HERMITE-HADAMARD TYPE INEQUALITIES FOR $(h-m)$-CONVEXITY

ATIQ UR REHMAN, G. FARID AND QURAT UL AIN

Abstract

In this paper, we establish some Hermite-Hadamard type inequalities for $(h-m)$-convex functions of two variables on the co-ordinates. Also some new Hermite-Hadamard type inequalities for product of $(h-m)$-convex functions are given.

1. Introduction

Let $I \subseteq \mathbb{R}$ be an interval. A function $f: I \rightarrow \mathbb{R}$ is said to be convex if

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

holds for all $x, y \in I$ and $\alpha \in[0,1]$. If reverse of above inequality holds, then f is said to be concave function.

If $f: I \rightarrow \mathbb{R}$ is a convex function and $a, b \in I$ with $a<b$, then the following double inequality:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{b}^{a} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

is known as Hermite-Hadamard inequality. Both inequalities in (1) hold in reversed if f is concave.

In 1984, Toader [1] introduced the following class of functions.
Definition 1 A function $f:[0, b] \rightarrow \mathbb{R}$ is said to be m-convex, where $m \in[0,1]$, if for every $x, y \in[0, b]$ and $t \in[0,1]$, we have

$$
f(t x+m(1-t) y) \leq t f(x)+m(1-t) f(y)
$$

The following Hermite-Hadamard type inequality for m-convex functions is due to Dragomir 15 .
Theorem 1 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be m-convex function, where $m \in(0,1]$ and $0 \leq a<b$. If $f \in L_{1}[a, b]$, then one has the inequalities:

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b}\left(f(x)+m f\left(\frac{x}{m}\right)\right) d x \leq \frac{1}{8}[\mathcal{E}(a)+\mathcal{E}(b)]
$$

[^0]where
\[

$$
\begin{equation*}
\mathcal{E}(t)=f(t)+2 m f\left(\frac{t}{m}\right)+m^{2} f\left(\frac{t}{m^{2}}\right) \tag{2}
\end{equation*}
$$

\]

In [3], Pachpatte proved new inequalities of Hermite-Hadamard type for product of convex functions. They are given in the following theorem.
Theorem 2 Let $f, g:[a, b] \rightarrow[0, \infty)$ be convex functions on $[a, b]$. Then

$$
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq \frac{1}{3} M(a, b)+\frac{1}{6} N(a, b)
$$

and

$$
2 f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x+\frac{1}{6} M(a, b)+\frac{1}{3} N(a, b)
$$

where $M(a, b)=f(a) g(a)+f(b) g(b)$ and $N(a, b)=f(a) g(b)+f(b) g(a)$.
In [4], Bakula et al. gave the following Hermite-Hadaramd type inequality for m-convex functions.
Theorem 3 Let $f, g:[0, \infty) \rightarrow[0, \infty)$ be functions such that $f g \in L_{1}[a, b]$, where $0 \leq a<b<\infty$. If f is m_{1}-convex and g is m_{2}-convex on $[0, b]$ for some fixed $m_{1}, m_{2} \in(0,1]$, then

$$
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq \min \left\{M_{1}, M_{2}\right\}
$$

where
$M_{1}=\frac{1}{3}\left[f(a) g(a)+m_{1} m_{2} f\left(\frac{b}{m_{1}}\right) g\left(\frac{b}{m_{2}}\right)\right]+\frac{1}{6}\left[m_{2} f(a) g\left(\frac{b}{m_{2}}\right)+m_{1} f\left(\frac{b}{m_{1}}\right) g(a)\right]$,
and
$M_{2}=\frac{1}{3}\left[f(b) g(b)+m_{1} m_{2} f\left(\frac{a}{m_{1}}\right) g\left(\frac{a}{m_{2}}\right)\right]+\frac{1}{6}\left[m_{2} f(b) g\left(\frac{a}{m_{2}}\right)+m_{1} f\left(\frac{a}{m_{1}}\right) g(b)\right]$.
The class P-function was firstly described in [5] by Dragomir and Toader.
Definition 2 A function $f: I \rightarrow \mathbb{R}$ is said to be a P-function or belongs to the class $P(I)$. If f is non-negative and

$$
f(\alpha x+(1-\alpha) y) \leq f(x)+f(y)
$$

for all $x, y \in I$ and $\alpha \in[0,1]$.
In [5], Dragomir et al. proved inequality of Hermite-Hadamard type for class of P-functions.
Theorem 4 Let $f \in P(I), a, b \in I$, with $a<b$ and $f \in L_{1}[a, b]$. Then the following inequality holds:

$$
f\left(\frac{a+b}{2}\right) \leq \frac{2}{b-a} \int_{a}^{b} f(x) d x \leq 2[f(a)+f(b)]
$$

