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HERMITE-HADAMARD TYPE INEQUALITIES FOR
(h — m)~CONVEXITY

ATIQ UR REHMAN, G. FARID AND QURAT UL AIN

ABSTRACT. In this paper, we establish some Hermite-Hadamard type inequal-
ities for (h — m)—convex functions of two variables on the co-ordinates. Also
some new Hermite-Hadamard type inequalities for product of (h —m)—convex
functions are given.

1. INTRODUCTION

Let I C R be an interval. A function f : I — R is said to be convex if

flaz+ (1 —a)y) < af(@)+(1—a)f(y)

holds for all z,y € I and « € [0,1]. If reverse of above inequality holds, then f is
said to be concave function.
If f: I — Ris a convex function and a,b € I with a < b, then the following

double inequality:
f(“;rb>§b1a/bf(:c)dx§w "

is known as Hermite-Hadamard inequality. Both inequalities in hold in reversed
if f is concave.

In 1984, Toader [I] introduced the following class of functions.
Definition 1 A function f : [0,b] — R is said to be m—convex, where m € [0, 1], if
for every z,y € [0,b] and ¢ € [0, 1], we have

ftz+m(l—t)y) <tf(z)+m(l—1)f(y).
The following Hermite-Hadamard type inequality for m—convex functions is due to
Dragomir [I5].
Theorem 1 Let f : [0,00) — R be m—convex function, where m € (0,1] and
0<a<b If f € Li[a,b], then one has the inequalities:

f(““’)_/ o) +mf (2))de < L) + €0,
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where
e = 10+ 2mg (L) vty (L)), 2)

In [3], Pachpatte proved new inequalities of Hermite-Hadamard type for product of
convex functions. They are given in the following theorem.
Theorem 2 Let f, ¢ : [a,b] — [0,00) be convex functions on [a,b]. Then

b_a/f Vdz < M(ab)+6N(ab)

and

2f<a+b> <‘“2Lb>_b_a/f z)dz + M(a b) + N(ab)

where M(a,b) = f(a)g(a) + f(b)g(b) and N(a,b) = f(a)g(b) + f(b)g(a).

n [4], Bakula et al. gave the following Hermite-Hadaramd type inequality for
m—convex functions.

Theorem 3 Let f, g : [0,00) — [0,00) be functions such that fg € Li[a,b], where
0<a<b<oo Iffismi—convex and g is ma—convex on [0,b] for some fixed
mi, Mg € (0, 1], then

_a/ f(2)g(z)dz < min {My, My},
where
My = 3 [ f@at) +mimaf (Vo ()] + 5 [mart@a (o) + o () ot@)
and

Mz = 3 100+ mamag () o (L) 3 [marorg () +mur () a0

The class P—function was firstly described in [5] by Dragomir and Toader.
Definition 2 A function f : I — R is said to be a P—function or belongs to the
class P(I). If f is non-negative and

flax + (1 —a)y) < f(z)+ f(y)

for all z,y € I and « € [0,1].

In [5], Dragomir et al. proved inequality of Hermite-Hadamard type for class of
P—functions.

Theorem 4 Let f € P(I),a,b € I, with a < b and f € Lq[a,b]. Then the following

inequality holds:
a+b
<
1(*50) <

In 1978, Breckner [6] introduced s—convex functions as a generalization of convex
functions.

Definition 3 Let s € (0,1]. A function f : [0,00) — [0,00) is said to be s—convex
(in the second sense), if

flaz+ (1 —a)y) <o’ f(z)+ (1 —a)’f(y)

[f(a) + F ()]
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for all z,y € [0,00) and « € [0, 1].

In [7], Dragomir and Fitzpatrick established the following Hermite-Hadamard type
inequality.

