits us to deduce that fi = 0 on Ω. Which
allows to conclude the proof.

Theorem 9 (Multisplit continuation principle). Denote by Ω an open
and connected set of Rn with piecewise differentiable boundary and by Ω0 an open
subset of Ω possessing a piecewise differentiable boundary strictly contained in Ω.
Denote by f and g two hyperholomorphic functions in L (Ω) such that

f = g in L (Ω0) . (3.24)

Then

f = g in L (Ω) . (3.25)

Proof. The fact that f and g are hyperholomorphic in L (Ω) and f = g in
L (Ω0) leads to f − g = 0 in L (∂Ω0) . So, using the previous maximum principle
we can infer that f − g = 0 in L

(
Ω \ Ω0

)
. So, the proof can be deduced.

Theorem 10 (Continuation of real functions). Let g be a C1−real function
in an open connected set U of R. Then, there exists an open and connected set Ω

of Rn containing U and an hyperholomorphic function g̃ in Ũ = L (Ω) such that

g̃ = g in U. (3.26)

Ũ is called the hyperholomorphicity domain.
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Proof. It is straightforward to check that the solution of the linear partial
differential system (3.20), characterizing hyperholomorphic functions, fulfills the
relation

n−1∑
i=0

fi = φ

(
n−1∑
i=0

xi

)
, (3.27)

where φ is a C1−real function.
Suppose now that f (x0) ∈ R. This allows to get

f0 (x0, 0, ..., ) = f (x0) = φ (x0) ,

fi (x0, 0, ..., ) = 0 ∀i = 1, ..., n− 1.

So, to conclude the proof it is enough to choose φ = g.

We remark in this proof that if z ∈ L (Ω) we have necessarily
n−1∑
i=0

xi ∈ U.

Proposition 11. Denoting by Ω an open connected set of Rn. Let f =
n−1∑
i=0

fih
i

be an hyperholomorphic function in L (Ω) . Then,

f (z)− f

(
n−1∑
i=0

xi

)
∈ Dn−1. (3.28)

Proof. Taking into account (3.27), f can be rewritten

f (z) =

n−2∑
i=0

fih
i +

[
f

(
n−1∑
i=0

xi

)
−

n−2∑
i=0

fi

]
hn−1. (3.29)

Thus,

f (z)− f

(
n−1∑
i=0

xi

)
hn−1 =

n−2∑
i=0

fi
(
1− hn−i−1

)
hi.

This yields, by multiplying the two side members by
n−1∑
i=0

hi

[
f (z)− f

(
n−1∑
i=0

xi

)
hn−1

]
n−1∑
i=0

hi =

[
f (z)− f

(
n−1∑
i=0

xi

)]
n−1∑
i=0

hi = 0.

Which eventualy gives (3.28).

We deduce in particular that f

(
n−1∑
i=0

xi

)
is an eigenvalue of the matrix R (f (z)) .

Proposition 12. Let g be a C1−real function in an open connected set U of R.
If n = 2 then

Ũ = L
({

(x0, x1) ∈ R2 | x0 + x1 ∈ U and x0 − x1 ∈ U
})

,

and

g̃ (x0 + x1h) =
1

2
(g (x0 + x1) + g (x0 − x1)) +

1

2
(g (x0 + x1)− g (x0 − x1))h.

Proof. Formula (3.29) leads to

g̃ (x0 + x1h) = g̃0 (x0, x1) + (g (x0 + x1)− g̃0 (x0, x1))h
n.
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So, we can infer making use (3.7)

∂g̃0
∂x0

+
∂g̃0
∂x1

= g′ (x0 + x1) .

Thus, it comes

g̃0 (x0, x1) = φ (x0 − x1) +
1

2
g (x0 + x1) .

Then since g̃0 (x0, 0) = g (x0) the statement immediately results.
Proposition 13.
1. Let w be the real-valued 1−form given by

w =

(
n−1∑
i=0

fi

)(
n−1∑
i=0

dxi

)
. (3.30)

If f is hyperholomorphic then w is closed.
2. Let wi be the real-valued 1−forms given by

f (z) dz =
n−1∑
i=0

hiwi. (3.31)

If f is hyperholomorphic then wi are closed.
Proof. 1. Denoting by φ the real function

φ =
n−1∑
i=0

fi.