In 1978, Breckner [6] introduced s-convex functions as a generalization of convex functions.
Definition 3 Let $s \in(0,1]$. A function $f:[0, \infty) \rightarrow[0, \infty)$ is said to be s-convex (in the second sense), if

$$
f(\alpha x+(1-\alpha) y) \leq \alpha^{s} f(x)+(1-\alpha)^{s} f(y)
$$

for all $x, y \in[0, \infty)$ and $\alpha \in[0,1]$.
In [7], Dragomir and Fitzpatrick established the following Hermite-Hadamard type inequality.
Theorem 5 Let $f:[0, \infty) \rightarrow[0, \infty)$ be s-convex function in the second sense, where $s \in(0,1]$, and $f \in L_{1}[a, b]$, where $0 \leq a<b<\infty$. Then one has the inequalities:

$$
2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{s+1}
$$

An analogous result for s-convex functions is due to Kirmaci et al. given in [8]. Theorem 6 Let $[a, b] \subset[0, \infty)$ and $f, g:[a, b] \rightarrow \mathbb{R}$ be functions such that $g \in$ $L_{1}[a, b]$. If f is convex and non-negative on $[a, b]$, and if g is s-convex of second sense on $[a, b]$ for some fixed $s \in(0,1)$, then

$$
\begin{aligned}
2^{s} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) & -\frac{1}{b-a} \int_{a}^{b} \int_{a}^{b} f(x) g(x) d x \\
& \leq \frac{1}{(s+1)(s+1)} M(a, b)+\frac{1}{s+2} N(a, b)
\end{aligned}
$$

where $M(a, b)=f(a) g(a)+f(b) g(b)$ and $N(a, b)=f(a) g(b)+f(b) g(a)$.
In 2006, Varošanec [9] introduced the concept of h-convex functions.
Definition 4 Let $J \subseteq \mathbb{R}$ be an interval containing $(0,1)$ and let $h: J \rightarrow \mathbb{R}$ be a non-negative and nonzero function. We say that $f: I \rightarrow \mathbb{R}$ is a h-convex function or that f is said to be belong to the class $S X(h, I)$, if f is non-negative and for all $x, y \in I, \alpha \in(0,1)$, we have

$$
f(\alpha x+(1-\alpha) y) \leq h(\alpha) f(x)+h(1-\alpha) f(y)
$$

If the inequality is reversed then f is said to be h-concave and and we say that f belongs to the class $S V(h, I)$.
Sarikaya et al. in [10], established the following Hermite-Hadamard type inequality for h-convex functions.
Theorem 7 Let $f \in S X(h, I), a, b \in I$, with $a<b$ and $f \in L_{1}[a, b]$. Then

$$
\frac{1}{2 h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq[f(a)+f(b)] \int_{0}^{1} h(\alpha) d \alpha
$$

An analogous result for h-convex functions established by Sarikaya et al. in [10]. Theorem 8 Let $f \in S X\left(h_{1}, I\right), g \in S X\left(h_{2}, I\right), a, b \in I, a<b$, be functions such that $f g \in L_{1}[a, b]$, and $h_{1} h_{2} \in L_{1}[0,1]$, then

$$
\begin{aligned}
\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} & f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \\
& \leq M(a, b) \int_{0}^{1} h_{1}(t) h_{2}(t) d t+N(a, b) \int_{0}^{1} h_{1}(t) h_{2}(1-t) d t
\end{aligned}
$$

where $M(a, b)=f(a) g(a)+f(b) g(b)$ and $N(a, b)=f(a) g(b)+f(b) g(a)$.
The concept of $(h-m)$-convexity has been introduce by Özdemir et al. in 11 .
Definition 5 Let $J \subseteq \mathbb{R}$ be an interval containing $(0,1)$ and let $h: J \rightarrow \mathbb{R}$ be a non-negative function. We say that $f:[0, b] \rightarrow \mathbb{R}$ is a $(h-m)$-convex function, if f is non-negative and for all $x, y \in[0, b], m \in[0,1]$ and $\alpha \in(0,1)$, we have

$$
f(\alpha x+m(1-\alpha) y) \leq h(\alpha) f(x)+m h(1-\alpha) f(y)
$$

If the inequality is reversed, then f is said to be $(h-m)$-concave function on $[0, b]$. Remark 1 If we choose $m=1$, then we have h-convex function on $[0, b]$. If we choose $h(t)=t$ we have m-convex function on $[0, \mathrm{~b}]$. If we choose $m=1$ and $h(t)=\left\{t, 1, \frac{1}{t}, t^{s}\right\}$, then we obtain the following classes of functions, non-negative convex functions, P-functions, Godunova-Levin functions and s-convex functions on $[0, b]$, respectively.
In [11, Özdemer et al. proved the following Hermite-Hadamard type inequalities for $(h-m)$-convex functions as.
Theorem 9 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be $(h-m)$-convex function with $m \in(0,1]$, $t \in[0,1]$. If $0 \leq a<b<\infty$ and $f \in L_{1}[a, b]$. then the following inequality holds;

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \min & \left\{f(a) \int_{0}^{1} h(t) d t+m f\left(\frac{b}{m}\right) \int_{0}^{1} h(1-t) d t\right. \\
& \left.f(b) \int_{0}^{1} h(t) d t+m f\left(\frac{a}{m}\right) \int_{0}^{1} h(1-t) d t\right\}
\end{aligned}
$$

In [13], Dragomir introduced convex functions on coordinates for rectangle in the plane. Also he gave Hermite-Hadamard type inequality for convex functions on coordinates. Such type of generalization for functions related to convex functions are given by many other mathematicians, e.g. see [12, 13, 14, 16] and references therein. The main purpose of this paper is to define $(h-m)$-convex functions on coordinates and to establish new Hermite-Hadamard type inequalities for $(h-m)$-convex functions of two variables on the coordinates (Section 2). Also some new HermiteHadamard type inequalities for product of $(h-m)$-convex functions are established (Section 3).

