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YU’S RESULT - A FURTHER EXTENSION

A. BANERJEE AND M. B. AHAMED

ABSTRACT. Taking Yu’s [23] result into background, we employ the notion
of weighted sharing to investigate the uniqueness of rational function of a
meromorphic function sharing a small function with its generalized differential
polynomial. Our results will improve a number of results specially those of
Banerjee-Dhar [5] and Li-Yang-Liu [18]. A number of examples have been
exhibited in the paper to justify our certain claims.

1. INTRODUCTION

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. If for some a € CU {0}, f — a and g — a have the same set
of zeros with the same multiplicities, we say that f and g share the value a CM
(counting multiplicities), and if we do not consider the multiplicities then f and g
are said to share the value a IM (ignoring multiplicities).

Throughout the paper the standard notations of Nevanlinna’s value distribution
theory of entire and meromorphic functions which are discussed in [12] have been
adopted.

A meromorphic function a is said to be a small function of f provided that
T(r,a) = S(r, f), that is T(r,a) = o(T(r, f)) as r — o0, outside of a possible
exceptional set of finite linear measure. Also we use I to denote any set of infinite
linear measure of 0 < r < oo.

We also recall that if a € CU {0}, the quantity

: N(r,a; f)
O0(a; f) =1 —limsup ——=
(a; f) m sup 7
is called Nevanlinna deficiency of the value a and by ramification index we mean
. N(r,a; f)
O(a; f) =1 —limsup ———=~=.
(a; f) mSUp

We begin our discussion recalling the following famous result of R. Briick [7].
Theorem A. [7] Let f be a non-constant entire function. If f and f’ share the

/_
value 1 CM and if N(r,0; f') = S(r, f) then ];_11

1S a nonzero constant.
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In [7], R. Briick posed the following conjecture concerning a non-constant entire
function.
Conjecture: Let f be a non-constant entire function such that the hyper order
p2(f) of f is not a positive integer or infinite. If f and [’ share a finite value a
CM, then
f'—a

f—a 7
where ¢ is a non zero constant.

Many authors like Zhang [24], Yang [21], Gundersen-Yang [11] tried to solve the
above conjecture and naturally obtained different aspects of it. Next we demon-
strate the following definition known as weighted sharing of values which has a
remarkable influence on the results of Briick conjecture.

Definition 1.1. [13, 14] Let k be a nonnegative integer or infinity. For a € CU{oo}
we denote by Ex(a; f) the set of all a-points of f, where an a-point of multiplicity
m is counted m times if m < k and k + 1 times if m > k. If Ex(a; f) = Ex(a;g),
we say that f,g share the value a with weight k.

The definition implies that if f, g share a value a with weight k then zy is an
a-point of f with multiplicity m (< k) if and only if it is an a-point of g with
multiplicity m (< k) and zp is an a-point of f with multiplicity m (> k) if and only
if it is an a-point of g with multiplicity n (> k), where m is not necessarily equal
to n.

We write f, g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k), then f, g share (a,p) for any integer p, 0 < p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a,0) or (a, )
respectively.

If a is a small function we define that f and g share a IM or a CM or with weight
[ according as f — a and g — a share (0,0) or (0,00) or (0,1) respectively.

We now explain some definitions and notations which are used in the paper.

Definition 1.2. [17]Let p be a positive integer and a € CU {oo}.
(i) N(r,a;f |> p) (N(r,a;f |> p))denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not less
than p.
(i) N(r,a;f |< p) (N(r,a;f |< p))denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not greater
than p.

Definition 1.3. [1] Let f and g be two non-constant meromorphic functions such
that f and g share the value a IM. Let zo be a a-point of f with multiplicity p, a
a-point of g with multiplicity q. We denote by N(r,a; f) the counting function of

those a-points of f and g where p > q, by N]{J) (r,a; f) the counting function of those

a-points of f and g where p = q =1 and by Ng(r,a; f) the counting function of
those a-points of f and g where p = q > 2, each point in these counting functions is

counted only once. Similarly, one can define Nr(r,a;g), NI{J) (rya;q), Wg(r, a; g).

Definition 1.4. [13, 14] Let f, g share a value a IM. We denote by N.(r,a; f,g)
the reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g.

Clearly N.(r,a; f,g9) = Nu(r,a; g, f) and N (r,a; f,9) = Np(r,a; f)+Ni(r,a;9).
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In 2003 Yu [23] obtained the following results in the direction of the above
conjecture.

Theorem B. [23] Let f be a non-constant entire function, a € S(f) and a # 0, cc.
3
If f —a and f*) —a share 0 CM and §(0; f) > 1 then f = f().

