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GOODMAN-RONNING TYPE CLASS OF HARMONIC ERROR

FUNCTION USING SALAGEAN OPERATOR

A. M. GBOLAGADE, I. T. AWOLERE AND A. O. FADARE

Abstract. In this work, the authors wish to establish some results involving
coefficient inequality, distortion bounds, extreme points, convolution and con-

vex combinations for a new class of Goodman-Ronning type class TH,n(α, λ, µ, β)
of harmonic univalent functions associated with error function using Salagean
operator. Varying some of the parameters involved in the established results,

new and various well known results are obtained.

1. Introduction

A continuous function f = u + iv is a complex valued harmonic function in a
simply connected complex domain D ⊂ C if both u and v are real harmonic in
D. In any simply connected domain D, f = h + g, where h and g are analytic in
D. We call h the analytic part and g the co-analytic part of f . A necessary and
sufficient condition for f to be locally univalent and sense preserving in D is that∣∣∣h′

(z)
∣∣∣ > ∣∣∣g′

(z)
∣∣∣ , z ∈ D, [5].

Denote TH,n the class of function f = h + g which are harmonic, univalent in

the open unit disk U = {z : |z| < 1} for which f(0) = f
′
(0) − 1 = 0. Then,

f = h+ g ∈ TH,n. Hence, the analytic function h and g can be written as

h(z) = z +

∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k, |b1| < 1

The class TH,n reduces to the class S of normalized analytic univalent functions if
the co-analytic part of f is zero. Hence, f(z) can be axpressed as

f(z) = z +
∞∑
k=2

akz
k (1)

For more details and results on harmonic function, refer to [2, 8, 13].
The error function is a special function which occurs in probability, statistics, ma-
terial science and partial differential equations. The error function was defined
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because of the normal curve and shows up anywhere the normal curve appears. It
presents in many disciplines of physics, chemistry, biology, thermo mechanics and
mass flow. It also occurs in theoretical aspects of many parts of atmosperic science
[1, 12].

erf(z) =
2√
π

∫ z

0

exp(−t2)dt =
2√
π

∞∑
k=0

(−1)kz2k+1

(2k + 1)k!
(2)

Many authors like Alzer [4], Coman [6] and Elbert et al [9] have studied the prop-
erties and inequality of error function with many interesting results. Let A de-
notes the class of functions of the form (1) which are analytic in the unit disk

U = {z ∈ C : |z| < 1} and normalized by f(0) = f
′
(0) − 1 = 0. Let S be the

subclass of A consisting of univalent function in U .
A function f ∈ A is said to be in the class S∗ of starlike functions in U if it satisfies
the inequality

Re

{
zf

′
(z)

f(z)

}
> 0, z ∈ U (3)

A function f ∈ A is said to be in the class C of convex functions in U if it satisfies
the inequality

Re

{
1 +

zf
′′
(z)

f ′(z)

}
> 0, z ∈ U (4)

The genegalised Salagean derivative operator introduced by Al-Oboudi [3] is

Dn
λf(z) = z +

∞∑
k=2

[1 + λ(k − 1)]nakz
k (5)

Let ℘ be the class of modified error function which was introduced and studied by
[11]

℘ = A ∗ Erf ={
F : F (z) = (f ∗ Erf)(z) = z +

∞∑
k=2

(−1)k−1

(2k − 1)(k − 1)!
akz

k, f ∈ A

}
(6)

where Erf be a normalized analytic function which is given by

Erf(z) =

√
πz

2
f(
√
z) = z +

∞∑
k=2

(−1)k−1

(2k − 1)(k − 1)!
Zk (7)

For f(z) given by (1) and g with the Taylor series g(z) = z+b2z
2+..., the Hadamard

(or Convolution) denoted by f ∗ g is defined as

(f ∗ g)(z) = z +

∞∑
k=2

akbkz
k (8)

Using (8), this definition is stated.
Definition 1: Let Dn

λErf = Dn
λErh + Dn

λErg with h and g be analytic in U ,
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where

Dn
λErh(z) = z +

∞∑
k=2

[1 + λ(k − 1)]n(−1)k−1

(2k − 1)(k − 1)!
akz

k

and

Dn
λErg(z) =

∞∑
k=1

[1 + λ(k − 1)]n(−1)k−1

(2k − 1)(k − 1)!
bkzk, |b1| < 1

Then, f ∈ TH,n(α, λ, µ, β) if and only if, 0 ≤ β < 1, 0 ≤ α ≤ 1 and µ ∈ C/0.
Hence,

