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HERMITE-HADAMARD TYPE INEQUALITIES FOR

(h−m)−CONVEXITY

ATIQ UR REHMAN, G. FARID AND QURAT UL AIN

Abstract. In this paper, we establish some Hermite-Hadamard type inequal-

ities for (h−m)−convex functions of two variables on the co-ordinates. Also

some new Hermite-Hadamard type inequalities for product of (h−m)−convex
functions are given.

1. Introduction

Let I ⊆ R be an interval. A function f : I → R is said to be convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

holds for all x, y ∈ I and α ∈ [0, 1]. If reverse of above inequality holds, then f is
said to be concave function.

If f : I → R is a convex function and a, b ∈ I with a < b, then the following
double inequality:

f

(
a+ b

2

)
≤ 1

b− a

∫ a

b

f(x)dx ≤ f(a) + f(b)

2
(1)

is known as Hermite-Hadamard inequality. Both inequalities in (1) hold in reversed
if f is concave.

In 1984, Toader [1] introduced the following class of functions.
Definition 1 A function f : [0, b]→ R is said to be m−convex, where m ∈ [0, 1], if
for every x, y ∈ [0, b] and t ∈ [0, 1], we have

f(tx+m(1− t)y) ≤ tf(x) +m(1− t)f(y).

The following Hermite-Hadamard type inequality for m−convex functions is due to
Dragomir [15].
Theorem 1 Let f : [0,∞) → R be m−convex function, where m ∈ (0, 1] and
0 ≤ a < b. If f ∈ L1[a, b], then one has the inequalities:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

(
f(x) +mf

( x
m

))
dx ≤ 1

8
[E(a) + E(b)] ,
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where

E(t) = f(t) + 2mf

(
t

m

)
+m2f

(
t

m2

)
. (2)

In [3], Pachpatte proved new inequalities of Hermite-Hadamard type for product of
convex functions. They are given in the following theorem.
Theorem 2 Let f, g : [a, b]→ [0,∞) be convex functions on [a, b]. Then

1

b− a

∫ b

a

f(x)g(x)dx ≤ 1

3
M(a, b) +

1

6
N(a, b),

and

2f

(
a+ b

2

)
g

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)g(x)dx+
1

6
M(a, b) +

1

3
N(a, b),

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).
In [4], Bakula et al. gave the following Hermite-Hadaramd type inequality for
m−convex functions.
Theorem 3 Let f, g : [0,∞) → [0,∞) be functions such that fg ∈ L1[a, b], where
0 ≤ a < b < ∞. If f is m1−convex and g is m2−convex on [0, b] for some fixed
m1,m2 ∈ (0, 1], then

1

b− a

∫ b

a

f(x)g(x)dx ≤ min {M1,M2} ,

where

M1 =
1

3

[
f(a)g(a) +m1m2f

(
b

m1

)
g

(
b

m2

)]
+

1

6

[
m2f(a)g

(
b

m2

)
+m1f

(
b

m1

)
g(a)

]
,

and

M2 =
1

3

[
f(b)g(b) +m1m2f

(
a

m1

)
g

(
a

m2

)]
+

1

6

[
m2f(b)g

(
a

m2

)
+m1f

(
a

m1

)
g(b)

]
.

The class P−function was firstly described in [5] by Dragomir and Toader.
Definition 2 A function f : I → R is said to be a P−function or belongs to the
class P (I). If f is non-negative and

f(αx+ (1− α)y) ≤ f(x) + f(y)

for all x, y ∈ I and α ∈ [0, 1].
In [5], Dragomir et al. proved inequality of Hermite-Hadamard type for class of
P−functions.
Theorem 4 Let f ∈ P (I), a, b ∈ I, with a < b and f ∈ L1[a, b]. Then the following
inequality holds:

f

(
a+ b

2

)
≤ 2

b− a

∫ b

a

f(x)dx ≤ 2[f(a) + f(b)].