Theorem C. [23] Let f be a non-constant non-entire meromorphic function, a €
S(f) and a £ 0,00. If
i) f and a have no common poles.
i) f—a and f*) —a share the value 0 CM.
iii) 46(0; f) +2(8 + k)O(o0; f) > 19 + 2k
then f = f*) where k is a positive integer.

Using weighted sharing of values Lahiri-Sarkar [17] improved the results of Yu
[23]. In 2005, Zhang [25] further extended the result of Lahiri-Sarkar.

In 2010, Chen-Wang and Zhang [8] generalized the results of Yu [23] by consid-
ering the problem of uniqueness of f and (). In 2014, Banerjee-Majumder [6],
rectify some gaps in the main results of [8] and presented its correct form considering
the uniqueness of f™ and (f™)®).

To proceed further, we recall the following well known definition.

Definition 1.5. [3] Let ng;,n1j,...,nk; be non-negative integers.

e The expression M;[f] = (f)"os (f/)™i ... (f*®))™i is called a differential mono-
k k

mial generated by f of degree d(M;) = Z nij and weight T'pq, = Z(l + i)y .
i=0 i=0

t
e The sum P[f] = Z b;M;[f] is called a differential polynomial generated by f of
j=1

degree d(P) = max{d(M;) : 1 < j < t} and weight T'p = max{I'y, : 1 < j < t},
where T(r,b;) = S(r,g) forj=1,2,...,t.

o The numbers d(P) = min{d(M,) : 1 < j < t} and k the highest order of the
derivative of f in P[f] are called respectively the lower degree and order of P[f].

e P[f] is called homogeneous if d(P) = d(P) = d(say).

e P[f] is called a linear differential polynomial generated by f if d(P) = 1. Other-
wise P[f] is called non-linear differential polynomial. We denote by Q = max{I'p, —

Definition 1.6. For any two positive integers n, and r < 3,
p,(n) =min{r,n} and pp(n) = (r+1)—p,(n).

Definition 1.7. [22] For a € CU {co} and a positive integer p we denote by
Ny(r,a; f) the sum N(r,a; f) + N(rya; f |> 2) + ...+ N(r,a; f |[> p). Clearly

Ni(r,a; f) = N(r,a; f).
Definition 1.8. [25] For a positive integer p and a € CU {co} we put
- Np(r, a; f)
dy(a; f) =1 —limsup —2——=2
S )
It s clear that

0<0(a; f) < 0p(as f) < p-r(a; f) < ... < d2(as f) < d1(as f) = Oas f).
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Extending all the above mentioned results, in 2015, Banerjee - Dhar [5] obtained
the following.

Theorem D. Let f be a non-constant meromorphic function and n(> 1), p(> 0)
be integers. Let a = a(z)(# 0,00) be a small function. Suppose further that P[f]
be a differential polynomial generated by f such that P[f] contains at least one de-
rivative and f — a and P[f] — a share (0,p). If p = co and

30(00; f) + d(P)(0; f) + p2(n)dpusn) (05 f) > p2(n) +3 (1.1)
or, 2 < p < oo and

30(00; f) + d(P)d(0; f) + p3(n)dys (n) (0 f) > ps(n) + 3 (1.2)
or, p=1 and

40(00; f) + d(P)6(0; f) + O(0; f) + p2(1)d 5 (n) (0 ) > p2(n) +5 (1.3)
or, p=0 and
(2Q +6)O(00; f) + 3d(P)(0; f) + ©(0; f) + 4y (n) 0z () (0; f)  (1.4)
> 2Q +2d(P) + pa(n) + 7
then ™ = P[f].

Recently, in this direction, for homogeneous differential polynomials, Li - Yang
- Liu [18] obtained the following result .

Theorem E. Let f be a non-constant meromorphic function and P[f] be a non-
constant homogeneous differential polynomial of degree d and weight T satisfying
I'> (k+2)d—2. Let a(z) be a small meromorphic function of f such that a(z) #
0,00. Suppose that f —a and P[f] — a share (0,p). If p > 2

and
30(00; f) + d 6a41-a(0, f*) + 6,(0, f) + 6(a, f) > 4 (1.5)
or, p=1 and
7T+1'—d d
5000 f) + 5 d1r—a(0; Fh) + d dayr—a(0; f7) + 62(0; f)
r+9
(s f) > =5 (1.6)
or, p=0 and
2(T — d) + 6]0(00; f) + d d141-a(0, f4) + d Ga40-a(0; f) + 62(0; )
+0O(0; f) +d(a; f) > 2T + 8, (1.7)
then m = C, where C is a non-zero constant. Specially when p =0 i.e.,
—a

when [ and P[f] share (a,0), then f = P[f].