Re

{
1 +

1− α

µ

[
zDn

λErh
′
(z)− zDn

λErg′(z)

Dn
λErh(z) +Dn

λErg(z)
− 1

]}
> β (9)

For the purpose of this work, the following lemmas shall be stated.
Lemma A [10]: Let f = h+ g with h and g given by (1), then,

∞∑
k=2

k − β

1− β
|ak|+

∞∑
k=1

k + β

1− β
|bk| ≤ 1 (10)

where 0 ≤ β < 1, f is harmonic orientation preserving, univalent in U and f ∈
S∗
H(β).

Lemma B [7]: Let f = h+ g with h and g given by (1), if,

∞∑
k=2

kn
αk(k − 1) + k − β

1− β
|ak|+

∞∑
k=1

kn
αk(k + 1) + k + β

1− β
|bk| ≤ 1 (11)

for some β, (0 ≤ β < 1) and α ≥ 0, then f is harmonic orientation preserving,

univalent in U and f ∈ S
∗
H,n(α, β).

2. Main Result

Theorem 1: Let f ∈ TH,n(α, λ, µ, β), then,

∞∑
k=2

A
[(α− 1)(k − 1)− (1− β) |µ|]

(1− β) |µ|
|ak|+

∞∑
k=1

A
[(1− α)(k + 1)− (1− β) |µ|]

(1− β) |µ|
∣∣bk∣∣ ≤ 1

Proof: From (9)

Re

{
1 +

1− α

µ

[
zDn

λErh
′
(z)− zDn

λErg′(z)

Dn
λErh(z) +Dn

λErg(z)
− 1

]}
> β (12)

⇒ 1 +
1− α

µ

[
1 +

∑∞
k=2 kAakz

k−1 −
∑∞

k=1 kAbkz
k−1

1 +
∑∞

k=2 Aakz
k−1 +

∑∞
k=1 Abkz

k−1
− 1

]
> β (13)

where A = [1+λ(k−1)]n(−1)k−1

(2k−1)(k−1)!

⇒ 1 +
1− α

µ



310 A. M. GBOLAGADE, I. T. AWOLERE AND A. O. FADARE EJMAA-2018/6(2)[
1 +

∑∞
k=2 kAakz

k−1 −
∑∞

k=1 kAbkz
k−1 − 1−

∑∞
k=2 Aakz

k−1 −
∑∞

k=1 Abkz
k−1

1 +
∑∞

k=2 Aakzk−1 +
∑∞

k=1 Abkz
k−1

]
> β (14)

⇒ 1− β +

[∑∞
k=2(1− α)(k − 1)Aakz

k−1 −
∑∞

k=1(1− α)(k + 1)Abkz
k−1

µ+
∑∞

k=2 µAakzk−1 +
∑∞

k=1 µAbkz
k−1

]
> 0 (15)

Further simplification of (15) gives

(1− β)µ >
∞∑
k=2

[(1− α)(k − 1) + (1− β)µ]Aakz
k−1+

∞∑
k=1

[(1− α)(k + 1)− (1 + β)µ]Abkz
k−1 (16)

Taking bound on (16), we have

∞∑
k=2

[(1− α)(k − 1) + (1− β) |µ|]A |ak|+

∞∑
k=1

[(1− α)(k + 1)− (1 + β) |µ|]A
∣∣bk∣∣ ≤ (1− β) |µ| (17)

which completes the proof.
Corrolary A: Taking α = 0 in Theorem 1, then f ∈ TH,n(0, λ, µ, β)

∞∑
k=2

[(k − 1) + (1− β) |µ|]
(1− β) |µ|

A |ak|+
∞∑
k=1

[(k + 1)− (1 + β) |µ|]
(1− β) |µ|

A
∣∣bk∣∣ ≤ 1 (18)

where A = [1+λ(k−1)]n(−1)k−1

(2k−1)(k−1)!