In 1978, Breckner [6] introduced s−convex functions as a generalization of convex
functions.
Definition 3 Let s ∈ (0, 1]. A function f : [0,∞)→ [0,∞) is said to be s−convex
(in the second sense), if

f(αx+ (1− α)y) ≤ αsf(x) + (1− α)sf(y)
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for all x, y ∈ [0,∞) and α ∈ [0, 1].
In [7], Dragomir and Fitzpatrick established the following Hermite-Hadamard type
inequality.
Theorem 5 Let f : [0,∞) → [0,∞) be s−convex function in the second sense,
where s ∈ (0, 1], and f ∈ L1[a, b], where 0 ≤ a < b < ∞. Then one has the
inequalities:

2s−1f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

s+ 1
.

An analogous result for s−convex functions is due to Kirmaci et al. given in [8].
Theorem 6 Let [a, b] ⊂ [0,∞) and f, g : [a, b] → R be functions such that g ∈
L1[a, b]. If f is convex and non-negative on [a, b], and if g is s−convex of second
sense on [a, b] for some fixed s ∈ (0, 1), then

2sf

(
a+ b

2

)
g

(
a+ b

2

)
− 1

b− a

∫ b

a

∫ b

a

f(x)g(x)dx

≤ 1

(s+ 1)(s+ 1)
M(a, b) +

1

s+ 2
N(a, b).

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).
In 2006, Varošanec [9] introduced the concept of h−convex functions.
Definition 4 Let J ⊆ R be an interval containing (0, 1) and let h : J → R be a
non-negative and nonzero function. We say that f : I → R is a h−convex function
or that f is said to be belong to the class SX(h, I), if f is non-negative and for all
x, y ∈ I, α ∈ (0, 1) , we have

f(αx+ (1− α)y) ≤ h(α)f(x) + h(1− α)f(y).

If the inequality is reversed then f is said to be h−concave and and we say that f
belongs to the class SV (h, I).
Sarikaya et al. in [10], established the following Hermite-Hadamard type inequality
for h−convex functions.
Theorem 7 Let f ∈ SX(h, I), a, b ∈ I,with a < b and f ∈ L1[a, b]. Then

1

2h
(
1
2

)f (a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ [f(a) + f(b)]

∫ 1

0

h(α)dα.

An analogous result for h−convex functions established by Sarikaya et al. in [10].
Theorem 8 Let f ∈ SX(h1, I), g ∈ SX(h2, I), a, b ∈ I, a < b, be functions such
that fg ∈ L1[a, b], and h1h2 ∈ L1[0, 1], then

1

2h1
(
1
2

)
h2
(
1
2

)f (a+ b

2

)
g

(
a+ b

2

)
− 1

b− a

∫ b

a

f(x)g(x)dx

≤M(a, b)

∫ 1

0

h1(t)h2(t)dt+N(a, b)

∫ 1

0

h1(t)h2(1− t)dt,

where M(a,b) = f(a)g(a)+f(b)g(b) and N(a,b) = f(a)g(b)+f(b)g(a).

The concept of (h−m)−convexity has been introduce by Özdemir et al. in [11].
Definition 5 Let J ⊆ R be an interval containing (0, 1) and let h : J → R be a
non-negative function. We say that f : [0, b]→ R is a (h−m)−convex function, if
f is non-negative and for all x, y ∈ [0, b],m ∈ [0, 1] and α ∈ (0, 1), we have

f(αx+m(1− α)y) ≤ h(α)f(x) +mh(1− α)f(y).
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If the inequality is reversed, then f is said to be (h−m)−concave function on [0, b].
Remark 1 If we choose m = 1, then we have h−convex function on [0, b]. If we
choose h(t) = t we have m−convex function on [0,b]. If we choose m = 1 and
h(t) = {t, 1, 1t , t

s}, then we obtain the following classes of functions, non-negative
convex functions, P−functions, Godunova-Levin functions and s−convex functions
on [0, b], respectively.