Theorem 5 Let f : [0,00) — [0,00) be s—convex function in the second sense,
where s € (0,1], and f € Li[a,b], where 0 < a < b < co. Then one has the

inequalities:
fat) 1 f(a) + £()
i (U57) < gy | e < T

An analogous result for s—convex functions is due to Kirmaci et al. given in [§].
Theorem 6 Let [a,b] C [0,00) and f,g : [a,b] — R be functions such that g €
Ly[a,b]. If f is convex and non-negative on [a,b], and if g is s—convex of second
sense on [a, b] for some fixed s € (0,1), then

()5 ik [ s
1

M(a,b) +

1

< — ——N(a, b).
T (s+1)(s+1) 5+2 (a,)
where M (a,b) = f(a)g(a) + f(b)g(b) and N(a,b) = f(a)g(b) + f(b)g(a).
In 2006, Varoganec [9] introduced the concept of h—convex functions.
Definition 4 Let J C R be an interval containing (0,1) and let o : J — R be a
non-negative and nonzero function. We say that f : I — R is a h—convex function
or that f is said to be belong to the class SX (h,I), if f is non-negative and for all
xz,y € I,a € (0,1) , we have

flaz+ (1 —a)y) < h(a)f(z) + (1l —a)f(y).
If the inequality is reversed then f is said to be h—concave and and we say that f
belongs to the class SV (h,I).
Sarikaya et al. in [I0], established the following Hermite-Hadamard type inequality

for h—convex functions.

Theorem 7 Let f € SX(h,I),a,b € I,with a <band f € Lq[a,b]. Then
1 a+b 1 b !
! (50) <525 L e < @+ ) [ hiao

An analogous result for h—convex functions established by Sarikaya et al. in [10].
Theorem 8 Let f € SX(hy,I),g € SX(ho,I), a,b € I, a < b, be functions such
that fg € Li[a,b], and hihe € L1[0, 1], then

s (500 (50) ~52a [ st

< M(a,b) /01 ha(t)ha(t)dt + N(a,b) /01 hi(t)ha(1 — t)dt,

where M(a,b) = f(a)g(a)+f(b)g(b) and N(a,b) = f(a)g(b)+f(b)g(a).

The concept of (h — m)—convexity has been introduce by Ozdemir et al. in [11].
Definition 5 Let J C R be an interval containing (0,1) and let h : J — R be a
non-negative function. We say that f : [0,0] — R is a (h — m)—convex function, if
f is non-negative and for all z,y € [0,b],m € [0,1] and « € (0, 1), we have

flaz+m(1 —a)y) < h(a)f(z) + mh(1l —a)f(y).
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If the inequality is reversed, then f is said to be (h —m)—concave function on [0, b].
Remark 1 If we choose m = 1, then we have h—convex function on [0,b]. If we
choose h(t) = t we have m—convex function on [0,b]. If we choose m = 1 and
h(t) = {t,1, %, t*}, then we obtain the following classes of functions, non-negative
convex functions, P—functions, Godunova-Levin functions and s—convex functions
on [0, b], respectively.

In [11], Ozdemer et al. proved the following Hermite-Hadamard type inequalities
for (h —m)—convex functions as.

Theorem 9 Let f : [0,00) — R be (h — m)—convex function with m € (0,1],

€[0,1. T0<a<b<ooand f € Li[a,b]. then the following inequality holds;

= " f(a)de < min {r | bty + my (%) "h - o

£(b) /01 h(t)dt + mf (%) /01 h(l — t)dt} .

In [I3], Dragomir introduced convex functions on coordinates for rectangle in the
plane. Also he gave Hermite-Hadamard type inequality for convex functions on co-
ordinates. Such type of generalization for functions related to convex functions are
given by many other mathematicians, e.g. see [12,[13] 14}, [T6] and references therein.
The main purpose of this paper is to define (h — m)—convex functions on coordi-
nates and to establish new Hermite-Hadamard type inequalities for (h—m)—convex
functions of two variables on the coordinates (Section 2). Also some new Hermite-
Hadamard type inequalities for product of (h—m)—convex functions are established
(Section 3).

2. HERMITE-HADAMARD TYPE INEQUALITIES FOR COORDINATED
(h — m)—CONVEX FUNCTIONS

One can give the notion of (h—m)—convexity of a function f on a rectangle from
the plane R? and (h — m)—convexity on the coordinates on a rectangle from the
plane R2. For this purpose, we consider bi-dimensional interval A := [0,] x [0, d]
in R?, we will keep this notation for the rest of the paper.

