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APPROXIMATE SOLUTIONS FOR A CUBIC AUTOCATALYTIC

REACTION

K. M. SAAD, SİNAN DENİZ AND P. AGARWAL

Abstract. We aim to present an algorithm (presumably new) by using Ado-
mian Decomposition Method (ADM) and Variational Iteration Method (VIM)

to solve Cubic Isothermal Autocatalytic Chemical System (CIACS). This pa-
per studies the approximate analytical solution of the isothermal chemical
reaction U + 2V → 3V involving two chemical species, a reactant U and an
autocatalyst V, whose diffusion coefficients, εU and εV . In this paper , we have

assumed εU = εV for species U and V in region I, and region II for simplicity.
The ADM and VIM solutions are compared with numerical solutions evaluated
by symbolic computation program Mathematica and very good agreement is
obtained. We also show the behaviour of the ADM and VIM solutions.

1. Introduction

Recently, Merkin et al. in [1] considered the following reaction-diffusion traveling
waves system in region I as follows: for quadratic autocatalytic reaction

U + V → 2V (rate κ1uv), (1)

together with a linear decay step

V →W (rate κ2v), (2)

for cubic autocatalytic reaction

U + 2V → 3V (rate κ3uv
2) (3)

together with a linear decay step

V →W (rate κ4v), (4)

where u and v are concentrations of reactant U and auto-catalyst V , κi(i = 1, 4)
are the rate constants and W is some inert product of reaction. On the region II
we assume that only the (1) and (3) are taking place for quadratic autocatalytic
reaction and cubic autocatalytic reaction respectively. noindent Here, we consider
the following system for the dimensionless concentrations (α1, β1) and (α2, β2) in
region I and II of species U and V , respectively with ζ > 0 and η > 0:
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∂α1

∂η
=
∂2α1

∂ζ2
− α1β

2
1 , (5)

∂β1
∂η

=
∂2β1
∂ζ2

+ α1β
2
1 − kβ1 + γ(β2 − β1), (6)

∂α2

∂η
=
∂2α2

∂ζ2
− α2β

2
2 , (7)

∂β2
∂η

=
∂2β2
∂ζ2

+ α2β
2
2 + γ(β1 − β2), (8)

with the boundary conditions

αi(0, η) = αi(L, η) = 1, βi(0, η) = βi(L, η) = 0. (9)

and the initial conditions

α1(ζ, 0) = 1−
∞∑

n=1

a1 sin
(πn

2

)
cos (0.5µn(L− 2)) , (10)

β1(ζ, 0) =

∞∑
n=1

b1 sin
(πn

2

)
cos (0.5µn(L− 2)) , (11)

α2(ζ, 0) = 1−
∞∑

n=1

a2 sin
(πn

2

)
cos (0.5µn(L− 2)) , (12)

β2(ζ, 0) =

∞∑
n=1

b2 sin
(πn

2

)
cos (0.5µn(L− 2)) , (13)

where µn = nπ
L . The dimensionless constants k and γ represent the strength of the

autocatalyst decay and the coupling between the two regions respectively. Also Met-
calf et al. have studied reaction-diffusion waves in coupled isothermal autocatalytic
chemical systems in detail [2]. The cubic reaction relation has been documented in
the literature and appeared in various chemical reactions fields [3–16].

Nonlinear differential equations play a major role in the mathematical descrip-
tion of the problems of the real world. It is therefore very important to have an
accurate solution to these equations. Since most of these equations do not have
an exact solution, numerical and analytical methods are required to study these
types of problems. Therefore the motivation for studying this problem is to find
the approximate analytical solution and compare it with numerical solution that
found it by Mathematica program. Also, we compare two new methods that give
us an accurate and effective solution. For more details about the approximate and
the numerical methods see [17–31].

Adomian derived a new techniques called ADM for computing the solutions of
linear and nonlinear equations [32, 33]. Various authors have studied the conver-
gence of Adomain’s method [34–37]. It has recently been proven that it is a very
effective method and can be applied successfully to many problems such as systems
of ordinary and partial differential equations as well as integral equations [38–46].