In [11], Özdemer et al. proved the following Hermite-Hadamard type inequalities
for (h−m)−convex functions as.
Theorem 9 Let f : [0,∞) → R be (h − m)−convex function with m ∈ (0, 1],
t ∈ [0, 1]. If 0 ≤ a < b <∞ and f ∈ L1[a, b]. then the following inequality holds;

1

b− a

∫ b

a

f(x)dx ≤ min

{
f(a)

∫ 1

0

h(t)dt+mf

(
b

m

)∫ 1

0

h(1− t)dt,

f(b)

∫ 1

0

h(t)dt+mf
( a
m

)∫ 1

0

h(1− t)dt
}
.

In [13], Dragomir introduced convex functions on coordinates for rectangle in the
plane. Also he gave Hermite-Hadamard type inequality for convex functions on co-
ordinates. Such type of generalization for functions related to convex functions are
given by many other mathematicians, e.g. see [12, 13, 14, 16] and references therein.
The main purpose of this paper is to define (h −m)−convex functions on coordi-
nates and to establish new Hermite-Hadamard type inequalities for (h−m)−convex
functions of two variables on the coordinates (Section 2). Also some new Hermite-
Hadamard type inequalities for product of (h−m)−convex functions are established
(Section 3).

2. Hermite-Hadamard type inequalities for coordinated
(h−m)−convex functions

One can give the notion of (h−m)−convexity of a function f on a rectangle from
the plane R2 and (h −m)−convexity on the coordinates on a rectangle from the
plane R2. For this purpose, we consider bi-dimensional interval ∆ := [0, b] × [0, d]
in R2, we will keep this notation for the rest of the paper.
Definition 6 Let J ⊆ R be an interval containing (0, 1) and h : J → R be a
function. A mapping f : ∆→ R is said to be (h−m)−convex on ∆ if the inequality

f(tx+m(1− t)z, ty +m(1− tw) ≤ h(t)f(x, y) +mh(1− t)f(z, w)

holds, for all (x, y), (z, w) ∈ ∆ and t ∈ [0, 1],m ∈ (0, 1]. If the inequality reversed,
then f is said to be (h−m)−concave on ∆.
As stated in Remark 1, for suitable choices of h and m = 1, we get different known
classes of convex functions.
Definition 7 Let J ⊆ R be an interval containing (0, 1) and h : J → R be a
function. Also let f : ∆→ R be a mapping and define

fx : [0, d]→ R by fx(v) = f(x, v) and fy : [0, b]→ R by fy(u) = f(u, y). (3)

A mapping f is said to be (h,m)−convex on the coordinates on ∆ if fx and fy
are (h −m)−convex on [0, d] and [0, b] respectively for all x ∈ [0, b] and y ∈ [0, d].
Theorem 10 If f : ∆→ R is (h−m)− convex function then it is (h−m)−convex
function on the coordinates, but converse is not true in general.
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Proof. Let f : ∆→ R is (h−m)−convex on ∆. Consider the functions fx and fy
defined in (3). Then for t,m ∈ [0, 1] and u1, u2 ∈ [0, d], we have

fx(tu1 +m(1− t)u2) = f (x, h(t)u1 +mh(1− t)u2)

= f(h(t)x+mh(1− t)x, h(t)u1 +mh(1− t)v2)

≤ h(t)f(x, u1) +mh(1− t)f(x, u2)

= h(t)fx(u1) +mh(1− t)fx(u2).

Therefore, fx is (h−m)−convex on [0, d]. The fact that fy is also (h−m)−convex
on [0, b] goes likewise. It follows that f is (h−m)−convex function on coordinate
on ∆.
To prove that converse is not ture in general, we consider a function f : [0, 1]2 → R
defined by f(x, y) = xy, then clearly it is (h −m)−convex on coordinates. If we
take u,w ∈ (0, 1) and t ∈ [0, 1], then

f(t(u, 0) + (1− t)(0, w)) = f(tu,m(1− t)w) = mt(1− t)xw,

and

h(t)f(u, 0) +mh(1− t)f(0, w) = 0.