Theorem 2: Let f = h + g with h and g are of the form (1), then f ∈
TH,n(α, λ, µ, β) for |z| = r < 1

|f(z)| ≤ (1 + |b1|)r−

(1 + λ)n

3

[
(1− β) |µ|

(α− 1)− (1− β) |µ|
− 2(1− α)− (1− β) |µ|

(α− 1)− (1− β) |µ|

]
r2 (19)

and

|f(z)| ≥ (1 + |b1|)r+

(1 + λ)n

3

[
(1− β) |µ|

(α− 1)− (1− β) |µ|
− 2(1− α)− (1− β) |µ|

(α− 1)− (1− β) |µ|

]
r2 (20)

Proof: Since f ∈ TH,n(α, λ, µ, β), then,

|f(z)| ≤ (1 + |b1|)r +
∞∑
k=2

(|ak|+ |bk|)rk ≤ (1 + |b1|)r + r2
∞∑
k=2

(|ak|+ |bk|) (21)

= (1 + |b1|)r+



EJMAA-2018/6(2) ON THE FRACTIONAL-ORDER GAMES 311

(1− β) |µ|
[(α− 1)− (1− β) |µ|]A2

∞∑
k=2

[(α− 1)− (1− β) |µ|]
(1− β) |µ|

A2(|ak|+ |bk|)r2 (22)

and so

|f(z)| ≤ (1 + |b1|)r+

(1− β) |µ|
[(α− 1)− (1− β) |µ|]A2

∞∑
k=2

A[
[(α− 1)(k − 1)− (1− β) |µ|]

(1− β) |µ|
|ak|]r2

+ [
(1− α)(k + 1)− (1− β) |µ|

(1− β) |µ|
|bk|]r2 (23)

≤ (1 + |b1|)r +
(1− β) |µ|

[(α− 1)− (1− β) |µ|]A2

[
1− 2(1− α)− (1− β) |µ|

(1− β) |µ|
|b1|

]
r2 (24)

= (1 + |b1|)r +
1

A2

[
(1− β) |µ|

(α− 1)− (1− β) |µ|
− 2(1− α)− (1− β) |µ|

(α− 1)− (1− β) |µ|

]
r2 (25)

where A2 = − 3
(1+λ)n

The proof of (20) is similar, hence we omit it.
The upper bound given for f ∈ TH,n(α, λ, µ, β) is sharp and the equality occurs for
the function

f(z) = z + |b1| z−

(1 + λ)n

3

[
(1− β) |µ|

(α− 1)− (1− β) |µ|
− 2(1− α)− (1− β) |µ|

(α− 1)− (1− β) |µ|
|b1|

]
z2, (z = r2) (26)

|b1| ≤ (1−β)|µ|
2(1−α)−(1−β)|µ|

Corrolary B: Let f ∈ TH,n(0, λ, µ, β), then,

f(z) ≤ (1 + |b1|)r −
(1 + λ)n

3

[
(1− β) |µ|
(1− β) |µ|

− 2− (1− β) |µ|
(1− β) |µ|

]
r2 (27)

≤ (1 + |b1|)r −
(1 + λ)n

3

[
1− 2− (1− β) |µ|

(1− β) |µ|

]
r2 (28)

and

f(z) ≥ (1 + |b1|)r +
(1 + λ)n

3

[
1− 2− (1− β) |µ|

(1− β) |µ|

]
r2 (29)

Theorem 3: Let f ∈ TH,n(α, λ, µ, β), then,

|f ′(z)| ≤ 1 + |b1| −

2
(1 + λ)n

3

[
(1− β) |µ|

(α− 1)− (1− β) |µ|
− 2(1− α)− (1− β) |µ|

(α− 1)− (1− β) |µ|
|b1|

]
r (30)

and

|f ′(z)| ≥ 1 + |b1|+

2
(1 + λ)n

3

[
(1− β) |µ|

(α− 1)− (1− β) |µ|
− 2(1− α)− (1− β) |µ|

(α− 1)− (1− β) |µ|
|b1|

]
r (31)
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Proof:

f ′(z) ≤ 1 + |b1|+
∞∑
k=2

k(|ak|+ |bk|)rk−1 ≤ 1 + |b1|+ r
∞∑
k=2

k(|ak|+ |bk|) (32)

= 1 + |b1|+

2(1− β) |µ|
A2 [(α− 1)− (1− β) |µ|]

∞∑
k=2

[(α− 1)− (1− β) |µ|]
2(1− β) |µ|

A2(|ak|+ |bk|)r (33)

and so

|f ′(z)| ≤ 1 + |b1|+
2(1− β) |µ|

A2 [(α− 1)− (1− β) |µ|]

∞∑
k=2

A[
(α− 1)(k − 1)− (1− β) |µ|

2(1− β) |µ|
|ak|]+

[
(1− α)(k + 1)− (1− β) |µ|

2(1− β) |µ|
|bk] r (34)