The essentials of the VIM and its applicability for several kinds of differential
equation are given in [41,47–52]. The comparison between ADM and VIM has been
studied in [53, 54]. The aim of this paper is to obtain the approximate analytic
solutions of the CIACS by ADM and VIM, and to determine the accuracy of these
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methods in solving CIACS. We will make some comparisons between these methods
through finding the approximate solutions.

The present paper is organized as follows. The second and third sections are
devoted the basic idea of the standard ADM and VIM respectively. The fourth and
fifth sections are devoted to the applied the ADM and VIM on CIACS respectively.
Section six is devoted to the numerical results. Conclusions are presented in section
seven.

2. Description of ADM and VIM

In this section, we introduce the basic ideas of the VIM and ADM respectively.

2.1. Basic Idea of ADM. In this subsection, we present the basic idea of the
ADM [55] by considering the following nonlinear partial differential equation

L(ψ(ζ, η)) +R(ψ(ζ, η)) +N(ψ(ζ, η)) = 0, (2.1)

ψ(ζ, 0) = ϕ(ζ), (2.2)

where L is the highest order derivative which is assumed to be invertible, R is the
remaining linear operator, N represent a nonlinear operator. Now, applying the
inverse operator L−1 to both the sides of (2.1), we get

ψ(ζ, η) = ϕ(ζ)− L−1(R(ψ(ζ, η)) +N(ψ(ζ, η)), (2.3)

Let

ψ(ζ, η) =
∞∑

m=0

ψm(ζ, η), (2.4)

and

N(ψ) =
∞∑

m=0

χm, (2.5)

where χm are Adomin polynomials which depend upon ψ. In view of Equations
(2.4)–(2.5), (2.3) takes the form

∞∑
m=0

ψm(ζ, η) = ϕ()− L−1(R(ψ(ζ, η)) +
∞∑

m=0

χm(ψ(ζ, η)). (2.6)

We set
ψ0(ζ, η) = ϕ(); (2.7)

ψm+1(ζ, η) = −L−1(R(ψ(ζ, η)) +
∞∑

m=0

χm(ψ(ζ, η)), m = 0, 1, · · · (2.8)

where

χm(ψ(ζ, η)) =

[
1

m!

dm

dλm
N(

∞∑
m=0

ψm(ζ, η)λm)

]
λ=0

. (2.9)

Hence, (2.7)–(2.8) and (2.9) lead to the following recurrence relations

ψ0(ζ, 0) = ϕ(), ψm+1(ζ, η) = −L−1 (R(ψ(ζ, η)) +Am(ψ(ζ, η))) (2.10)

The solution ψ(ζ, η) can be approximated by the truncated series

φk(ζ, η) =

k−1∑
m=0

ψm(ζ, η), limk→∞φk = ψ(ζ, η).
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2.2. Basic Idea of the VIM. In order to introduce the VIM, let us consider the
differential equation

Dψ(ζ, η) + Lψ(, η) = ϕ(ζ, η), (2.1)

where D,L, and ϕ(ζ, η) are a linear operator, a nonlinear operator, a source term,
respectively. According to the VIM, we construct the correction functional in the
η-direction as

ψn+1(ζ, η) = ψn(ζ, η) +

∫ η

0

λ
(
Lψn(, t) +Nψ̃n(ζ, t)− ϕ(ζ, t)

)
dt (2.2)

where λ is a general Lagrangian multiplier [47–49], which can be determined op-
timally through the variational theory. The subscript n indicates the nth or-
der approximation. ψ̃n(ζ, η) is considered as a restricted variation [47–49], i.e.

δψ̃n(ζ, η) = 0.