We note that f*) and (f*))™ both are differential monomials and (f)*) a
differential polynomial generated by f. But both of them can be accommodated if
one considers a differential monomial of a power of f. So it will be interesting to
investigate whether Theorems D - E can be extended up to generalized differential
polynomial generated by some power of f and at the same time the first setting of
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function in Theorems D - E can also be extended up to a rational function in f.
This is the main motivation of writing this paper.
Henceforth we denote by R(f) as defined in Lemma 2.3, p, (1 <7 < u) and g,

(1 < j < 1) are positive integers. Let P,(f) = anH(f —d,)Pi, 1 <u <nand
i=1

!
Po(f) =bm H(f —¢,;)%, 1 <1 < m respectively, where u and [ are two positive
Jj=1

integers. Let ¢, # ¢;(j = 1,...,[) be a complex constant.
k
—+1, if k is even,

Throughout this paper, we denote by, k* = rﬂ +2, ifkis odd. and

{0, ifm=0,
X =V 1, ifm> 1.
Let us define u* = {
We define

u, if none of d; is zero,

u — 1, if one among the d; is zero. and I* =1y

m

O (a: ) = 1~ limsup N(T’TCE;JC f|)2 2

In this paper, we have obtained a combined result improving and extending all
the Theorems A - E. Actually our aim is two fold. In one direction we will put
the improved version of all the above theorems under a single umbrella and at the
same time we will devote to weaken the conditions also.

The following results are the main results of this paper.

Theorem 1.1. Let f be a non-constant meromorphic function and P[f?] be a
differential polynomial containing atleast one derivative and a = a(z)(#£ 0,00) be a
meromorphic small function of f. Let n > m(> 0), u(> 1), k(> 1), ¢(> 1) and
p(> 0) are integers such that ¢ > k* where k is the highest order derivative in P[f9].

Suppose that R(f) —a and P[f?] — a share (0,p) with (i) x,,q d(P) < Z@(di;f)
and (i) ¢ d(P)6(0; f) <mn. If p>2 and -

-
30(00; f) + ¢ d(P)3(0; f) + D x, {Q(Cj;f) + 0, (¢ f)} (1.8)
j=0

u*

+ Yo 0udi ) +) O(d;f)>3+2" +utu’

=1 =1
dydy,d,, #0
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or, if p=1 and

.
O(o0i f) + 4 d(P)S(0; /) + S, {@<2<cj;f> ¥ 2@<c,.;f>} (1.9)
j=0

u*

+ > 0pdif)+2) 0d f) > 4+3" +u +2u,

1=1 1=1
dy sy serd, o 0

or, if p=0 and

(6 + 2Q)O(c0; f) + 3¢ d(P)3(0; f) +ZX{ £)+20(c, f)}

u*

+ Z (Q(d,i;f>+2Zu2(pi>6u;<m><di;f>>6+2Q+2q8(7>>+3Z*
dydy . ,d 20 =t

u

+2) " palpi) + u, (1.10)

then R(f) = P[f9]. In particular, if P,(0) = 0, then the condition (ii) is no longer
required.

Theorem 1.2. Let f be a non-constant meromorphic function and P[f9] be a
differential polynomial containing atleast one derivative and a = a(z)(# 0,00) be a
meromorphic small function of f. Let n > m(> 0), w(> 1), k(> 1), ¢(> 1) and
p(> 0) are integers such that ¢ < k* where k is the highest order derivative in P[f1].

Suppose that R(f) — a and P[f] — a share (0,p) with (i) x,,q d(P) < Z@(di;f)

and (ii) q d(P)5(0; f) < n
If p=o0 and

0(00; f) 4 q d(P)5(0; f) +Zx{ f)+06(, f)} (1.11)
+ 3 12(Pi)Ous () (i ) > 3420 + Zﬂz(pi),

=1 i=1

or, if 2 < p < oo and
O(c0; f) + q d(P Of+zx{ f+06l, f)} (1.12)

+Zﬂ3pz dzvf)>3+2l*+zu3pz

i=1



336 A. BANERJEE AND M. B. AHAMED EJMAA-2018/6(2)

or, if p=1 and
40(o00; f) + q d(P)s(0; f) +Z><{ £) +26(c, f)} (1.13)

Y (P8 (s f) + 29(di;f) > 4430+ ) pa(pi) +u,

=1 =1 =1

or, if p=0 and
(6+2Q)0(00: f) + 3q d(P)3(0: /) +Zx{ n+2een}
+ Z,@pz o0 (i f) +Z@d f)>642Q+ 30" +2¢d(P)  (1.14)

i=1
+ Z p2(pi) + u,
i=1

then R(f) = P[f4]. In particular, if P,(0) = 0, then the condition (ii) is no longer
required.