Definition 6 Let J C R be an interval containing (0,1) and » : J — R be a
function. A mapping f : A — R is said to be (h—m)—convex on A if the inequality

fx+m —t)z,ty + m(l —tw) < h(t)f(z,y) + mh(l — 1) f(z,w)

holds, for all (z,y), (z,w) € A and ¢t € [0,1],m € (0,1]. If the inequality reversed,
then f is said to be (h — m)—concave on A.

As stated in Remark 1, for suitable choices of h and m = 1, we get different known
classes of convex functions.

Definition 7 Let J C R be an interval containing (0,1) and o : J — R be a
function. Also let f: A — R be a mapping and define

fz : [Ovd] —R by f’I‘(v) = f(.Z',U) and fy : [Ovb} —+R by fy(u) = f(uay) (3)

A mapping f is said to be (h,m)—convex on the coordinates on A if f, and f,
are (h —m)—convex on [0,d] and [0, b] respectively for all « € [0,b] and y € [0,d].
Theorem 10 If f : A — R is (h — m)— convex function then it is (h — m)—convex
function on the coordinates, but converse is not true in general.
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Proof. Let f: A — R is (h — m)—convex on A. Consider the functions f, and f,
defined in (3). Then for t,m € [0,1] and uy,us € [0, d], we have
(x, h(t)ur + mh(l — t)ug)
(h(t)x + mh(1 — t)x, h(t)us + mh(l — t)ve)
() f(z,u1) +mh(l — ) f(z, uz)

() fa(ur) + mh(1 — 1) fz(us2).
Therefore, f, is (h —m)—convex on [0, d]. The fact that f, is also (h —m)—convex
on [0, b] goes likewise. It follows that f is (h —m)—convex function on coordinate
on A.
To prove that converse is not ture in general, we consider a function f : [0,1]? — R

defined by f(z,y) = zy, then clearly it is (h — m)—convex on coordinates. If we
take u,w € (0,1) and ¢ € [0, 1], then

f(t(u,0) 4+ (1 = )(0,w)) = f(tu,m(1 — t)w) = mit(l — t)zw

fo(tur + m(1 — thug) =

IN

f
f
h
h

and
h(t)f(u,0) +mh(1l —t)f(0,w) = 0.

This shows that f is not (h — m)—convex on [0, 1]2.

Now, we establish Hermite-Hadamard type inequality for (h—m)—convex functions
on the coordinates on rectangle from the plane R2.

Theorem 11 Let f : A — R be an (h — m)—convex function on the coordinates
on A. f 0<a<band 0 <c<d, me (0,1] with f € L;(A) and h € L]0, 1].
Then one has the inequality

Gmaa=a ), [t g
< min{bia/abf@,c)dx/;h(wdwb_ma/:f (z i) dx/olh(lwdt,
;/ﬂbﬂx,d)dw/olh(t)mb_mG/bf(x, ) dx/lhu—t)dt,}
ol o Lo 2 s o[-
dlcfcdﬂb,y)dx/: dt+—/ d:c/olh(l—t)dt}.

Proof. Since f : A — R is (h — m)—convex function on the coordinates on A
it follows that the mapping f, : [0,d] — R defined by f,(v) = f(z,v) is (h —
m)—convex on [0,d] for all z € [0, b], therefore by Theorem 9, one has

[ < wind @ [ awaems (&) [T
ftay [ b+ mf, () / - t)dt} ,
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that is

dic/cdf(x,y)dy < mirl{f(x,c)/olh(t)dt+mf (x,i) /01 h(1 —t)dt,

f(z,d) /Olh(t)dterf (x %) /01 h(lt)dt}.

Dividing both sides by ﬁ and integrating the inequality on [a, b], we have

7@_0;@_&) /ab/cdf(w,y)dy (5)
gmin{bla/abf(a:,c)/ dt+—/ (x )/ h(1 — t)dt,
1a/abf(:v,d)/01h(t)dt+bma/a f(x, %)/O h(l—t)dt}.

By applying similar arguments to the mapping f, : [0,b] — R defined by f,(u) =
flu,y), we get

7@_6)1(,)_@) /ab/cdf(rmy)dy (6)
<uin{ 1 [ sto [ rgas [ (2) [0 v
ic/cdf(b,y)/olh dt+—/ ,y)/olh(l—t)dt}.

We add inequalities and @, to obtain the required result.

If we take h(t) =t for all t € [0,1] in above theorem we get [16, Theorem 3.5], is
stated in the following corollary.