This shows that f is not (h−m)−convex on [0, 1]2.
Now, we establish Hermite-Hadamard type inequality for (h−m)−convex functions
on the coordinates on rectangle from the plane R2.
Theorem 11 Let f : ∆ → R be an (h −m)−convex function on the coordinates
on ∆. If 0 ≤ a < b and 0 ≤ c < d, m ∈ (0, 1] with f ∈ L1(∆) and h ∈ L1[0, 1].
Then one has the inequality

2

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y)dydx (4)

≤ min

{
1

b− a

∫ b

a

f(x, c)dx

∫ 1

0

h(t)dt+
m

b− a

∫ b

a

f

(
x,

d

m

)
dx

∫ 1

0

h(1− t)dt,

1

b− a

∫ b

a

f(x, d)dx

∫ 1

0

h(t)dt+
m

b− a

∫ b

a

f
(
x,

c

m

)
dx

∫ 1

0

h(1− t)dt,

}

+ min

{
1

d− c

∫ d

c

f(a, y)dx

∫ 1

0

h(t)dt+
m

d− c

∫ d

c

f

(
b

m
, y

)
dx

∫ 1

0

h(1− t)dt,

1

d− c

∫ d

c

f(b, y)dx

∫ 1

0

h(t)dt+
m

d− c

∫ d

c

f
( a
m
, y
)
dx

∫ 1

0

h(1− t)dt

}
.

Proof. Since f : ∆ → R is (h − m)−convex function on the coordinates on ∆
it follows that the mapping fx : [0, d] → R defined by fx(v) = f(x, v) is (h −
m)−convex on [0, d] for all x ∈ [0, b], therefore by Theorem 9, one has

1

d− c

∫ d

c

fx(y)dy ≤ min

{
fx(c)

∫ 1

0

h(t)dt+mfx

(
d

m

)∫ 1

0

h(1− t)dt,

fx(d)

∫ 1

0

h(t)dt+mfx

( c
m

)∫ 1

0

h(1− t)dt
}
,
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that is

1

d− c

∫ d

c

f(x, y)dy ≤ min

{
f(x, c)

∫ 1

0

h(t)dt+mf

(
x,

d

m

)∫ 1

0

h(1− t)dt,

f(x, d)

∫ 1

0

h(t)dt+mf
(
x,

c

m

)∫ 1

0

h(1− t)dt
}
.

Dividing both sides by 1
b−a and integrating the inequality on [a, b], we have

1

(d− c)(b− a)

∫ b

a

∫ d

c

f(x, y)dy (5)

≤ min

{
1

b− a

∫ b

a

f(x, c)

∫ 1

0

h(t)dt+
m

b− a

∫ b

a

f

(
x,

d

m

)∫ 1

0

h(1− t)dt,

1

b− a

∫ b

a

f(x, d)

∫ 1

0

h(t)dt+
m

b− a

∫ b

a

f
(
x,

c

m

)∫ 1

0

h(1− t)dt

}
.

By applying similar arguments to the mapping fy : [0, b] → R defined by fy(u) =
f(u, y), we get

1

(d− c)(b− a)

∫ b

a

∫ d

c

f(x, y)dy (6)

≤ min

{
1

d− c

∫ d

c

f(a, y)

∫ 1

0

h(t)dt+
m

d− c

∫ d

c

f

(
b

m
, y

)∫ 1

0

h(1− t)dt,

1

d− c

∫ d

c

f(b, y)

∫ 1

0

h(t)dt+
m

d− c

∫ d

c

f
( a
m
, y
)∫ 1

0

h(1− t)dt

}
.