2. Hermite-Hadamard type inequalities for coordinated ($h-m$)-CONVEX FUNCTIONS

One can give the notion of $(h-m)$-convexity of a function f on a rectangle from the plane \mathbb{R}^{2} and $(h-m)$-convexity on the coordinates on a rectangle from the plane \mathbb{R}^{2}. For this purpose, we consider bi-dimensional interval $\Delta:=[0, b] \times[0, d]$ in \mathbb{R}^{2}, we will keep this notation for the rest of the paper.
Definition 6 Let $J \subseteq \mathbb{R}$ be an interval containing $(0,1)$ and $h: J \rightarrow \mathbb{R}$ be a function. A mapping $f: \Delta \rightarrow \mathbb{R}$ is said to be $(h-m)$-convex on Δ if the inequality

$$
f(t x+m(1-t) z, t y+m(1-t w) \leq h(t) f(x, y)+m h(1-t) f(z, w)
$$

holds, for all $(x, y),(z, w) \in \Delta$ and $t \in[0,1], m \in(0,1]$. If the inequality reversed, then f is said to be $(h-m)$-concave on Δ.
As stated in Remark 1, for suitable choices of h and $m=1$, we get different known classes of convex functions.
Definition 7 Let $J \subseteq \mathbb{R}$ be an interval containing $(0,1)$ and $h: J \rightarrow \mathbb{R}$ be a function. Also let $f: \Delta \rightarrow \mathbb{R}$ be a mapping and define

$$
\begin{equation*}
f_{x}:[0, d] \rightarrow \mathbb{R} \text { by } f_{x}(v)=f(x, v) \quad \text { and } \quad f_{y}:[0, b] \rightarrow \mathbb{R} \text { by } f_{y}(u)=f(u, y) \tag{3}
\end{equation*}
$$

A mapping f is said to be (h, m)-convex on the coordinates on Δ if f_{x} and f_{y} are $(h-m)$-convex on $[0, d]$ and $[0, b]$ respectively for all $x \in[0, b]$ and $y \in[0, d]$. Theorem 10 If $f: \Delta \rightarrow \mathbb{R}$ is $(h-m)$ - convex function then it is $(h-m)$-convex function on the coordinates, but converse is not true in general.

Proof. Let $f: \Delta \rightarrow \mathbb{R}$ is $(h-m)$-convex on Δ. Consider the functions f_{x} and f_{y} defined in (3). Then for $t, m \in[0,1]$ and $u_{1}, u_{2} \in[0, d]$, we have

$$
\begin{aligned}
f_{x}\left(t u_{1}+m(1-t) u_{2}\right) & =f\left(x, h(t) u_{1}+m h(1-t) u_{2}\right) \\
& =f\left(h(t) x+m h(1-t) x, h(t) u_{1}+m h(1-t) v_{2}\right) \\
& \leq h(t) f\left(x, u_{1}\right)+m h(1-t) f\left(x, u_{2}\right) \\
& =h(t) f_{x}\left(u_{1}\right)+m h(1-t) f_{x}\left(u_{2}\right)
\end{aligned}
$$

Therefore, f_{x} is $(h-m)$-convex on $[0, d]$. The fact that f_{y} is also $(h-m)-$ convex on $[0, b]$ goes likewise. It follows that f is $(h-m)$-convex function on coordinate on Δ.
To prove that converse is not ture in general, we consider a function $f:[0,1]^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=x y$, then clearly it is $(h-m)$-convex on coordinates. If we take $u, w \in(0,1)$ and $t \in[0,1]$, then

$$
f(t(u, 0)+(1-t)(0, w))=f(t u, m(1-t) w)=m t(1-t) x w
$$

and

$$
h(t) f(u, 0)+m h(1-t) f(0, w)=0 .
$$

This shows that f is not $(h-m)$-convex on $[0,1]^{2}$.
Now, we establish Hermite-Hadamard type inequality for $(h-m)$-convex functions on the coordinates on rectangle from the plane \mathbb{R}^{2}.
Theorem 11 Let $f: \Delta \rightarrow \mathbb{R}$ be an $(h-m)$-convex function on the coordinates on Δ. If $0 \leq a<b$ and $0 \leq c<d, m \in(0,1]$ with $f \in L_{1}(\Delta)$ and $h \in L_{1}[0,1]$. Then one has the inequality

$$
\begin{align*}
& \frac{2}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \tag{4}\\
& \leq \min \left\{\frac{1}{b-a} \int_{a}^{b} f(x, c) d x \int_{0}^{1} h(t) d t+\frac{m}{b-a} \int_{a}^{b} f\left(x, \frac{d}{m}\right) d x \int_{0}^{1} h(1-t) d t,\right. \\
& \left.\frac{1}{b-a} \int_{a}^{b} f(x, d) d x \int_{0}^{1} h(t) d t+\frac{m}{b-a} \int_{a}^{b} f\left(x, \frac{c}{m}\right) d x \int_{0}^{1} h(1-t) d t,\right\} \\
& +\min \left\{\frac{1}{d-c} \int_{c}^{d} f(a, y) d x \int_{0}^{1} h(t) d t+\frac{m}{d-c} \int_{c}^{d} f\left(\frac{b}{m}, y\right) d x \int_{0}^{1} h(1-t) d t,\right. \\
& \left.\frac{1}{d-c} \int_{c}^{d} f(b, y) d x \int_{0}^{1} h(t) d t+\frac{m}{d-c} \int_{c}^{d} f\left(\frac{a}{m}, y\right) d x \int_{0}^{1} h(1-t) d t\right\}
\end{align*}
$$