= 1 + |b1|+
2(1− β) |µ|

A2 [(α− 1)− (1− β) |µ|]

[
1− 2(1− α)− (1− β) |µ|

2(1− β) |µ|
|b1|

]
r (35)

≤ 1 + |b1|+
2

A2

[
(1− β) |µ|

(α− 1)− (1− β) |µ|
− 2(1− α)− (1− β) |µ|

(α− 1)− (1− β) |µ|

]
(36)

= 1 + |b1| −
2(1 + λ)n

3

[
(1− β) |µ|

(α− 1)− (1− β) |µ|
− 2(1− α)− (1− β) |µ|

(α− 1)− (1− β) |µ|
|b1|

]
r (37)

The proof of (31) follows from theorem 3.
Corrolary C: Let f ∈ TH,n(α, λ, µ, β), then,

|f ′(z)| ≤ 1 + |b1| −
2(1 + λ)n

3

[
1− 2− (1− β) |µ|

(1− β) |µ|
|b1|

]
r (38)

and

|f ′(z)| ≥ 1 + |b1|+
2(1 + λ)n

3

[
1− 2− (1− β) |µ|

(1− β) |µ|
|b1|

]
r (39)

Theorem 4: Let 0 ≤ α1 < α2 and 0 ≤ β < 1. Then, TH,n(α2, β, λ) ⊂
T

∗
H,n(α1, β, λ)

Proof: From Theorem 1, it follows that
∞∑
k=2

A [(α1 − 1)(k − 1)− (1− β) |µ|]
(1− β) |µ|

|ak|+
∞∑
k=1

A [(1− α1)(k + 1)− (1− β) |µ|]
(1− β) |µ|

|bk|

<

∞∑
k=2

A [(α2 − 1)(k − 1)− (1− β) |µ|]
(1− β) |µ|

|ak|+

∞∑
k=1

A [(1− α2)(k + 1)− (1− β) |µ|]
(1− β) |µ|

|bk| ≤ 1 (40)

For f ∈ T
∗
H,n(α2, β, λ), hence f ∈ T

∗
H,n(α1, β, λ). Supposing α > 0, 0 ≤ β < 1,

then, T
∗
H,n+1(α, β, λ) ⊂ T

∗
H,n(α, β, λ).

Theorem 5: Let f = h+g, where h and g are given by (1), then f ∈ clcoT
∗
H,n(α, β, λ)



EJMAA-2018/6(2) ON THE FRACTIONAL-ORDER GAMES 313

if and only if f(z) =
∑∞

k=1(Xkhk + Ykgk)

where h1(g) = z, hk(z) = z + (1−β)|µ|
A[(α−1)(k−1)−(1−β)|µ|]z

k, (k = 2, 3, ...)

gk(z) = z+ (1−β)|µ|
A[(1−α)(k+1)−(1−β)|µ|]z

k, (k = 1, 2, ...),
∑∞

k=1(Xk+Yk) = 1, Xk ≥ 0, Yk ≥
0
In particular, the extreme points of the class T

∗
H,n(α, β, λ) are {hk} and {gk} re-

spectively.
Proof:

f(z) =

∞∑
k=1

(Xkhk + Ykgk)

=
∞∑
k=1

(Xk + Yk)(z) +
∞∑
k=2

(1− β) |µ|
A [(α− 1)(k − 1)− (1− β) |µ|]

Xkz
k

+
∞∑
k=1

(1− β) |µ|
A [(1− α)(k + 1)− (1− β) |µ|]

Ykz
k (41)

= z +

∞∑
k=2

(1− β) |µ|
A [(α− 1)(k − 1)− (1− β) |µ|]

Xkz
k+

∞∑
k=1

(1− β) |µ|
A [(1− α)(k + 1)− (1− β) |µ|]

Ykz
k (42)

But
∞∑
k=2

A [(α− 1)(k − 1)− (1− β) |µ|]
(1− β) |µ|

[
(1− β) |µ|

A [(α− 1)(k − 1)− (1− β) |µ|]
Xk

]
+

∞∑
k=1

A [(1− α)(k + 1)− (1− β) |µ|]
(1− β) |µ|

[
(1− β) |µ|

A [(1− α)(k + 1)− (1− β) |µ|]
Yk

]
≤ 1

⇒
∞∑
k=2

Xk +

∞∑
k=1

Yk = 1−X1 ≤ 1 (43)

Thus, f ∈ clcoTH,n(α, β, λ).