We add inequalities (5) and (6), to obtain the required result.
If we take h(t) = t for all t ∈ [0, 1] in above theorem we get [16, Theorem 3.5], is
stated in the following corollary.
Corollary 1 If f : ∆ → R be m−convex on the coordinates on ∆. If 0 ≤ a < b
and 0 ≤ c < d, m ∈ (0, 1] with f ∈ L(∆). Then one has the inequality

2

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y)dydx

≤ min

{
1

b− a

∫ b

a

(
f(x, c) +mf

(
x, d

m

)
2

)
dx,

1

b− a

∫ b

a

(
f(x, d) +mf

(
x, c

m

)
2

)
dx

}

+ min

{
1

b− a

∫ b

a

(
f(a, y) +mf

(
b
m , y

)
2

)
dx,

1

b− a

∫ b

a

(
f(b, y) +mf

(
a
m , y

)
2

)
dx

}

Next, we start to state second theorem containing Hermite-Hadamard type inequal-
ity.
Theorem 12 Let f : [0,∞) → R be (h − m)−convex, where m ∈ (0, 1] and
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0 ≤ a < b <∞, if f ∈ L1[a, b], h ∈ L1[0, 1]. Then one has the inequalities

f

(
a+ b

2

)
≤
h
(
1
2

)
b− a

∫ b

a

(
f(x) +mf

( x
m

))
dx (7)

≤
h
(
1
2

)
2

[E(a) + E(b)]

∫ 1

0

h(t)dt,

where E is defined in (2).
Proof. By the (h−m)−convexity of f , we have

f

(
x+ y

2

)
≤ h

(
1

2

)[
f(x) +mf

( y
m

)]
. (8)

For all x, y ∈ [0,∞) If we choose

x = ta+ (1− t)b, y = (1− t)a+ tb,

we deduce

f

(
a+ b

2

)
≤ h

(
1

2

)[
f(ta+ (1− t)b) +mf

(
(1− t) a

m
+ t

b

m

)]
.

Integrating over t ∈ [0, 1], we get

f

(
a+ b

2

)
≤ h

(
1

2

)[∫ 1

0

f(ta+ (1− t)b)dt+m

∫ 1

0

f

(
(1− t) a

m
+ t

b

m

)
dt

]
.

(9)
A simple computation gives us that∫ 1

0

f(ta+ (1− t)b)dt =
1

b− a

∫ b

a

f(x)dx,

and ∫ 1

0

f

(
(1− t) a

m
+ t

b

m

)
dt =

m

b− a

∫ b
m

a
m

f(x)dx =
1

b− a

∫ b

a

f
( x
m

)
dx.

Using the above two expression in (9), we get

f

(
a+ b

2

)
≤
h
(
1
2

)
b− a

∫ b

a

(
f(x) +mf

( x
m

))
dx. (10)

This completes the proof of first inequality in (7). The second inequality in (7)
follows from the fact by using the (h−m)−convexity of f for all t ∈ [0, 1], we can
write

h

(
1

2

)[
f (ta+ (1− t)b) +mf

(
(1− t) a

m
+ t

b

m

)]
≤ h

(
1

2

)[
h(t)f(a) +mh(1− t)f

(
b

m

)
+m2h(1− t)f

( a

m2

)
+ h(t)mf

(
b

m

)]
.

Integrating above inequality over [0, 1] w.r.t t, we deduce

h
(
1
2

)
b− a

∫ b

a

(
f(x) +mf

( x
m

))
dx (11)

≤ h
(

1

2

)[
f(a) + 2mf

(
b

m

)
+m2f

( a

m2

)]∫ 1

0

h(t)dt.
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Now if we choose

x = (1− t)a+ tb y = ta+ (1− t)b

we have

h
(
1
2

)
b− a

∫ b

a

(
f(x) +mf

( x
m

))
dx (12)

≤ h
(

1

2

)[
f(b) + 2mf

( a
m

)
+m2f

(
b

m2

)]∫ 1

0

h(t)dt.

Adding (11) and (12), we get

h
(
1
2

)
b− a

∫ b

a

(
f(x) +mf

( x
m

))
dx

≤
h
(
1
2

)
2

[E(a) + E(b)]

∫ 1

0

h(t)dt,

This complete the proof.
Remark 2

1. By putting h(t) = t in above theorem, we get Theorem 1.
2. By putting m = 1 and h(t) = 1 in above theorem, we get Theorem 4.
3. By putting m = 1 and h(t) = ts in above theorem, we get Theorem 5.
4. By putting m = 1 in above theorem, we get Theorem 7.