Proof. Since $f: \Delta \rightarrow \mathbb{R}$ is $(h-m)$-convex function on the coordinates on Δ it follows that the mapping $f_{x}:[0, d] \rightarrow \mathbb{R}$ defined by $f_{x}(v)=f(x, v)$ is $(h-$ m)-convex on $[0, d]$ for all $x \in[0, b]$, therefore by Theorem 9 , one has

$$
\begin{aligned}
& \frac{1}{d-c} \int_{c}^{d} f_{x}(y) d y \leq \min \left\{f_{x}(c) \int_{0}^{1} h(t) d t+m f_{x}\left(\frac{d}{m}\right) \int_{0}^{1} h(1-t) d t\right. \\
&\left.f_{x}(d) \int_{0}^{1} h(t) d t+m f_{x}\left(\frac{c}{m}\right) \int_{0}^{1} h(1-t) d t\right\}
\end{aligned}
$$

that is

$$
\begin{aligned}
\frac{1}{d-c} \int_{c}^{d} f(x, y) d y \leq \min & \left\{f(x, c) \int_{0}^{1} h(t) d t+m f\left(x, \frac{d}{m}\right) \int_{0}^{1} h(1-t) d t\right. \\
& \left.f(x, d) \int_{0}^{1} h(t) d t+m f\left(x, \frac{c}{m}\right) \int_{0}^{1} h(1-t) d t\right\}
\end{aligned}
$$

Dividing both sides by $\frac{1}{b-a}$ and integrating the inequality on $[a, b]$, we have

$$
\begin{align*}
& \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y \tag{5}\\
& \leq \min \left\{\frac{1}{b-a} \int_{a}^{b} f(x, c) \int_{0}^{1} h(t) d t+\frac{m}{b-a} \int_{a}^{b} f\left(x, \frac{d}{m}\right) \int_{0}^{1} h(1-t) d t\right. \\
& \left.\frac{1}{b-a} \int_{a}^{b} f(x, d) \int_{0}^{1} h(t) d t+\frac{m}{b-a} \int_{a}^{b} f\left(x, \frac{c}{m}\right) \int_{0}^{1} h(1-t) d t\right\}
\end{align*}
$$

By applying similar arguments to the mapping $f_{y}:[0, b] \rightarrow \mathbb{R}$ defined by $f_{y}(u)=$ $f(u, y)$, we get

$$
\begin{align*}
& \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y \tag{6}\\
& \leq \min \left\{\frac{1}{d-c} \int_{c}^{d} f(a, y) \int_{0}^{1} h(t) d t+\frac{m}{d-c} \int_{c}^{d} f\left(\frac{b}{m}, y\right) \int_{0}^{1} h(1-t) d t\right. \\
& \left.\frac{1}{d-c} \int_{c}^{d} f(b, y) \int_{0}^{1} h(t) d t+\frac{m}{d-c} \int_{c}^{d} f\left(\frac{a}{m}, y\right) \int_{0}^{1} h(1-t) d t\right\}
\end{align*}
$$

We add inequalities (5) and (6), to obtain the required result.
If we take $h(t)=t$ for all $t \in[0,1]$ in above theorem we get [16, Theorem 3.5], is stated in the following corollary.
Corollary 1 If $f: \Delta \rightarrow \mathbb{R}$ be m-convex on the coordinates on Δ. If $0 \leq a<b$ and $0 \leq c<d, m \in(0,1]$ with $f \in L(\Delta)$. Then one has the inequality

$$
\begin{aligned}
& \frac{2}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
& \leq \min \left\{\frac{1}{b-a} \int_{a}^{b}\left(\frac{f(x, c)+m f\left(x, \frac{d}{m}\right)}{2}\right) d x, \frac{1}{b-a} \int_{a}^{b}\left(\frac{f(x, d)+m f\left(x, \frac{c}{m}\right)}{2}\right) d x\right\} \\
& +\min \left\{\frac{1}{b-a} \int_{a}^{b}\left(\frac{f(a, y)+m f\left(\frac{b}{m}, y\right)}{2}\right) d x, \frac{1}{b-a} \int_{a}^{b}\left(\frac{f(b, y)+m f\left(\frac{a}{m}, y\right)}{2}\right) d x\right\}
\end{aligned}
$$

Next, we start to state second theorem containing Hermite-Hadamard type inequality.
Theorem 12 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be $(h-m)$-convex, where $m \in(0,1]$ and
$0 \leq a<b<\infty$, if $f \in L_{1}[a, b], h \in L_{1}[0,1]$. Then one has the inequalities

$$
\begin{align*}
& f\left(\frac{a+b}{2}\right) \leq \frac{h\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left(f(x)+m f\left(\frac{x}{m}\right)\right) d x \tag{7}\\
& \leq \frac{h\left(\frac{1}{2}\right)}{2}[\mathcal{E}(a)+\mathcal{E}(b)] \int_{0}^{1} h(t) d t
\end{align*}
$$

where \mathcal{E} is defined in (2).
Proof. By the $(h-m)$-convexity of f, we have

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq h\left(\frac{1}{2}\right)\left[f(x)+m f\left(\frac{y}{m}\right)\right] \tag{8}
\end{equation*}
$$