3. Derivation of approximate solution of CIACS via ADM

In this subsection, we apply the ADM to evaluate the approximate solutions of
(5)–(8). If we operate L−1

η on both sides of (5)–(8), we obtain

α1 = L−1
η

(
∂2α1

∂2
− α1β

2
1

)
, (3.3)

β1 = L−1
η

(
∂2β1
∂x2

+ α1β
2
1 − kβ1 + γ(β2 − β1)

)
, (3.4)

α2 = L−1
η

(
∂2α2

∂x2
− α2β

2
2

)
, (3.5)

β2 = L−1
η

(
∂2β2
∂x2

+ α2β
2
2 + γ(β1 − β2)

)
, (3.6)

where

L−1
η :=

∫ η

0

(.) (3.7)

Now the ADM solutions and the nonlinear functions N1(α1, β1) and N2(α2, β2) can
be presented as an infinite series

α1(ζ, η) = α1,0(, η) +
∞∑

m=1

α1,m(ζ, η), (3.8)

β1(ζ, η) = β1,0(, η) +

∞∑
m=1

β1,m(ζ, η), (3.9)

α2(ζ, η) = α2,0(, η) +
∞∑

m=1

α2,m(ζ, η), (3.10)

β2(ζ, η) = β2,0(, η) +
∞∑

m=1

β2,m(ζ, η), (3.11)

and

N1(α1, β1) = α1β
2
1 =

∞∑
m=0

χm, (3.12)
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N2(α2, β2) = α2β
2
2 =

∞∑
m=0

ξm, (3.13)

where

χm =
1

m!

[
dm

dλm
N1(α1, β1)

]
λ=0

, (3.14)

ξm =
1

m!

[
dm

dλm
N2(α2, β2)

]
λ=0

, (3.15)

where χm are called the Adomian polynomials. α1,m(ζ, η) and β1,m(ζ, η) are the
components of the solutions α1(ζ, η) and β1(ζ, η) will be determined by the following
recurrence relations

α1,0 = α1(ζ, 0), α1,m+1 = L−1
η

(
∂2α1,m

∂2
− χm

)
, (3.16)

β1,0 = β1(ζ, 0), β1,m+1 = L−1
η

(
∂2β1,m
∂2

− kβ1,m + γ(β2,m − β1,m)− χm

)
,

(3.17)
where ξm are called the Adomian polynomials. α2,m(ζ, η) and β2,m(ζ, η) are the
components of the solutions α2(ζ, η) and β2(ζ, η) will be determined by the following
recurrence relations

α2,0 = α2(ζ, 0), α2,m+1 = L−1
η

(
∂2α2,m

∂2
− ξm

)
, (3.18)

β2,0 = β2(ζ, 0), β2,m+1 = L−1
η

(
∂2β2,m
∂2

+ γ(β1,m − β2,m)− ξm

)
, (3.19)

In view of (2.9) and using Mathematica software, we evaluate the Adomian poly-
nomials χn and ξn as follows:

χ0 = α1,0β
2
1,0,

χ1 = α1,1β
2
1,0 + 2α1,0β1,0β1,1,

χ2 = α1,2β
2
1,0 + 2α1,1β1,0β1,1 +

1

2
α1,0(2β

2
1,1 + 4β1,0β1,2,

(3.20)

ξ0 = α2,0β
2
2,0,

ξ1 = α2,1β
2
2,0 + 2α2,0β2,0β2,1,

ξ2 = α2,2β
2
2,0 + 2α2,1β2,0β2,1 +

1

2
α2,0(2β

2
2,1 + 4β2,0β2,2.

(3.21)

In the first iteration we have

α1,1 = L−1
η

(
∂2α1,0

∂2
− χ0

)
, (3.22)

β1,1 = L−1
η

(
∂2β1,0
∂2

− kβ1,0 + γ(β2,m − β1,0) + χ0

)
, (3.23)

α2,1 = L−1
η

(
∂2α2,0

∂2
− ξ0

)
, (3.24)

β2,1 = L−1
η

(
∂2β2,0
∂2

+ γ(β1,0 − β2,0)− ξ0

)
. (3.25)
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The components α1,2, ..., β1,2, ..., α2,2, ..., β2,2, ... were also determined and will be
used, but for brevity are not listed. The general form of the approximations
α1, β1, α2, β2are given by (3.8)–(3.15), i. e.