Theorem 13 Let f : ∆ → R be an (h −m)−convex function on the coordinates
on ∆. If m ∈ (0, 1] with f ∈ L1(∆) and h ∈ L1[0, 1]. Then we have

1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
dy (13)

≤
h
(
1
2

)
(b− a)(d− c)

∫ b

a

∫ d

c

(
2f(x, y) +m

(
f
(
x,

y

m

)
+ f

( x
m
, y
)))

dydx

≤
h
(
1
2

)
2

[
1

b− a

∫ b

a

(E(x, c) + E(x, d)) dx+
1

d− c

∫ d

c

(E(a, y) + E(b, y)) dy

]∫ 1

0

h(t)dt.

where

E(x, t) = f(x, t) + 2mf

(
x,

t

m

)
+m2f

(
x,

t

m2

)
,

and

E(t, y) = f(t, y) + 2mf

(
t

m
, y

)
+m2f

(
t

m2
, y

)
.

Proof. Since f : ∆ → R is (h − m)−convex function on the coordinates on ∆
it follows that the mapping fy : [0, b] → R defined by fy(u) = f(u, y) is (h −
m)−convex on [0, b] for all x ∈ [0, d], therefore by Theorem 2.4, one has

fy

(
a+ b

2

)
≤
h
(
1
2

)
b− a

∫ b

a

(
fy(x) +mfy

( x
m

))
dx ≤

h
(
1
2

)
2

[Ey(a) + Ey(b)]

∫ 1

0

h(t)dt,

that is,

f

(
a+ b

2
, y

)
≤
h
(
1
2

)
b− a

∫ b

a

(
f(x, y) +mf

( x
m
, y
))

dx ≤
h
(
1
2

)
2

[E(a, y) + E(b, y)]

∫ 1

0

h(t)dt.
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Dividing both sides by 1
d−c and integrating the inequality on [c, d], we have

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
dy (14)

≤
h
(
1
2

)
(b− a)(d− c)

∫ d

c

∫ b

a

(
f(x, y) +mf

( x
m
, y
))

dxdy

≤
h
(
1
2

)
2(d− c)

∫ d

c

[E(a, y) + E(b, y)] dy

∫ 1

0

h(t)dt.

By applying similar arguments to the mapping fx : [0, d] → R defined by fx(v) =
f(x, v) , we get

1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx (15)

≤
h
(
1
2

)
(b− a)(d− c)

∫ d

c

∫ b

a

(
f(x, y) +mf

(
x,

y

m

))
dxdy

≤
h
(
1
2

)
2(b− a)

∫ b

a

[E(a, y) + E(b, y)] dx

∫ 1

0

h(t)dt.

By adding (14) and (15) we get the desired result.
Remark 3

(i) If we take m = 1 and h(t) = ts for all t ∈ [0, 1] in above theorem we get partial
results of [12, Theorem 2.1].

(ii) If we take m = 1 and h(t) = t for all t ∈ [0, 1] in above results of theorem we
get [13, Theorem 1].

3. Hermite-Hadamard type inequalities for products of
(h−m)−convexity

In the following theorem, we proved Hermite-Hadamard type inequality for prod-
uct of h−m−convex functions.
Theorem 14 Let f, g : [0,∞) → R be such that fg is in L1[a, b], where 0 ≤ a <
b <∞. If f is (h−m1)−convex and g is (h−m2)−convex on [0,∞) for some fixed
m1,m2 ∈ (0, 1] and h ∈ L1[0, 1], then

1

b− a

∫ b

a

f(x)g(x)dx ≤ min {M1, N2} , (16)

where

M1 =

∫ 1

0

(h(t))
2
dt

[
f(a)g(a) +m1m2f

(
b

m1

)
g

(
b

m2

)]
+

∫ 1

0

h(t)h(1− t)dt
[
m2f(a)g

(
b

m2

)
+m1f

(
b

m1

)
g(a)