From Theorem 1.2 we can immediately deduce the following corollaries.

Corollary 1.1. Let f be a non-constant meromorphic function and n(> 1), u(> 1),
k(> 1) and p(> 0) are integers such that and a = a(z)(# 0,00) be a meromorphic
small function of f. Let P[f] be a differential polynomial containing at least one
derivative. Suppose that P,(f) — a and P[f] — a share (0,p) with d(P)d(0; ) < n.
If p=o00 and

30(00; f) + d(P)(0; f) + _Xu;uz(pqz)%*(m(d,-;f) (1.15)
> 3+ iuz(m%
or, if 2<p < oo and }
O(cc; f) +d(P)o(0; f) + i}w(m)%;(m)(di; ) (1.16)

> 34+ (i),
i=1

or, if p=1 and

40/(00; f) +d(P)5(0; ) + > 12 (pi)dys oy (i3 £) +Y_O(d,; f)  (1.17)

=1 =1

> A+ pe(p) +u,

i=1
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or, if p=0 and

(6+2Q)0(00: f) +d(P)3(0; f) + Y _ p2(pi)dps oy (dii f) + D _ O(ds3 f)

=1
> 6+42Q+2d(P)+ Y pa(pi) + u, (1.18)
i=1

then P, (f) = P[f]. In particular, if P,(0) =0, then the condition d(P)d(0; f) <n
is no longer required.

Let P[f] be a homogeneous differential polynomial. Then we know from Def-
inition 1.5 that d(P) = d(P) = d and hence Q = I' — d and if P,(f) = f,
pua(l) =1 = ps(1), p3(1) = 2, pi(1) = 3. Keeping this in mind we obtain the
following corollary for homogeneous differential polynomials.

Corollary 1.2. Let f be a non-constant meromorphic function and P[f] be a homo-
geneous differential polynomial. Let a(z)(# 0,00) be a small meromorphic function.
Suppose [ —a and P[f] — a share (0,p). If p = 0o and

30(oco; f) +d 6(0; f) + 02(0; f) > 4, (1.19)
or, 2 < p < oo and
30(o0; f) +d 6(0; f) +0,(0; ) > 4, (1.20)
or, p=1 and
40(o0; f) +d 0(0; f) + O(0; f) + 6,(0; f) > 6, (1.21)
or, p=0 and

[2(I' — d) + 6]O(c0s f) +3d 6(0; ) + O(0; f) +6,(0; f) > 2I' +38, (1.22)
then f = P|[f].
Remark 1.1. It is clear that Corollary 1.1 is a direct extension and improvement

of Theorem F. Now if we compare the conditions of Corollary 1.2 and Theorem E,
we see that

3@(()0; f) + d52+1“—d (07 fd) + 52 (Ov f) + (5(0,, f)
> 30(c0; f) +d 6(0; f) + 6,(0; f).

and

T 000001 1) + 58, a0 £ + 5, (05 7% + 6,05 ) + 6 f)

> 40(c0; f) +d 5(0; f) + ©(0; f) + 6,(0; f).
and
[2(F = d) +6]0(00; f) +dd, 1, (0, fF) +dd, 1, (0; f7) +6,(0; f) +O(0; f)
+0(a; f) > [2(T' — d) + 6]©(00; f) + 3d 6(0; f) + O(0; f) + 6, (05 f).
Hence we see that Corollary 1.2 is a direct improvement of Theorem E.

The following examples show that a # 0 is necessary in Theorem 1.1 and Theo-
rem 1.2
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Example 1.1. Let R(f) = f7 and P[f%] = ) , where f = e*. Clearly ¢ > k*
as ¢ =6, k=1 and R(f) = € and P[fY] * share (0,00). Here d(P) =1 =
d(P), dy =0, O(co; f) = 6(0; f) = ©(0; f) = 1. All the conditions (1.8) - (1.10) in
Theorem 1.1 are satisfied but R(f) 2 P[f°].

1
g(
=ef

n

Example 1.2. Let R(f) = ff77 wheren > 2 be an integer, a # 0 be any complex
-«

1 2
number and P[f] = gf + gf', where [ = e*. Clearly ¢ < k* as ¢q =1 =k and

R(f) and P[f] share (0,00). Here d(P) =1 =d(P), d1 =0, ¢; = a, O(c0; f) =
O, (c1; f) = 6(0; f) = 1, O(cy; f) = 0. We see that all the conditions (1.11) - (1.14)
in Theorem 1.2 are satisfied but R(f) # P[f].

The next example shows that the deficiency conditions stated in Theorem 1.2
are not necessary.