For all $x, y \in[0, \infty)$ If we choose

$$
x=t a+(1-t) b, \quad y=(1-t) a+t b
$$

we deduce

$$
f\left(\frac{a+b}{2}\right) \leq h\left(\frac{1}{2}\right)\left[f(t a+(1-t) b)+m f\left((1-t) \frac{a}{m}+t \frac{b}{m}\right)\right] .
$$

Integrating over $t \in[0,1]$, we get

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq h\left(\frac{1}{2}\right)\left[\int_{0}^{1} f(t a+(1-t) b) d t+m \int_{0}^{1} f\left((1-t) \frac{a}{m}+t \frac{b}{m}\right) d t\right] \tag{9}
\end{equation*}
$$

A simple computation gives us that

$$
\int_{0}^{1} f(t a+(1-t) b) d t=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

and

$$
\int_{0}^{1} f\left((1-t) \frac{a}{m}+t \frac{b}{m}\right) d t=\frac{m}{b-a} \int_{\frac{a}{m}}^{\frac{b}{m}} f(x) d x=\frac{1}{b-a} \int_{a}^{b} f\left(\frac{x}{m}\right) d x
$$

Using the above two expression in (9), we get

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{h\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left(f(x)+m f\left(\frac{x}{m}\right)\right) d x \tag{10}
\end{equation*}
$$

This completes the proof of first inequality in (7). The second inequality in (7) follows from the fact by using the $(h-m)$-convexity of f for all $t \in[0,1]$, we can write

$$
\begin{aligned}
& h\left(\frac{1}{2}\right)\left[f(t a+(1-t) b)+m f\left((1-t) \frac{a}{m}+t \frac{b}{m}\right)\right] \\
& \leq h\left(\frac{1}{2}\right)\left[h(t) f(a)+m h(1-t) f\left(\frac{b}{m}\right)+m^{2} h(1-t) f\left(\frac{a}{m^{2}}\right)+h(t) m f\left(\frac{b}{m}\right)\right]
\end{aligned}
$$

Integrating above inequality over $[0,1]$ w.r.t t, we deduce

$$
\begin{align*}
& \frac{h\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left(f(x)+m f\left(\frac{x}{m}\right)\right) d x \tag{11}\\
& \leq h\left(\frac{1}{2}\right)\left[f(a)+2 m f\left(\frac{b}{m}\right)+m^{2} f\left(\frac{a}{m^{2}}\right)\right] \int_{0}^{1} h(t) d t
\end{align*}
$$

Now if we choose

$$
x=(1-t) a+t b \quad y=t a+(1-t) b
$$

we have

$$
\begin{align*}
& \frac{h\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left(f(x)+m f\left(\frac{x}{m}\right)\right) d x \tag{12}\\
& \leq h\left(\frac{1}{2}\right)\left[f(b)+2 m f\left(\frac{a}{m}\right)+m^{2} f\left(\frac{b}{m^{2}}\right)\right] \int_{0}^{1} h(t) d t
\end{align*}
$$

Adding (11) and (12), we get

$$
\begin{aligned}
& \frac{h\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left(f(x)+m f\left(\frac{x}{m}\right)\right) d x \\
& \leq \frac{h\left(\frac{1}{2}\right)}{2}[\mathcal{E}(a)+\mathcal{E}(b)] \int_{0}^{1} h(t) d t
\end{aligned}
$$

This complete the proof.

Remark 2

1. By putting $h(t)=t$ in above theorem, we get Theorem 1 .
2. By putting $m=1$ and $h(t)=1$ in above theorem, we get Theorem 4 .
3. By putting $m=1$ and $h(t)=t^{s}$ in above theorem, we get Theorem 5 .
4. By putting $m=1$ in above theorem, we get Theorem 7 .

Theorem 13 Let $f: \Delta \rightarrow \mathbb{R}$ be an $(h-m)$-convex function on the coordinates on Δ. If $m \in(0,1]$ with $f \in L_{1}(\Delta)$ and $h \in L_{1}[0,1]$. Then we have

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y \tag{13}\\
& \leq \frac{h\left(\frac{1}{2}\right)}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d}\left(2 f(x, y)+m\left(f\left(x, \frac{y}{m}\right)+f\left(\frac{x}{m}, y\right)\right)\right) d y d x \\
& \leq \frac{h\left(\frac{1}{2}\right)}{2}\left[\frac{1}{b-a} \int_{a}^{b}(\mathcal{E}(x, c)+\mathcal{E}(x, d)) d x+\frac{1}{d-c} \int_{c}^{d}(\mathcal{E}(a, y)+\mathcal{E}(b, y)) d y\right] \int_{0}^{1} h(t) d t
\end{align*}
$$

where

$$
\mathcal{E}(x, t)=f(x, t)+2 m f\left(x, \frac{t}{m}\right)+m^{2} f\left(x, \frac{t}{m^{2}}\right)
$$

and

$$
\mathcal{E}(t, y)=f(t, y)+2 m f\left(\frac{t}{m}, y\right)+m^{2} f\left(\frac{t}{m^{2}}, y\right)
$$