]
,

and

M2 =

∫ 1

0

(h(t))
2
dt

[
f(b)g(b) +m1m2f

(
a

m1

)
g

(
a

m2

)]
+

∫ 1

0

h(t)h(1− t)dt
[
m2f(b)g

(
a

m2

)
+m1f

(
a

m1

)
g(b)

]
.
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Proof. Since f is (h−m1)−convex and g is (h−m2)−convex on [0,∞) for some
fixed m1,m2 ∈ (0, 1] and t ∈ [0, 1], we have

f (ta+ (1− t)b) g (ta+ (1− t)b)

≤ (h(t))
2
f(a)g(a) +m2h(t)h(1− t)f(a)g

(
b

m2

)
+m1h(t)h(1− t)f

(
b

m1

)
g(a) +m1m2 (h(1− t))2 f

(
b

m1

)
g

(
b

m2

)
.

Integration both sides of the above inequality over [0, 1], yield the following∫ 1

0

f(ta+ (1− t)b)g(ta+ (1− t)b)dt =
1

b− a

∫ b

a

f(x)g(x)dx

≤
∫ 1

0

(h(t))
2
dt

(
f(a)g(a) +m1m2f

(
b

m1

)
g

(
b

m2

))
+

∫ 1

0

h(t)h(1− t)dt
(
m2f(a)g

(
b

m2

)
+m1f

(
b

m1

)
g(a)

)
.

Analogously we obtain

=
1

b− a

∫ b

a

f(x)g(x)dx

≤
∫ 1

0

(h(t))
2
dt

(
f(b)g(b) +m1m2f

(
a

m1

)
g

(
a

m1

))
+

∫ 1

0

h(t)h(1− t)dt
(
m2f(b)g

(
a

m2

)
+m1f

(
a

m1

)
g(b)

)
.

After a little computation one get inequality (16).
Remark 4 If in above theorem we choose h(t) = t, then we obtain Theorem 3.
Theorem 15 Let f, g : [0,∞)→ R such that fg ∈ L1[a, b], where 0 ≤ a < b <∞.
If f is (h1−m)−convex and g is (h2−m)−convex on [0,∞) for some fixed m ∈ (0, 1],
and h1, h2 ∈ L1[0, 1], then the following inequalities holds:

f

(
a+ b

2

)
g

(
a+ b

2

)
−
h1
(
1
2

)
h2
(
1
2

)
b− a

∫ b

a

(
f (x) g (x) +m2f

( x
m

)
g
( x
m

))
dx

(17)

≤ m
[
f(a)g

( a

m2

)
+ f

(
b

m

)
g

(
b

m

)]∫ 1

0

h1(t)h2(1− t)dt

+m2

[
f

(
b

m

)
g
( a

m2

)
+ f

( a

m2

)
g
( a
m

)]∫ 1

0

h1(1− t)h2(1− t)dt

+

[
f

(
b

m

)
g(a) + f(a)g

(
b

m

)]∫ 1

0

h1(t)h2(t)dt

+m2

[
f

(
b

m

)
g

(
b

m

)
+ f

( a

m2

)
g(a)

] ∫ 1

0

h2(t)h1(1− t)dt.