Example 1.3. [4] Let f(2) = Acosz + Bsinz, AB # 0. Then N(r, f) = S(r, f)
and

</ o AFIB 5

N(T707f)_N< ./4 Be ) T(’I’,f)

Here O(oco, f) =1 and §(0, f) = 0. Let R(f) = f.
Therefore it is clear that P[f] = f4*), for k € N and R(f) share (a,o0) and the

deficiency conditions (1.11) - (1.14) in Theorem 1.2 are not satisfied, but R(f) =
Plf]-

The following examples show that the conditions in Theorem 1.1 and Theorem
1.2 can not be removed when m = 0 under different sharing environment.

eZ

=1
1 L1

see that ¢ > k*, where g =2, k=1 and R(f)— B and P[f*]— 3 share (0,00). Here

qd(P)é(0; f) <, asn =3, d(P) = 1 = d(P), ©(c0; f) = O(di; f) = ds(di; f) =0,

Vs € N and 6(0; f) = 1. It is clear that none of the condition (1.8)-(1.10) in

Theorem 1.1 is satisfied and R(f) # P[f?].

Example 1.4. Let R(f) = f3+1 and P[f?] = _f2_|_%(f2)'7 where f = -  We

1 1
Example 1.5. Let R(f) = 2f% — 1 and P[f?] = Z(fg)' + ifg, where f = €.

Now it is clear that ¢ > k* and R(f) — 1 = 2(e?* — 1) and P[f}] — 1 = e?* — 1

— 1
share (0,00). Here ©(co; f) =1 =46(0;f), ¢ =2,d(P)=1=4d(P), d; = i\ﬁ,
O(di; f) =0, ©,(di; f) = 1, u= 2. We see that none of the conditions (1.8)-(1.10)
in Theorem 1.1 is satisfied and R(f) # P[f?].

Example 1.6. Let f(z) = eN?, where N is a non-zero integer. For n > 2 let

2n—1

wa:4w"§jkn(”ﬁﬁnramtmﬂ Fem,

r=0
Then it is clear that
R(f) = N2 = -N*(eM= ~ 1" and P[f] — N = N*(eN= — 1)
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Thus we see that R(f) and P[f] share (N?",0). Here ©(oo; f) =1 and §,(0; f) =
1,Vq € N.
We see that the condition (1.14) in Theorem 1.2 is not satisfied and R(f) # P[f].

Example 1.7. Let f(z) = —sin(az) + a — %, k € N; where o # 0,a* # 1 and
o)

a € C—{0). Let R(f) = f and P[f] = f@*). Then P[f] = —a**sin(az). Here
O(o0; f) =1 and since
N(,0:) =N (r.a = ~zssin(az)) ~ 7(r, ),

s0 0(0; f) = 0. Also it is clear that R(f) and P[f] share (a,00) but none of the
inequalities (1.11) - (1.14) of Theorem 1.2 is satisfied and R(f) # P[f].

Example 1.8. Let f(z) = ¢’ +a — %; where a # 0,00 and [ # 0,+1. Let
R(f) = f. Again let P[f] = f@). Then P[f] = B?eP*. Here ©(cc; f) =1 and since
— — a
N(T’,O,f) N<r’62 a;€62> NT(T‘,f),

50 04(0; f) = 0,Yq € N. Also it is clear that R(f) and P[f] share (a,00) but none
of the inequalities (1.11) - (1.14) in Theorem 1.2 is satisfied and R(f) # P[f].

z
. We see

Example 1.9. Let R(f) = f2+1 and P[f] = f' — f, where f = P

that ¢ < k*, where ¢ = 1 = k and R(f) — % and P[f] — % share (0,00). Here
qd(P)8(0; f) < n, asn =2, d(P) = 1=d(P), O(cc; f) = O(di; f) = ds(di; f) = 0,
Vs € N and §(0; f) = 1. It is clear that none of the conditions (1.11)-(1.14) in
Theorem 1.2 is satisfied and R(f) # P[f].

2. SOME LEMMAS

In this section we present some lemmas which will be needed in the sequel. Let
F, G be two non-constant meromorphic functions. Henceforth we shall denote by
‘H the following function.

B f” 2;/ g/l 29/
(L) (£ 2w

Lemma 2.1. [25] Let f be a non-constant meromorphic function and k be a positive
integer, then

Ny(r,0; f*) < Npyo(r, 05 f) + kN (7, 003 f) + S(7, f).

Lemma 2.2. [16] If N(r,0; f*) | f # 0) denotes the counting function of those
zeros of %) which are not the zeros of f, where a zero of f*) is counted according
to its multiplicity then

N(r,0; f®) | f #0) < kN(r,00; f) + N(r,0; f |[< k) + kN(r,0; f |[> k) + S(r, f).