Proof. Since $f: \Delta \rightarrow \mathbb{R}$ is $(h-m)$-convex function on the coordinates on Δ it follows that the mapping $f_{y}:[0, b] \rightarrow \mathbb{R}$ defined by $f_{y}(u)=f(u, y)$ is $(h-$ m)-convex on $[0, b]$ for all $x \in[0, d]$, therefore by Theorem 2.4 , one has
$f_{y}\left(\frac{a+b}{2}\right) \leq \frac{h\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left(f_{y}(x)+m f_{y}\left(\frac{x}{m}\right)\right) d x \leq \frac{h\left(\frac{1}{2}\right)}{2}\left[\mathcal{E}_{y}(a)+\mathcal{E}_{y}(b)\right] \int_{0}^{1} h(t) d t$,
that is,
$f\left(\frac{a+b}{2}, y\right) \leq \frac{h\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left(f(x, y)+m f\left(\frac{x}{m}, y\right)\right) d x \leq \frac{h\left(\frac{1}{2}\right)}{2}[\mathcal{E}(a, y)+\mathcal{E}(b, y)] \int_{0}^{1} h(t) d t$.

Dividing both sides by $\frac{1}{d-c}$ and integrating the inequality on $[c, d]$, we have

$$
\begin{align*}
& \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y \tag{14}\\
& \leq \frac{h\left(\frac{1}{2}\right)}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b}\left(f(x, y)+m f\left(\frac{x}{m}, y\right)\right) d x d y \\
& \leq \frac{h\left(\frac{1}{2}\right)}{2(d-c)} \int_{c}^{d}[\mathcal{E}(a, y)+\mathcal{E}(b, y)] d y \int_{0}^{1} h(t) d t
\end{align*}
$$

By applying similar arguments to the mapping $f_{x}:[0, d] \rightarrow \mathbb{R}$ defined by $f_{x}(v)=$ $f(x, v)$, we get

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x \tag{15}\\
& \leq \frac{h\left(\frac{1}{2}\right)}{(b-a)(d-c)} \int_{c}^{d} \int_{a}^{b}\left(f(x, y)+m f\left(x, \frac{y}{m}\right)\right) d x d y \\
& \leq \frac{h\left(\frac{1}{2}\right)}{2(b-a)} \int_{a}^{b}[\mathcal{E}(a, y)+\mathcal{E}(b, y)] d x \int_{0}^{1} h(t) d t
\end{align*}
$$

By adding (14) and (15) we get the desired result.

Remark 3

(i) If we take $m=1$ and $h(t)=t^{s}$ for all $t \in[0,1]$ in above theorem we get partial results of [12, Theorem 2.1].
(ii) If we take $m=1$ and $h(t)=t$ for all $t \in[0,1]$ in above results of theorem we get [13, Theorem 1].

3. Hermite-Hadamard type inequalities for products of ($h-m$)-CONVEXITY

In the following theorem, we proved Hermite-Hadamard type inequality for product of $h-m$-convex functions.
Theorem 14 Let $f, g:[0, \infty) \rightarrow \mathbb{R}$ be such that $f g$ is in $L_{1}[a, b]$, where $0 \leq a<$ $b<\infty$. If f is $\left(h-m_{1}\right)$-convex and g is $\left(h-m_{2}\right)$-convex on $[0, \infty)$ for some fixed $m_{1}, m_{2} \in(0,1]$ and $h \in L_{1}[0,1]$, then

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq \min \left\{M_{1}, N_{2}\right\} \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
& M_{1}=\int_{0}^{1}(h(t))^{2} d t\left[f(a) g(a)+m_{1} m_{2} f\left(\frac{b}{m_{1}}\right) g\left(\frac{b}{m_{2}}\right)\right] \\
& +\int_{0}^{1} h(t) h(1-t) d t\left[m_{2} f(a) g\left(\frac{b}{m_{2}}\right)+m_{1} f\left(\frac{b}{m_{1}}\right) g(a)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& M_{2}=\int_{0}^{1}(h(t))^{2} d t\left[f(b) g(b)+m_{1} m_{2} f\left(\frac{a}{m_{1}}\right) g\left(\frac{a}{m_{2}}\right)\right] \\
& +\int_{0}^{1} h(t) h(1-t) d t\left[m_{2} f(b) g\left(\frac{a}{m_{2}}\right)+m_{1} f\left(\frac{a}{m_{1}}\right) g(b)\right] .
\end{aligned}
$$

Proof. Since f is $\left(h-m_{1}\right)$-convex and g is $\left(h-m_{2}\right)$-convex on $[0, \infty)$ for some fixed $m_{1}, m_{2} \in(0,1]$ and $t \in[0,1]$, we have

$$
\begin{aligned}
& f(t a+(1-t) b) g(t a+(1-t) b) \\
& \leq(h(t))^{2} f(a) g(a)+m_{2} h(t) h(1-t) f(a) g\left(\frac{b}{m_{2}}\right) \\
& +m_{1} h(t) h(1-t) f\left(\frac{b}{m_{1}}\right) g(a)+m_{1} m_{2}(h(1-t))^{2} f\left(\frac{b}{m_{1}}\right) g\left(\frac{b}{m_{2}}\right)
\end{aligned}
$$

Integration both sides of the above inequality over $[0,1]$, yield the following

$$
\begin{array}{rl}
\int_{0}^{1} f(t a+(1-t) b) g & g(t a+(1-t) b) d t=\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \\
& \leq \int_{0}^{1}(h(t))^{2} d t\left(f(a) g(a)+m_{1} m_{2} f\left(\frac{b}{m_{1}}\right) g\left(\frac{b}{m_{2}}\right)\right) \\
& +\int_{0}^{1} h(t) h(1-t) d t\left(m_{2} f(a) g\left(\frac{b}{m_{2}}\right)+m_{1} f\left(\frac{b}{m_{1}}\right) g(a)\right)
\end{array}
$$