α1 = α1,0 + α1,1 + α1,2 + · · · , (3.26)

β1 = β1,0 + β1,1 + β1,2 + · · · , (3.27)

α2 = α2,0 + α2,1 + α2,2 + · · · , (3.28)

β2 = β2,0 + β2,1 + β2,2 + · · · , (3.29)

4. Derivation of approximate solution of CIACS via VIM

In this section, we apply the VIM to evaluate the approximate solutions of (5)–
(8). We can approximate the correction formula of (5)–(8) as follows:

α1,n+1(ζ, η) = α1,n(ζ, η) +

∫ η

0

µ1(t)

(
∂

∂t
α1,n(ζ, t)

−∂
2

∂2
α̃1,n(ζ, t) + α̃1,n(ζ, t)β̃

2
1,n(ζ, t)

)
dt, (4.30)

β1,n+1(ζ, η) = β1,n(ζ, η) +

∫ η

0

µ2(t)

(
∂

∂t
β1,n(ζ, t)

−∂
2

∂2
β̃1,n(ζ, t)− α̃1,n(ζ, t)β̃

2
1,n(ζ, t)dt

+kβ̃1,n(ζ, t) + γ(β̃1,n(ζ, t)− β̃2,n(ζ, t))
)
dt, (4.31)

α2,n+1(ζ, η) = α2,n(ζ, η) +

∫ η

0

µ3(t)

(
∂

∂t
α2,n(ζ, t)

−∂
2

∂2
α̃2,n(ζ, t) + α̃2,n(ζ, t)β̃

2
2,n(ζ, t)

)
dt, (4.32)

β2,n+1(ζ, η) = β2,n(ζ, η) +

∫ η

0

µ4(t)

(
∂

∂t
β2,n(ζ, t)−

∂2

∂2
β̃2,n(ζ, t)

−α̃2,n(ζ, t)β̃
2
2,n(ζ, t) + γ(β̃2,n(ζ, t)− β̃1,n(ζ, t))

)
dt. (4.33)

where α̃1,n(ζ, η), β̃1,n(ζ, η), α̃2,n(ζ, η), β̃2,n(ζ, ς), denote the restrictive variation, that
is,

δα̃1,n(ζ, η) = 0, δβ̃1,n(ζ, η) = 0, δα̃2,n(ζ, η) = 0, δβ̃2,n(ζ, η) = 0.

Thus, we have

δα1,n+1(ζ, η) = δα1,n(ζ, η) +

∫ η

0

δµ1(t)

(
∂

∂t
α1,n(ζ, t)

−∂
2

∂2
α̃1,n(ζ, t) + α̃1,n(ζ, t)β̃

2
1,n(ζ, t)

)
dt

= δα1,n(ζ, η +

∫ η

0

δµ1(t)

(
∂

∂t
α1,n(ζ, t)

)
dt, (4.34)



20 K. M. SAAD, SİNAN DENİZ AND P. AGARWAL EJMAA-2019/7(1)

δβ1,n+1(ζ, η) = δβ1,n(ζ, η) +

∫ η

0

δµ2(t)

(
∂

∂η
β1,n(ζ, t)

−∂
2

∂2
β̃1,n(, t)− α̃1,n(, t)β̃

2
1,n(, t)dη

+kβ̃1,n(, t) + γ(β̃1,n(, t)− β̃2,n(, t))
)
dt

= δβ1,n(, η) +

∫ η

0

δµ2(t)

(
∂

∂t
β1,n(, t)

)
dt, (4.35)

δα2,n+1(ζ, η) = δα2,n(ζ, η) +

∫ η

0

δµ3(t)

(
∂

∂t
α2,n(ζ, t)

−∂
2

∂2
α̃2,n(ζ, t) + α̃2,n(ζ, t)β̃

2
2,n(ζ, t)

)
dt

= δα2,n(ζ, η) +

∫ η

0

δµ3(t)
∂

∂t
α2,n(ζ, t)dt (4.36)

δβ2,n+1(ζ, η) = δβ2,n(ζ, η) +

∫ η

0

δµ4(t)

(
∂

∂t
β2,n(ζ, t)−

∂2

∂2
β̃2,n(, t)

−α̃2,n(ζ, t)β̃
2
2,n(ζ, t) + γ(β̃2,n(ζ, t)− β̃1,n(ζ, t))

)
dt

= δβ2,n(ζ, η) +

∫ η

0

δµ4(t)
∂

∂t
β2,n(ζ, t)dt, (4.37)

where α̃1,n, β̃1,n, α̃2,n and β̃2,n are considered as restricted variations, i.e. δα̃1,n =