Conversely, supposing that f ∈ clcoHTH,n(α, β, λ), set,

Xk =
A [(α− 1)(k − 1)− (1− β) |µ|]

(1− β) |µ|
|ak| , (k = 2, 3, ...) (44)

and

Yk =
A [(1− α)(k + 1)− (1− β) |µ|]

(1− β) |µ|
|bk| , (k = 1, 2, ...) (45)

Then by the inequality (43), we have 0 ≤ Xk ≤ 1(k = 2, 3, ...) and 0 ≤ Yk ≤
1(k = 1, 2, ...). Define X1 = 1−

∑∞
k=2 Xk −

∑∞
k=1 Yk and X1 ≥ 0. Thus, we obtain

f(z) =
∑∞

k=1(Xkhk + Ykgk), which completes the proof.



314 A. M. GBOLAGADE, I. T. AWOLERE AND A. O. FADARE EJMAA-2018/6(2)

Convolution and Convex Combinations
For two harmonic functions

f(z) = z +

∞∑
k=2

akz
k +

∞∑
k=1

bkzk (46)

and

F (z) = z +
∞∑
k=2

Akz
k +

∞∑
k=1

Bkzk (47)

The convolution of (46) and (47) is defined as

(f ∗ F )(z) = z +

∞∑
k=2

akAkz
k +

∞∑
k=1

bkBkz
k (48)

Using (48), we show that T
∗
H,n(α, λ, µ, β) is closed under convolution.

Theorem 6: For 0 ≤ β < 1 and α ≥ 0, let f, F ∈ TH,n(α, λ, µ, β), then (f ∗ F ) ∈
TH,n(α, λ, µ, β)
Proof: Note that Ak ≤ 1 and Bk ≤ 1. Therefore,

(f ∗ F ) =

∞∑
k=2

A [(α− 1)(k − 1)− (1− β) |µ|]
(1− β) |µ|

|ak|+

∞∑
k=1

A [(1− α)(k + 1)− (1− β) |µ|]
(1− β) |µ|

∣∣bk∣∣ (49)

⇒
∞∑
k=2

A [(α− 1)(k − 1)− (1− β) |µ|]
(1− β) |µ|

|ak|+

∞∑
k=1

A [(1− α)(k + 1)− (1− β) |µ|]
(1− β) |µ|

∣∣bk∣∣ ≤ 1 (50)

Hence, (f ∗ F ) ∈ TH,n(α, λ, µ, β).

We shall also show that TH,n(α, λ, µ, β) is closed under convex combination of its
members.
Theorem 7: The class TH,n(α, λ, µ, β) is closed under combination

Proof: For j = 1, 2, 3..., let fj ∈ TH,n(α, λ, µ, β), where fj(z) is given as

fj(z) = z +
∞∑
k=2

akjz
k +

∞∑
k=1

bkjz
k (51)

Then by (50)

∞∑
k=2

A [(α− 1)(k − 1)− (1− β) |µ|]
(1− β) |µ|

|akj |+

∞∑
k=1

A [(1− α)(k + 1)− (1− β) |µ|]
(1− β) |µ|

∣∣bkj∣∣ ≤ 1 (52)
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for
∑∞

j=1 tj = 1, 0 ≤ tj ≤ 1, the convex combination of fj may be written as

∞∑
j=1

tjfj = z +

∞∑
k=2

(

∞∑
j=1

tjakj)z
k +

∞∑
k=1

(

∞∑
j=1

tjbkj)z
k (53)

By convolution,

∞∑
k=2

A [(α− 1)(k − 1)− (1− β) |µ|]
(1− β) |µ|

∣∣∣∣∣∣
∞∑
j=1

tjakj

∣∣∣∣∣∣+
∞∑
k=1

A [(1− α)(k + 1)− (1− β) |µ|]
(1− β) |µ|

∣∣∣∣∣∣
∞∑
j=1

tjbkj

∣∣∣∣∣∣ ≤ 1 (54)

≤
∞∑
j=1

tj(
∞∑
k=2

A [(α− 1)(k − 1)− (1− β) |µ|]
(1− β) |µ|

|akj |+

∞∑
k=1

A [(1− α)(k + 1)− (1− β) |µ|]
(1− β) |µ|

∣∣bkj∣∣)
≤

∞∑
j=1

tj = 1 (55)

Therefore,
∑∞

j=1 tjfj ∈ TH,n(α, λ, µ, β).
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