Then

dw = dφ ∧

(
n−1∑
i=0

dxi

)

=

n−1∑
j=0

∂φ

∂xj
dxj

 ∧

(
n−1∑
i=0

dxi

)
So, we obtain by applying Proposition 4 that

dw =
∂φ

∂x0

n−1∑
j=0

dxj

 ∧

(
n−1∑
i=0

dxi

)
= 0.

Which achievs the proof of the first assertion.
2. Relation (3.31) can be written making use the conjugate variables

f (η0) dη0 =
n−1∑
i=0

hiwi.

Thus, it becomes

−
n−1∑
j=1

∂f

∂ηi
dη0 ∧ dηi =

n−1∑
i=0

hidwi.

Consequently, we deduce that if f is hyperholomorphic then wi are necessarily
closed.
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Defining now the Dirac operator for multisplit function as

D =
n−1∑
i=0

hi ∂

∂xi
. (3.32)

Let now Ω be a bounded and orientable volume of Rn with piecewise differen-
tiable boundary and denoting by dµ the surface measure on ∂Ω given by

dµ =

n−1∑
i=0

(−1)
i
hidx0 ∧ ... ∧ dxi−1 ∧ d̂xi ∧ dxi+1 ∧ ... ∧ dxn. (3.33)

Definition 6. Let f be a multisplit function definied in L (Ω) .
1. The function f is called co-hyperholomorphic if

Df = 0. (3.34)

2. We say that the function f satisfies the Cauchy condition if∫
∂Ω

fdµ = 0. (3.35)

We can finally state the following Theorem.
Theorem 14.
1. The function f is co-hyperholomorphic in L (Ω) if and only if it satisfies the

Cauchy condition.
2. If f is hyperholomorphic then Df ∈ Dn−1

Proof. 1. By Green’s formula one has that∫
∂Ω

fdµ =

∫
Ω

d (fdµ)

=

∫
Ω

d

(
f

n−1∑
i=0

(−1)
i
hidx0 ∧ ... ∧ dxi−1 ∧ d̂xi ∧ dxi+1 ∧ ... ∧ dxn

)

=
n−1∑
i=0

(−1)
i
hi

∫
Ω

∂f

∂xi
dxi ∧ dx0 ∧ ... ∧ dxi−1 ∧ d̂xi ∧ dxi+1 ∧ ... ∧ dxn

=
n−1∑
i=0

hi

∫
Ω

∂f

∂xi
dx0 ∧ ... ∧ dxn =

∫
Ω

Dfdx0 ∧ ... ∧ dxn.

This permits us to conclude the proof.
2. Obviously, if f is hyperholomorphic, Theorem 1 allows us to get

Df =

(
n−1∑
i=1

hi

)
∂f

∂x0
.

Hence, since detR
(

n−1∑
i=1

hi

)
= 0, the claim follows.

Proposition 15. Let f (z) =
n−1∑
i=0

fih
i be a multisplit function in L (Ω) ⊂

MHn−1. If f is co-hyperholomorphic in L (Ω) . Then

n−1∑
i,j=0

∂fi
∂xj

= 0. (3.36)



306 F. MESSELMI EJMAA-2018/6(2)

Proof. It follows using some algebraic manipulations

Df =
n−1∑
i=0

hi ∂f

∂xi

=
n−1∑
i=0

 i∑
j=0

∂fi−j

∂xj
+

n−1∑
j=i+1

∂fn+i−j

∂xj

hi.

So, if f is co-hyperholomorphic, we get

∂f0
∂x0

+ ∂fn−1

∂x1
+ ∂fn−2

∂x2
+ ...+ ∂f1

∂xn−1
= 0,

∂f1
∂x0

+ ∂f0
∂x1

+ ∂fn−1

∂x2
+ ...+ ∂f2

∂xn−1
= 0,

∂f2
∂x0

+ ∂f1
∂x1

+ ∂f0
∂x2

+ ∂fn−1

∂x3
+ ...+ ∂f3

∂xn−1
= 0,

...
∂fn−1

∂x0
+ ∂fn−2

∂x1
+ ∂fn−3

∂x2
+ ...+ ∂f0

∂xn−1
= 0.

Thus, the formula can be easily deduced.
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