0, δβ̃1,n = 0, δα̃2,n = 0 and δβ̃2,n = 0. We have

δα1,n(ζ, η) +

∫ η

0

µ1(t)

(
∂

∂t
δα1,n(ζ, t)

)
dt = 0, (4.38)

δβ1,n(ζ, η) +

∫ η

0

µ2(t)

(
∂

∂t
δβ1,n(ζ, t)

)
dt = 0, (4.39)

δα2,n(ζ, η) +

∫ η

0

µ1(t)

(
∂

∂t
δα2,n(ζ, t)

)
dt = 0, (4.40)

δβ2,n(ζ, η) +

∫ η

0

µ2(t)

(
∂

∂t
δβ2,n(ζ, t)

)
dt = 0. (4.41)

By integrating by parts we obtain obtain the stationary conditions as follows:

µ
′

i(t) = 0, 1 + µi(t)|t=η = 0. (4.42)

Now, it can be determined the Lagrange multiplier µ1(t) = µ2(t) = µ3(t) = µ4(t) =
−1. As a consequence, we obtain the following iterations formula:

α1,n+1(ζ, η) = α1,n(ζ, η)−
∫ η

0

(
∂

∂t
α1,n(ζ, t)

−∂
2

∂2
α1,n(ζ, t) + α1,n(ζ, t)β

2
1,n(ζ, t)

)
dt, (4.43)
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β1,n+1(ζ, η) = β1,n(ζ, η)−
∫ η

0

(
∂

∂t
β1,n(ζ, t)

−∂
2

∂2
β1,n(ζ, t)− α1,n(ζ, t)β

2
1,n(ζ, t)

+kβ1,n(ζ, t) + γ(β1,n(ζ, t)− β2,n(ζ, t))) dt, (4.44)

α2,n+1(, η) = α2,n(η)−
∫ η

0

(
∂

∂t
α2,n(ζ, t)

−∂
2

∂2
α2,n(ζ, t) + α2,n(ζ, t)β

2
2,n(ζ, η)

)
dt, (4.45)

β2,n+1(ζ, η) = β2,n(ζ, η)−
∫ η

0

(
∂

∂t
β2,n(ζ, t)−

∂2

∂2
β2,n(ζ, t)

−α2,n(ζ, t)β
2
2,n(ζ, t) + γ(β2,n(ζ, t)− β1,n(ζ, t))

)
dt. (4.46)

5. Numerical Results

In this section, we apply ADM and VIM to evaluate the approximate solutions
of (5)–(8). First applying the recurrence relations (3.16)–(3.19) and the initial
conditions (10)–(13), we obtain the following ADM successive approximations

α1,0(ζ, η) = α1(, 0), (5.1)

α1,1(ζ, η) = η

∞∑
n=1

a1µ
2
n cos

[
(L− 2)

µn

2

]
sin(

nπ

2
)

− η
∞∑

n=1

a1 cos
[
(L− 2)

µn

2

]
sin(

nπ

2
)

( ∞∑
m=1

b1 cos
[
(L− 2x)

µm

2

]
sin(

mπ

2
)

)2

,

(5.2)

β1,0(ζ, η) = β1(, 0), (5.3)

β1,1(ζ, η) = −η
∞∑

n=1

b1µ
2
n cos

[
(L− 2)

µn

2

]
sin(

nπ

2
)− k

∞∑
n=1

b1 cos
[
(L− 2)

µn

2

]
sin(

nπ

2
)

+ η
∞∑

n=1

a1 cos
[
(L− 2)

µn

2

]
sin(

nπ

2
)

( ∞∑
m=1

b1 cos
[
(L− 2)

µm

2

]
sin(

mπ

2
)

)2

.