Corollary 1 If f : A — R be m—convex on the coordinates on A. If 0 < a < b
and 0 < c<d, m € (0,1] with f € L(A). Then one has the inequality

b=a) _C//fxydyd:c
1 f(@,c) +mf (z, L) 1 b flx,d)+mf (z,5)
Smm{b—a/a ( 5 >dx,b_a/a ( 5 )dz}
1 ey +mf (L) 1y +mf (&)
—|—m1n{b_a/a ( > >dx’b—a/a ( 5 )da:}

Next, we start to state second theorem containing Hermite-Hadamard type inequal-
ity.
Theorem 12 Let f : [0,00) — R be (h — m)—convex, where m € (0,1] and
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0<a<b<oo,if fe Lifa,b], h

where € is defined in (2)).
Proof. By the (h — m)—convexity of f, we have

1(55) <0 (3) lro+mr () )
For all z,y € [0, 00) If we choose
r=ta+ (1-1)b, y=(1—1t)a+1d,

we deduce

; <a—2|-b> <h (;) [f(ta—i— (1 —t)b) +mf ((1 —1)— +t:;)] '

Integrating over ¢ € [0, 1], we get

(3 C) [ 0o [ 5005 12)e]

(9)

A simple computation gives us that

/fta+ (1—=1%)b b—a/f
fr(a-ofe)a b—a/ I

Using the above two expression in @D, we get

and

/ (a;b> < Z(%) /b (F@) +ms () do. (10)

This completes the proof of first inequality in @ The second inequality in
follows from the fact by using the (h — m)—convexity of f for all ¢ € [0,1], we can
write

h @) [f (ta+ (1 — 1)b) + mf <(1 —nt +t:l>}
< (3) [1Os(@ -+ mh = 0f (1) +m2h - 0f () + wiom (1)

Integrating above inequality over [0, 1] w.r.t ¢, we deduce
1

b [ oms (7)) o
<h (;) [f(a) + 2mf (;) +m?f (nj?)] /01 h(t)dt.
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Now if we choose
r=(1—-ta+th y=ta+(1—-1t)b

we have

P L (e (2)) 02
<h (;) [f(b) vomf (L) emy (nfgﬂ /0 Chioy.

Adding and , we get
b
U +w@>
—a m
l
2
This complete the proof.

1
(a) / h(t
2 0
Remark 2

1. By putting h(t) = ¢ in above theorem, we get Theorem 1.

2. By putting m = 1 and h(t) = 1 in above theorem, we get Theorem 4.
3. By putting m = 1 and h(t) = t° in above theorem, we get Theorem 5.
4. By putting m = 1 in above theorem, we get Theorem 7.

Theorem 13 Let f : A — R be an (h — m)—convex function on the coordinates
on A. If m € (0,1] with f € L1(A) and h € L1[0,1]. Then we have

bia/bf<$70;rd>dx+dlC/df<a;rb’y)d?/ (13)
T ot o (1 o 2) 5 (2.0)

S

. h(2§) [bla/a (E(x,¢) + E(a, d))da:+—/ (a,y) + E(b, y))dy] /Olh(t)dt.
where

E(x,t) = f(a,t) + 2mf (x ;) +mf (x 2) 7
and

s(uy):f(ay)mmf( y) +m2f< Ly)

Proof. Since f : A — R is (h — m)—convex function on the coordinates on A
it follows that the mapping f, : [0,b] — R defined by f,(u) = f(u,y) is (h —
m)—convex on [0,b] for all z € [0, d], therefore by Theorem 2.4, one has

W (5) <58 [ (e () ax < 2 s+ [[ o

that is,

F(50) < 58 [ (s s (20)) o < M2 e + €0 [ o
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Dividing both sides by -1 and integrating the inequality on [c, d], we have
1 d a+b
d 14

d_c/cf(Z,y>y (14)

l

2

(,y) +mf ( )) dzdy

(b— )( / /

< 2(d(2)) [t +evanay [ o

By applying similar arguments to the mapping f, : [0,d] — R defined by f,(v) =
flz,v) , we get

bia/bf<x,c+d>da: (15)
p— _C// (z,y) +mf(x—))dmdy

h (1)
< 2 t)dt.
<o [Migta) + eaa [ 1o
By adding and we get the desired result.
Remark 3

(i) If we take m = 1 and h(t) = t° for all t € [0, 1] in above theorem we get partial
results of [I2, Theorem 2.1].