Lemma 2.3. [19] Let f be a non-constant meromorphic function and let

n

Zaifi
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be an irreducible rational function in f with constant coefficients {a;} and {b;}
where a, # 0 and by, # 0. Then

T(r,R(f)) = dT(r,f) +S(r f),

where d = max{n,m}.
Lemma 2.4. Let f be a meromorphic function and P[f] be a differential polyno-

mial. Then
o (ro o) < @p) - Py (v ) + 500

Proof. The proof can be conducted along the same lines as the proof of Lemma 2.4
in [5]. O

Lemma 2.5. Let f be a non-constant meromorphic function and P[f?] be a dif-
ferential polynomial. Then

N(r,0;P[f7])
< T(rPfY) —adP)T(r, f) + a d(P)N(r,0; f) + S(r, f).
Proof. The proof can be conducted along the same lines as the proof of Lemma 2.5
in [5]. O
Lemma 2.6. [10] Let P[f1] be a differential polynomial generated by f. Then
m(r, P[f]) < d(P)m(r, f?) + S(r, ).
Proof. The proof can be conducted along the same lines as the proof of Lemma 2.6
in [5]. |
Lemma 2.7. Let f be a non-constant meromorphic function and P[f] be a differ-

ential polynomial. Then S(r, P[f?]) can be replaced by S(r, f).

Proof. From Lemma 2.6 it is clear that T'(r, P[f?]) = O(T(r, f)) and so the lemma
follows. O

Lemma 2.8. Let P[f9] be a differential polynomial generated by f. Then
T(r,Plf))
< qd(P)T(r,f) + QN(r,00: f) + S(r. f).

Proof. The proof can be conducted along the same lines as the proof of Lemma 2.8
in [5]. O

3. PROOFS OF THE THEOREMS

Proof of Theorem 1.1. Let F = @ and G = @

a _

and G — 1 = w. Since R(f) — a and P[f?] — a share (0, p) it follows that
F, G share (1, p) except the zeros and poles of a(z). Now we consider the following
cases.
Case 1. Let H # 0.

From (2.1) it can be easily calculated that the possible poles of H occur at (i)
multiple zeros of F and G, (ii) those 1 points of F and G whose multiplicities are
different related to F and G, (iii) those common poles of F and G with different

 Then F_1- R —a
a
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multiplicities, (iv) multiple poles of F and G, (v) zeros of F (G') which are not the
zeros of F(F —1) (G(G —1)).

Let zp, a d,, i =1,2,...,u point of f with multiplicity > 2 such that a(zg) #
0,00. If d, = 0, then since G contains at least one derivative, zp would be a zero
of G with multiplicity at least 2¢ — k. Since ¢ > k¥, it follows that zy will be a
multiple zero of G too. Since H has only simple poles we get from (2.1)

N(r,00;H) (3.1)

IN

-
N(r,o0 f)+ Y _x,N(r,c;: f|>2)+ > N(rd;:f|>2)
=0 i

+ N, 1;F,G) + N(r,0;G |> 2) + No(r,0; F ) + No(r,0;G") + N(r,0;a)
+ N(r,o0;a). (3.2)

where No(r,0; F’) is the reduced counting function of those zeros of F’ which
are not the zeros of F(F — 1) and No(r,0;G") is similarly defined. Let zp be a
simple zero of F — 1. Then by a simple calculation we see that zg is a zero of H
and hence

NE(r1;F) = N(r, 1;F |= 1) < N(r,0;H) < N(r,00;H) + S(r, F)  (3.3)

By using the Second Fundamental Theorem, Lemma 2.7, (3.1) and noting that

N(r,00;G) = N(r,00; f) + 5(r, f), we get

T(r,G) (3.4)
N(r,00;G) + N(r,0:G) + N(r,1;G) — No(r,0:G) + S(r,G)

.
2N (r,00; f) + N(r,0;6) + N(r,0;G [> 2) + > x,N(r,c;5 f [>2)

=0

IN

IN

+ >, N(rd;fl|> 2)+{N*(T,l;f,g)+N(r,1;F|> 2)

i=1
dydy,.d, . #0

i No<r,o;f')}+5<r,f>.