+ γ
∞∑

n=1

(b2 − b1) cos
[
(L− 2)

µn

2

]
sin(

nπ

2
),

(5.4)

α2,0(, η) = α2(, 0), (5.5)

α2,1(ζ, η) = η
∞∑

n=1

a2µ
2
n cos

[
(L− 2x)

µn

2

]
sin(

nπ

2
)

− η
∞∑

n=1

a2 cos
[
(L− 2)

µn

2

]
sin(

nπ

2
)

( ∞∑
m=1

b2 cos
[
(L− 2)

µm

2

]
sin(

mπ

2
)

)2

,

(5.6)

β2,0(, η) = β2(, 0), (5.7)
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β2,1(ζ, η) = −η
∞∑

n=1

b2µ
2
n cos

[
(L− 2)

µn

2

]
sin(

nπ

2
)

+ η
∞∑

n=1

a2 cos
[
(L− 2x)

µn

2

]
sin(

nπ

2
)

( ∞∑
m=1

b2 cos
[
(L− 2)

µm

2

]
sin(

mπ

2
)

)2

+ γ
∞∑

n=1

(b1 − b2) cos
[
(L− 2)

µn

2

]
sin(

nπ

2
).

(5.8)

Now, we apply the VIM to solve (5)–(8). By taking the same initial values as for
ADM we obtain the successive approximations as follow:

α1,1(ζ, η) = α1,0(, η)−
∫ η

0

(
∂

∂t
α1,0(ζ, t)

−∂
2

∂2
α1,0(ζ, t) + α1,0(ζ, t)β

2
1,0(ζ, t)

)
dt

= α1,0(ζ, η) + η
∂2

∂2
α1,0(ζ, η)− α1,0(ζ, η)β

2
1,0(ζ, η) (5.9)

β1,1(ζ, η) = β1,0(ζ, η)−
∫ η

0

(
∂

∂t
β1,0(ζ, t)

− ∂2

∂x2
β1,0(ζ, t)− α1,0(ζ, t)β

2
1,0(ζ, t)

+kβ1,0(ζ, t) + γ(β1,0(ζ, t)− β2,0(ζ, t))) dt

= β1,0(ζ, η) + η
∂2

∂2
β1,0(ζ, η) + η α1,0(ζ, η)β

2
1,0(ζ, η)

−k ηβ1,0(ζ, η) + η γ(β2,0(ζ, η)− β1,0(ζ, η))) , (5.10)

α2,1(ζ, η) = α2,0(ζ, η)−
∫ η

0

(
∂

∂t
α2,0(ζ, t)

−∂
2

∂2
α2,0(ζ, t) + α2,0(ζ, t)β

2
2,0(ζ, t)

)
dη

= α2,0(, η) + η
∂2

∂2
α2,0(ζ, η)− η α2,0(ζ, η)β

2
2,0(ζ, η), (5.11)

β2,1(ζ, η) = β2,0(ζ, η)−
∫ η

0

(
∂

∂t
β2,0(ζ, t)−

∂2

∂2
β2,0(ζ, t)

−α2,0(ζ, t)β
2
2,0(ζ, t) + γ(β2,0(ζ, t)− β1,0(ζ, t))

)
dη

= β2,0(ζ, η) + η
∂2

∂2
β2,0(ζ, η) + η α2,0(ζ, η)β

2
2,0(ζ, η)

+η γ(β1,0(ζ, η)− β2,0(ζ, η)). (5.12)