(i) If we take m =1 and h(t) =t for all ¢ € [0, 1] in above results of theorem we
get [I3] Theorem 1].

3. HERMITE-HADAMARD TYPE INEQUALITIES FOR PRODUCTS OF
(h — m)—CONVEXITY

In the following theorem, we proved Hermite-Hadamard type inequality for prod-
uct of h — m—convex functions.
Theorem 14 Let f,g : [0,00) — R be such that fg is in Lq[a,b], where 0 < a <
b < oo. If fis (h—my)—convex and g is (h — mg)—convex on [0, 00) for some fixed
m1,mz € (0,1] and h € L1]0,1], then

- a/ f(@)g(x)dx < min {M;, Na}, (16)

M, = /O 1 (h(1))* dt {ﬂa)g(a) +mmsf <n31) I <T:2ﬂ

where

My = /01 (h(t))? dt {f(b)g(b) + myma f (731) g (,;;)}
/ h(t)h(1 — t)dt [mgf( )g ( - > +m1f( 1)9(6)]
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Proof. Since f is (h — my)—convex and g is (h — mg)—convex on [0, 00) for some
fixed my, mo € (0,1] and ¢ € [0, 1], we have

fta+ (1 —1t)b)g(ta+ (1 —1t)d)

< (h(1))? F(a)g(a) + mah(t)h(1 — 1) F(a)g (b)

ma

#mnh(Oh(1 = 0 () ata) 4 moma (11 -0 7 () o ()

1 1 ma

Integration both sides of the above inequality over [0, 1], yield the following

/fta+(1—t)b) (ta+ (1 — t)b) _a/ flx

< /01 (h(1))* dt (f(a)g(a) +mima f (,:Zl) g (;;))
+ /01 h(t)h(1 — t)dt (mgf(a)g (;;) +myf (T:Zl) g(a)) .

Analogously we obtain

1 b
- / f(2)g(x)da
< /01 (h(t))? dt <f(b)g(b) + mymaf (n‘;) g (;;))
+ /01 h(t)h(1 — £)dt (mgf(b)g <ﬂf;> +myf (n‘;) g(b)) :

After a little computation one get inequality .

Remark 4 If in above theorem we choose h(t) = ¢, then we obtain Theorem 3.
Theorem 15 Let f, g : [0,00) — R such that fg € Li[a,b], where 0 < a < b < oc.
If f is (hy—m)—convex and g is (ho —m)—convex on [0, o) for some fixed m € (0, 1],
and hq, he € L1]0,1], then the following inequalities holds:

150 (57) - LR [ (e emr (7)o (7)) o

<m 1@ (25) +1 (L) o (2)] [ matomats -t
o (o)1 ()] -
[ (2)stor+ 5@ (2)] [ matomaton

o U (2) o] o

Proof. We can write.
a+b atJr(lft)bJr (I—t)a+td
2 2 2 ’
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a
— 4+ t—

)

sion leads us to

expres

The
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<h (;) ho (;) < {f (at + (1= £)b) g (at + (1 — £)b)

+m2f<(1t) +tb> ((1t) +tb)}

o (32 o 27200 (2)
4 m2hy (1 — Dha(1 — 1) [f (:l 9(%) +f(nj2)9(:@)]

+ hy (t)ha(t) [f( ) g9(a) + fla)g ( )]

+mh2(t)h1(1t[ ( ) :1> 2)9(“)]}'

Integrating over [0, 1], we obtain

P55 () - B [ (r@ o ems (2) o (2)) e
sm{w%w( > <i>}/ihl 1o

i ) (;)]/ hi(1 = t)ho(1 — t)dt
[r(G)uares < )] [
ot (5)o () - G

} /O () (1 — t)dt.

This completes the proof.
Remark 5

(i) If we take m = 1 and hy = hy =t in above theorem we get Theorem 2.

i) If we take m =1 and hy =t, ha = t° in above theorem we get Theorem 6.

(ii

(iii) If we take m = 1 in above theorem we get Theorem 8.
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