Subcase 1.1. While p > 2. Then

(r,1; F,G) + N(r,1; F |> 2) + No(r,0; F) (3.5)

N.
N(r,0; F | F #0).

<
So,
T(r,G)

* *

2N(r,00; f) + No(r,0:G) + > X, N(res )+ >, N(rd;f[>2)
j=0 i=

IA

+ N(r,0;F | F#0)+S(r, f).
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By Lemma 2.2, we get
N(r,0;F" | F #0)
* u
< N(rooif)+ > X, N(rc,: )+ > N(rd;f)+ S f).
j=0 i=1

Using Lemma 2.5, we get from above

T (r, Pf])

1* *

< 3N(r00f) + Y X, N(re;s f [>2) + N(r.d,; f|>2)
j=0 i=

+ Y X, N(rei )+ T(r, PLfY) — q d(P)T(r, f) + q d(P)N(r,0; f)

Jj=0

+ Y N(r,d; f)+S(r, ).
=1

i.e., for any € > 0,

-
{3@(00; +adP)sO;f)+> x, {@(z(cj;f) + @(cj;f)}
§=0

d, d, fildu* #0 i=1

< {3+2l* +u+ u* +6}T(T,f) +S(r, f),

which contradicts (1.8)
Subcase 1.2. While p =1, (3.5) becomes

N L, F|>p+1)+N(r,1;F|>2) + No(r,0;F ) (3.6)
N(r,0;F | F#0|>1)+ N(r,0;F | F #0)
IN(r,0;F | F #0).

INIA

Proceeding same way as in Subcase 1.1, we get

T(r,g)
N N
< 4 N(r,o00; f) + N(r,0;G) —&-ijﬁ(r,cj;f [>2) +2ZX].N(T7CJ.; )
§=0 §=0
+ Y. N(nd;fl22)+2) N(rd;f)+S(rf)

i=1

1
dydy,.nd, ., #0
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Again using Lemmas 2.5 and 2.2, as above we get that

T(r, PLf])
4 N(r,00; f) —I—Zx{ rc,i f 12 2)+2N(r,c;; )}

=0

IN

u*

- Z N(r,d; f1>2)+2) N(r,d; f)+ T(r,P[f9]) — ¢ d(P)T(r, f7)

d d27, d, . #0 =t
+ QQ(P) (T,O,f)-i—S(T,f).
i.e., for any € > 0,
{4@(oo;f)+qd 0(0; f) +Zx{ f)+20(c, f)}

u*

DY <2<di;f>+2Z@(di;f)}T<r,f>

d, dZ, ,d #0
< {4+3l*—|—2u—|—u*—|—6}T(7’,f)+5(7"f);

which contradicts (1.9).

Subcase 1.3. While p = 0.

In this case F and G share (1,0) except the zeros and poles of a(z). Here, proceeding
same way as in [3, Subcase 1.2, Proof of Theorem 1.1], we obtain by applying Lemma
2.2 and Lemma 2.5,

T(r,G)

IN

-
AN(r,00 f)+ > X, N(roe;s f > 2) + N(r.d; f1>2)

=0 i=
+ 27(r,G) +T(r,P[f7]) — 3¢ d(P)T(r, f) + 3¢ d(P)N(r,0; f)
2{]\72(1",0;.7) +N(r,oo;}')} + S(r, f).

Applying Lemmas 2.8, we get from above

3¢ d(P)T(r, f)
< Q4 HN( o f) +Zx{ regif 122+ 2N e )
+ Z N(r,d,; f |>2)+2q d(P)T(r, f) + 3 d(P)N(r, 0; f)

i=
dy.dy,.. ,d #0

u

+ 2 (i) Nz (o ) + S(r, f),

=1
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i.e., for any € > 0,

{(6+2Q (005 f) +Zx{ f)+26(c, f>}+ > 0uldif)

b3 AP0 )+ 23 a3 (s )T )
=0

< {6 +2Q + 2qd(P) + 31* + 22#2(%) +ut + G}T(T, £)y+S8(r, ),
i=1
which contradicts (1.10).
Case 2. Let H =0.
On integration we get from (2.1)
1

C

Fo1= G 1+D (3.7

where C(# 0), D are constants. We claim that D = 0. Suppose that there exist a
pole zg of f with multiplicity p which is neither a pole nor a zero of a(z). Asn > m,
zo will be a pole of F with multiplicity (n —m)p and a pole of G with multiplicity

M (say). We assume that (n —m)p # M, since otherwise we know from (3.7) that
D =0 and we are done.

Subcase 2.1. Suppose D # 0.
Since (n —m)p # M, we get a contradiction from (3.10). So,

N(r,o00; f) < N(r,0;a) + N(r,00;a) = S(r, f),
and hence O(oo; f) = 1. Also it is clear that N(r,00;G) = N(r,00; f) = S(r, f).