After substituting the initial values for α1,0(ζ, η), β1,0(ζ, η), α2,0(ζ, η) and β2,0(ζ, η)
into (5.9)–(5.12), we obtain the first approximation of the VIM which are the same
as the two terms of the ADM for (5)–(8). A comparison between the numerical,
the ADM and the VIM solutions are demonstrated in Figures 1-3 for γ = 0.1, k =
0.01, a1 = 0.1, a2 = 0.2, b1 = 001, b2 = 0.002. Figures 1-3 show the comparison of
the three terms of the ADM solutions and the second approximation of the VIM
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with the numerical solutions using the command NDsolve of MATHEMATICA 9
respectively. It can be seen from Figures 2-3 that the absolute errors obtained
by ADM and VIM are close to each other. The two-terms ADM and the first
approximation by VIM are identical. So the errors for them are of the same order.
In order to get small error, more terms need to be considered for ADM and high
approximation for VIM solutions. Also we show the absolute error of the three
terms of the ADM solutions and the second approximation of the VIM in Tables
1-2. We note when we compare our results via ADM and VIM methods then found
their results show that errors are little less in VIM method. But both methods
are very efficient and accurate that can be used to provide approximate analytical
solutions of partial differential equations. Figures 4-5 show the behaviour of 3-
terms ADM solutions and the second approximation of VIM for (5)–(8) with the
same caption of Figures 1-2.
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Figure 1. The comparison between the 3-terms ADM solutions
, the second approximation by VIM and numerical method using
Mathematica for (5)–(8) with k = 0.01, γ = 0.2, a1 = 0.1, a2 =
0.2, b1 = 0.001, b2 = 0.002. Dashing-tiny for VIM; dashing-large
for ADM ; solid line for numerical using Mathematica
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Figure 2. The absolute error between the 3-terms ADM solu-
tions and numerical method using Mathematica for (5)–(8) with
k = 0.01, γ = 0.2, a1 = 0.1, a2 = 0.2, b1 = 0.001, b2 = 0.002.
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Figure 3. The absolute error between the second approximation
by VIM and the numerical method using Mathematica for (5)–(8)
with k = 0.01, γ = 0.2, a1 = 0.1, a2 = 0.2, b1 = 0.001, b2 = 0.002.
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Figure 4. The 3-terms ADM solutions for (5)–(8) with k =
0.01, γ = 0.2, a1 = 0.1, a2 = 0.2, b1 = 0.001, b2 = 0.002.
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Figure 5. The second approximation by VIM for (5)–(8) with
k = 0.01, γ = 0.2, a1 = 0.1, a2 = 0.2, b1 = 0.001, b2 = 0.002.
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ζ Error for α1 Error for β1 Error for α2 Error for β2
0 1.57914× 10−6 1.57914× 10−6 6.31655× 10−6 6.31655× 10−6

10 8.36053× 10−6 5.12974× 10−4 1.6844× 10−6 4.82716× 10−4

20 1.09907× 10−5 6.93902× 10−4 9.85207× 10−6 6.51928× 10−4

30 4.94389× 10−6 4.90958× 10−4 7.29188× 10−6 4.62038× 10−4

40 2.08871× 10−6 1.32108× 10−4 4.90642× 10−6 1.25168× 10−4

50 2.54392× 10−6 444787× 10−5 5.08785× 10−6 4.34379× 10−5

60 2.08871× 10−6 1.32108× 10−4 4.90642× 10−6 1.25168× 10−4

70 4.94389× 10−6 490958× 10−4 7.29188× 10−6 4.62038× 10−4

80 1.09907× 10−5 6.93902× 10−4 9.85207× 10−6 6.51928× 10−4

90 8.36053× 10−6 5.12974× 10−4 1.6844× 10−6 4.82716× 10−4

100 1.57914× 10−6 1.57914× 10−6 6.31655× 10−6 6.31655× 10−6

Table 1. The absolute error of 3-terms of ADM solutions (3.26)–
(3.29) for k = 0.01, γ = 0.2, a1 = 0.1, a2 = 0.2, b1 = 0.001, b2 =
0.002, L = 100, η = 10.

ζ Error for α1 Error for β1 Error for α2 Error for β2
0 1.57914× 10−6 1.57914× 10−6 6.31655× 10−6 6.31655× 10−6

10 1.21472× 10−5 5.33482× 10−4 1.95407× 10−5 4.6486× 10−4

20 2.62704times10−5 7.31163× 10−4 410388× 10−5 6.20742× 10−4

30 159312× 10−5 5.11833× 10−4 263215× 10−5 4.43008× 10−4

40 4.65652× 10−6 1.34675× 10−4 7.94141× 10−6 1.22133× 10−4

50 2.54392× 10−6 4.44787× 10−5 5.08785× 10−6 4.34379× 10−5

60 4.65652× 10−6 1.34675× 10−4 7.94141× 10−6 1.22133× 10−4

70 1.59312× 10−5 5.11833× 10−4 2.63215× 10−5 4.43008× 10−4

80 262704× 10−5 7.31163× 10−4 4.10388× 10−5 6.20742× 10−4

90 121472× 10−5 5.33482× 10−4 1.95407× 10−5 4.6486× 10−4

100 1.57914× 10−6 1.57914× 10−6 6.31655× 10−6 6.31655× 10−6

Table 2. The absolute error of second VIM solutions (4.43)–
(4.46) for k = 0.01, γ = 0.2, a1 = 0.1, a2 = 0.2, b1 = 0.001, b2 =
0.002, L = 100, η = 10.
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6. Conclusion