Proof. We can write.

a+ b

2
=
at+ (1− t)b

2
+

(1− t)a+ tb

2
,
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so,

f

(
a+ b

2

)
g

(
a+ b

2

)
= f

(
at+ (1− t)b

2
+

(1− t)a+ tb

2

)
g

(
at+ (1− t)b

2
+

(1− t)a+ tb

2

)
≤ h1

(
1

2

)[
f (at+ (1− t)b) +mf

(
(1− t) a

m
+ t

b

m

)]
×

h2

(
1

2

)[
g (at+ (1− t)b) +mg

(
(1− t) a

m
+ t

b

m

)]

This gives us

f

(
a+ b

2

)
g

(
a+ b

2

)
≤ h1

(
1

2

)
h2

(
1

2

)
×
{
f (at+ (1− t)b) g (at+ (1− t)b)

+m2f

(
(1− t) a

m
+ t

b

m

)
g

(
(1− t) a

m
+ t

b

m

)
+mf (at+ (1− t)b) g

(
(1− t) a

m
+ t

b

m

)
+mf

(
(1− t) a

m
+ t

b

m

)
g (at+ (1− t)b)

}

The above expression leads us to

f

(
a+ b

2

)
g

(
a+ b

2

)
≤ h1

(
1

2

)
h2

(
1

2

)
× {f (at+ (1− t)b) g (at+ (1− t)b)

+ m2f

(
(1− t) a

m
+ t

b

m

)
g

(
(1− t) a

m
+ t

b

m

)}
+mh1

(
1

2

)
h2

(
1

2

)
×
{[
h1(t)f(a) +mh1(1− t)f

(
b

m

)]
[
mh2(1− t)g

( a

m2

)
+ h2(t)g

(
b

m

)]
+

[
mh1(1− t)f

( a

m2

)
+ h1(t)f

(
b

m

)]
[
h2(t)g(a) +mh2(1− t)g

(
b

m

)]}
.
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≤ h1
(

1

2

)
h2

(
1

2

)
× {f (at+ (1− t)b) g (at+ (1− t)b)

+ m2f

(
(1− t) a

m
+ t

b

m

)
g

(
(1− t) a

m
+ t

b

m

)}
+mh1

(
1

2

)
h2

(
1

2

)
×
{
mh1(t)h2(1− t)

[
f(a)g

( a

m2

)
+ f

(
b

m

)
g

(
b

m

)]
+m2h1(1− t)h2(1− t)

[
f

(
b

m

)
g
( a

m2

)
+ f

( a

m2

)
g
( a
m

)]
+ h1(t)h2(t)

[
f

(
b

m

)
g(a) + f(a)g

(
b

m

)]
+ mh2(t)h1(1− t)

[
f

(
b

m

)
g

(
b

m

)
+ f

( a

m2

)
g(a)

]}
.

Integrating over [0, 1], we obtain

f

(
a+ b

2

)
g

(
a+ b

2

)
−
h1
(
1
2

)
h2
(
1
2

)
b− a

∫ b

a

(
f (x) g (x) +m2f

( x
m

)
g
( x
m

))
dx

≤ m
[
f(a)g

( a

m2

)
+ f

(
b

m

)
g

(
b

m

)]∫ 1

0

h1(t)h2(1− t)dt

+m2

[
f

(
b

m

)
g
( a

m2

)
+ f

( a

m2

)
g
( a
m

)]∫ 1

0

h1(1− t)h2(1− t)dt

+

[
f

(
b

m

)
g(a) + f(a)g

(
b

m

)]∫ 1

0

h1(t)h2(t)dt

+m2

[
f

(
b

m

)
g

(
b

m

)
+ f

( a

m2

)
g(a)

] ∫ 1

0

h2(t)h1(1− t)dt.

This completes the proof.
Remark 5

(i) If we take m = 1 and h1 = h2 = t in above theorem we get Theorem 2.
(ii) If we take m = 1 and h1 = t, h2 = ts in above theorem we get Theorem 6.

(iii) If we take m = 1 in above theorem we get Theorem 8.
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for s−convex functions, Appl. Math. Comput. 193(1)(2007), 26–35.



EJMAA-2018/6(2) HERMITE-HADAMARD TYPE INEQUALITIES ... 329

[9] S. Varošanec, On h-convexity,J. Math. Appl. 326(1)(2007), 303–311.

[10] M. Z. Sarikaya, A. Saglam and H. Yildirim, On some Hadamard-type inequalities for

h−convex functions, J. Math. Inequal. 2(3)(2008), 335–341.
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