5(0: 1) +Zx{ Dot X euldas)
d, dz,Z ,1 . #0
+ ) 0(d; f) > 2" +utu (3.8)
=1
5(0: f) +Zx{ N+ 2600} + 0, (d,; f)
d,d, ,Z:.:,ldu* 40
+2) 0(d; f) > 31" +u” + 2u, (3.9)
=1
3q d(P)o(0; f) +Zx { f)+26(c, f)}+ O, (d; [f)
d, d, fildu*;éo

2 12(pi)0pye ooy (dis f) > 2qd(P) + 31 +2  pa(pi) + u*, (3.10)

i=1 i=1
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Since D # 0, from (3.7) we get

1
_D<]—‘—1—D> .

F—1 G-1

So

D

Subcase 2.1.1. Let D # —1. First suppose m # 0.
Using the second fundamental theorem for F we get

N(r,1+lsf> = N(r,00,6) = 8(r, f)-

_ _ — 1
T(r,F) < N(r,oo;f)—l—N(r,O;]—')—I—N(r,l—i—D;J:)

*

ijﬁ(n ¢ )—i—ZW(r, d; f)+S(r f).

j=0 i=1

IN

ie.,

i=1

r* u
D ox,00ci N+ 0d;f) <l +u—n<l7, (3.11)
Jj=0

which contradicts (1.8) - (1.10).
Next let m = 0. Then (3.11) reduces to Z OWd,;; f) <u-—n.

i=1
If w < n, then we get a contradiction. So we must have u = n. So we have
O(d;; f) = 0 for each i. Then from (3.8) we get n < ¢qd(P)d(0; f), which is not
possible. In particular, if P,(0) = 0, then one among the d, is zero and so ©(0; f) =
0, which implies §(0; f) = 0 and so (ii) is no longer required.
Subcase 2.1.2. Let D = —1.
Then
F 1
—— =C—.
F-1 Gg-1
If C # —1 we know from (3.12) that N(r,1 + C;G) = N(r,00;F). So from
Lemmas 2.1 and 2.5 and by the second fundamental theorem we get

q d(P)T(r, f)
< N(r,00;G) + q d(P)N(r,0; f) + N(r,1+ C;G) + S(r, f)
-

g d(P)N(r,0; f) + > x,N(r.c;; f) + S(r, f).

J=0

(3.12)

IN

i.e.,
o
qd(P)5(0; f) + > x,0(c;; f) <17,
7=0
which contradicts (3.8)-(3.10).
So C = —1 and we get from (3.12) that FG = 1, which gives R(f)P|[f] = a*.
From above we have N(r,0; f) = S(r, f) and N(r,00; f) = S(r, f).
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In view of the first fundamental theorem Lemma 2.4, we get from above
(n+qd(P))T(r, f)

a2
= T(T,W>+S(T,f)

<7 (r, f[fq] ) + S0 )

q d(P)

PLf] Pl
= m <r, fqd(P)) + N (r,oo, fqd(P)) + S(r, f)

< @P) - dP)m ( ;) N (ryo0s P + g AP)N(r,0: 1) + S(r. f)

= q(d(P) = d(P))(T(r,f) = N(r,0; f)) + 5(r, f).
(n+qd(P))T(r, ) < S(r, f),

which is impossible.
Subcase 2.2. Let D = 0 and so from (3.10) we get

G—1=C(F-1).

If C # 1, then
G-1+C

d C

and
N(r,0; F) = N(r,1 —-C;G).

By the second fundamental theorem and using Lemmas 2.1, 2.5 and 2.7, we have

T(r,G)
< N(r,00;G) + N(r,0;G) + N(r,1 —C;G) + S(r,G)
< N(r,00; f) + N(r,0; F) +T(r, P[f]) — q d(P)T(r, f) + ¢ d(P)N(r,0; f)
+ S(r f).

i.e.,
q d(P)T(r, f) < N(r,00; f) + q d(P)N(r,0; f) + > _ N(r,d;; f) + S(r, f),
=1
which implies
O(00; f) +q d(P)3(0; /) + D _O(d; ) < 1+wu. (3.13)
=1

Now with the help of (3.13), we get contradiction to (1.8) - (1.10) respectively.
Hence C =1 and so F = G, i.e., R(f) = P[f9]. O
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Proof of Theorem 1.2. Let F and G be given as in the proof of Theorem 1.1. When
H # 0 we observe that (3.1) can be changed into

N(r,o00;H) (3.14)
o
< N(roos )+ Y x,N(re;; f122) + Nu(r,; F,G) + N(r, 0; F |> 2)
=0

+ N(r,0;G|>2)No(r,0;F ) + No(r,0;G") + N(r,0;a) + N(r, 00; a).

Now for the next cases we follow [3, Subcase 1.1 and Subcase 1.2, Proof of
Theorem 1.1] and apply Lemmas 2.1 and 2.2.
Finally we omit the rest of the proof as that is similar to the proof of Theorem

1.1.

]
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