Analogously we obtain

$$
\begin{aligned}
& =\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \\
& \leq \int_{0}^{1}(h(t))^{2} d t\left(f(b) g(b)+m_{1} m_{2} f\left(\frac{a}{m_{1}}\right) g\left(\frac{a}{m_{1}}\right)\right) \\
& +\int_{0}^{1} h(t) h(1-t) d t\left(m_{2} f(b) g\left(\frac{a}{m_{2}}\right)+m_{1} f\left(\frac{a}{m_{1}}\right) g(b)\right)
\end{aligned}
$$

After a little computation one get inequality (16).
Remark 4 If in above theorem we choose $h(t)=t$, then we obtain Theorem 3 . Theorem 15 Let $f, g:[0, \infty) \rightarrow \mathbb{R}$ such that $f g \in L_{1}[a, b]$, where $0 \leq a<b<\infty$. If f is $\left(h_{1}-m\right)$-convex and g is $\left(h_{2}-m\right)$-convex on $[0, \infty)$ for some fixed $m \in(0,1]$, and $h_{1}, h_{2} \in L_{1}[0,1]$, then the following inequalities holds:

$$
\begin{align*}
& f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right)-\frac{h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left(f(x) g(x)+m^{2} f\left(\frac{x}{m}\right) g\left(\frac{x}{m}\right)\right) d x \tag{17}\\
& \leq m\left[f(a) g\left(\frac{a}{m^{2}}\right)+f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right)\right] \int_{0}^{1} h_{1}(t) h_{2}(1-t) d t \\
& +m^{2}\left[f\left(\frac{b}{m}\right) g\left(\frac{a}{m^{2}}\right)+f\left(\frac{a}{m^{2}}\right) g\left(\frac{a}{m}\right)\right] \int_{0}^{1} h_{1}(1-t) h_{2}(1-t) d t \\
& +\left[f\left(\frac{b}{m}\right) g(a)+f(a) g\left(\frac{b}{m}\right)\right] \int_{0}^{1} h_{1}(t) h_{2}(t) d t \\
& +m^{2}\left[f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right)+f\left(\frac{a}{m^{2}}\right) g(a)\right] \int_{0}^{1} h_{2}(t) h_{1}(1-t) d t
\end{align*}
$$

Proof. We can write.

$$
\frac{a+b}{2}=\frac{a t+(1-t) b}{2}+\frac{(1-t) a+t b}{2}
$$

so,

$$
\begin{aligned}
& f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \\
& =f\left(\frac{a t+(1-t) b}{2}+\frac{(1-t) a+t b}{2}\right) g\left(\frac{a t+(1-t) b}{2}+\frac{(1-t) a+t b}{2}\right) \\
& \leq h_{1}\left(\frac{1}{2}\right)\left[f(a t+(1-t) b)+m f\left((1-t) \frac{a}{m}+t \frac{b}{m}\right)\right] \times \\
& h_{2}\left(\frac{1}{2}\right)\left[g(a t+(1-t) b)+m g\left((1-t) \frac{a}{m}+t \frac{b}{m}\right)\right]
\end{aligned}
$$

This gives us

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) & \leq h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right) \times\{f(a t+(1-t) b) g(a t+(1-t) b) \\
& +m^{2} f\left((1-t) \frac{a}{m}+t \frac{b}{m}\right) g\left((1-t) \frac{a}{m}+t \frac{b}{m}\right) \\
& +m f(a t+(1-t) b) g\left((1-t) \frac{a}{m}+t \frac{b}{m}\right) \\
& \left.+m f\left((1-t) \frac{a}{m}+t \frac{b}{m}\right) g(a t+(1-t) b)\right\}
\end{aligned}
$$

The above expression leads us to

$$
\begin{aligned}
& f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \\
& \leq h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right) \times\{f(a t+(1-t) b) g(a t+(1-t) b) \\
& \left.+m^{2} f\left((1-t) \frac{a}{m}+t \frac{b}{m}\right) g\left((1-t) \frac{a}{m}+t \frac{b}{m}\right)\right\} \\
& +m h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right) \times\left\{\left[h_{1}(t) f(a)+m h_{1}(1-t) f\left(\frac{b}{m}\right)\right]\right. \\
& {\left[m h_{2}(1-t) g\left(\frac{a}{m^{2}}\right)+h_{2}(t) g\left(\frac{b}{m}\right)\right]+\left[m h_{1}(1-t) f\left(\frac{a}{m^{2}}\right)+h_{1}(t) f\left(\frac{b}{m}\right)\right]} \\
& \left.\left[h_{2}(t) g(a)+m h_{2}(1-t) g\left(\frac{b}{m}\right)\right]\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \leq h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right) \times\{f(a t+(1-t) b) g(a t+(1-t) b) \\
& \left.+m^{2} f\left((1-t) \frac{a}{m}+t \frac{b}{m}\right) g\left((1-t) \frac{a}{m}+t \frac{b}{m}\right)\right\} \\
& +m h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right) \times\left\{m h_{1}(t) h_{2}(1-t)\left[f(a) g\left(\frac{a}{m^{2}}\right)+f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right)\right]\right. \\
& +m^{2} h_{1}(1-t) h_{2}(1-t)\left[f\left(\frac{b}{m}\right) g\left(\frac{a}{m^{2}}\right)+f\left(\frac{a}{m^{2}}\right) g\left(\frac{a}{m}\right)\right] \\
& +h_{1}(t) h_{2}(t)\left[f\left(\frac{b}{m}\right) g(a)+f(a) g\left(\frac{b}{m}\right)\right] \\
& \left.+m h_{2}(t) h_{1}(1-t)\left[f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right)+f\left(\frac{a}{m^{2}}\right) g(a)\right]\right\}
\end{aligned}
$$

Integrating over $[0,1]$, we obtain

$$
\begin{aligned}
& f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right)-\frac{h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)}{b-a} \int_{a}^{b}\left(f(x) g(x)+m^{2} f\left(\frac{x}{m}\right) g\left(\frac{x}{m}\right)\right) d x \\
& \leq m\left[f(a) g\left(\frac{a}{m^{2}}\right)+f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right)\right] \int_{0}^{1} h_{1}(t) h_{2}(1-t) d t \\
& +m^{2}\left[f\left(\frac{b}{m}\right) g\left(\frac{a}{m^{2}}\right)+f\left(\frac{a}{m^{2}}\right) g\left(\frac{a}{m}\right)\right] \int_{0}^{1} h_{1}(1-t) h_{2}(1-t) d t \\
& +\left[f\left(\frac{b}{m}\right) g(a)+f(a) g\left(\frac{b}{m}\right)\right] \int_{0}^{1} h_{1}(t) h_{2}(t) d t \\
& +m^{2}\left[f\left(\frac{b}{m}\right) g\left(\frac{b}{m}\right)+f\left(\frac{a}{m^{2}}\right) g(a)\right] \int_{0}^{1} h_{2}(t) h_{1}(1-t) d t .
\end{aligned}
$$

This completes the proof.

Remark 5

(i) If we take $m=1$ and $h_{1}=h_{2}=t$ in above theorem we get Theorem 2.
(ii) If we take $m=1$ and $h_{1}=t, h_{2}=t^{s}$ in above theorem we get Theorem 6 .
(iii) If we take $m=1$ in above theorem we get Theorem 8 .

References

[1] G. H. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim, University of Cluj-Napoc(Romania). (1984), 329-338.
[2] S. S. Dargomir and G. H. Toader, Some inequalities for m-convex functions, Stud. Univ. Babes-Bolyai, Math. 38(1)(1993), 21-28.
[3] B. G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6(E)(2003), 8 pp.
[4] M. K. Bakula, M. E. Ozdemir, and J. Pečarić, Hadamard type inequalities for m-convex and (α, m)-convex functions, J. Inequal. Pure Appl. Math. 9(4)(2008), 12 pp.
[5] S. S. Dargomir, J. Pečarić, and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), 335-241.
[6] W. W. Breckner, fr eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math. 23 (1978), 13-20.
[7] S. S. Dragomir, S. Fitzpatrick, The Hadamards inequality for s-convex functions in the second sense, Demonstr. Math. 32(4)(1999), 687-696.
[8] U. S. Kirmaci, M. K. Bakula, M. E. Ozdemir, and J. Pečarić, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193(1)(2007), 26-35.
[9] S. Varošanec, On h-convexity,J. Math. Appl. 326(1)(2007), 303-311.
[10] M. Z. Sarikaya, A. Saglam and H. Yildirim, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal. 2(3)(2008), 335-341.
[11] M. E. Özdemir, A. O. Akdemri, E. Set, On $(h-m)$-convexity and Hadamard-type inequalities, Transylv. J. Math. Mech. 8(1)(2016), 51-58.
[12] M. Alomari and M. Darus, The Hadamard's inequality for s-convex function of 2 -variables on the coordinates, Int. J. Math. Anal. 2(13) (2008), 629-638.
[13] S.S. Dragomir, On the Hermite Hadamards inequality for convex function on coordinates in a rectangle from the plane, Taiwan. J. Math. 5(4)(2001), 775-778.
[14] M. A. Latif and M. Alomari, On Hadamard-type inequalities for h-convex functions on the coordinates, Int. J. Math. Anal. 3(33)(2009): 1645-1656.
[15] S. S. Dragomir, On Some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math. 33 (1) (2002), 55-65.
[16] G. Farid, M. Marwan and A.U. Rehman, New mean value theorems and generalization of Hadamard inequality via coordinate m-convex functions, J. Inequal. Appl. 2015 Art. ID 283 (2015), 11 pp .

Atiq Ur Rehman
COMSATS Institute of Information Technology, Attock, Pakistan
E-mail address: atiq@mathcity.org
Ghulam Farid
COMSATS Institute of Information Technology, Attock, Pakistan
E-mail address: faridphdsms@hotmail.com,ghlmfarid@ciit-attock.edu.pk
Qurat Ul Ain
COMSATS Institute of Information Technology, Attock, Pakistan
E-mail address: math.annie2594@gmail.com

[^0]: 2010 Mathematics Subject Classification. 26B15, 26A51, 34L15.
 Key words and phrases. Convex functions, Hermite-Hadamard inequality, $(h-m)$-convex functions.

 Submitted May 8, 2017. Revised March 8, 2018.