In this paper, two powerful techniques, namely ADM and VIM, have been effi-
ciently applied to obtain the approximate solutions for cubic isothermal autocat-
alytic chemical system (CIACS). Unlike many other methods, ADM and VIM are
very simple, as it does not need any discretization. Our results also show that VIM
is superior to ADM in solving CIACS. In fact, two terms of ADM solutions and the
first approximation by VIM are identical. We also sketch some figures which prove
that ADM and VIM solutions are very close to each other. This fact is also clear
in those figures which compare new solutions with numerical results obtained by
Mathematica. Besides the results demonstrate that ADM and VIM are accurate for
solving CIACS, by increasing the number of iterations one can reach any desired
accuracy. Finally, this work confirms that the VIM and ADM are powerful and
efficient methods and also we note that after a few iterations, a symbolic program
is necessary for successive calculations. We have made use of MATHEMATICA 9
to overcome the complicated calculations.
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[24] Y. Ç and Y. Keskin. A. Kurnaz. The solution of the-bagley torvik equation with the gener-

alized taylor collocation method. Journal of the Franklin Institute, 347(2):452–466, 2010.
[25] M. R. Chand and J. R. Kumar. Numerical solutions of nonlinear fisher’s reaction–diffusion

equation with modified cubic b-spline collocation method. Mathematical Sciences, 7(1):12,
2013.

[26] K. M. Saad, O. S. Iyiola and P. Agarwal. An effective homotopy analysis method to solve the

cubic isothermal auto-catalytic chemical system. AIMS Mathematics, 3(1), 183194, 2018.
[27] H. I. Abdel-Gawad, and K. M. Saad. A Chemotherapy-Diffusion Model for the Cancer Treat-

ment and Initial Dose Control. Kyungpook Mathematical Journal, 48(3), 395-410, 2008.
[28] K. M. Saad. Comparing the caputo, CaputoFabrizio and AtanganaBaleanu DerivaTive with

fractional order: fractional cubic isothermal auto-catalytic chemical system. European Phys
J Plus, 133,Article ID 93, 2018.

[29] X. Zhang, P. Agarwal, Z. Liu, et al. Existence and uniqueness of solutions for stochastic
differential equations of fractional-order q > 1 with finite delays, Adv. Differ. Equ-NY, 123

(2017), 1–18.
[30] M. Ruzhansky, Y. J. Cho, P. Agarwal, et al. Advances in Real and Complex Analysis with

Applications, Springer Singapore, 2017.
[31] S. Salahshour, A. Ahmadian, N. Senu, et al. On analytical solutions of the fractional dif-

ferential equation with uncertainty: application to the Basset problem, Entropy, 17 (2015),
885–902.

[32] G. Adomian. A review of the decomposition method in applied mathematics. J. Math. Anal.
Appl., 135:44–501, 1988.

[33] G. Adomian. Solving Frontier Problems of Physics: The Decomposition Method. Kluwer
Academic Publishers, Boston, 1999.

[34] Y. Cherruault. Convergence of adomian’s method. Mathl Comput. Modelling, 14:83–86, 1990.

[35] Y. Cherruault and G. Adomian. Decomposition methods: A new proof of convergence. Math.
Comput. Modelling, 18(12):103–106, 1993.

[36] K. Abbaoui and Y. Cherruault. Convergence of adomian’s method applied to differential
equations. Comput. Math. Appl., 28(5):103–109, 1994.

[37] T. Mavoungou and Y. Cherruault. Convergence of adomian’s method and applications to
non-linear partial differential equation. Kybernetes, 21(6):13–25, 1992.

[38] S. Gh. Hosseini, E. Babolian, and S. Abbasbandy. A new algorithm for solving van der
pol equation based on piecewise spectral adomian decomposition method. Int. J. Industrial

Math., 8(3):177–184, 2106.
[39] J. Biazar, E. Babolian, and R. Islam. Solution of the system of volterra integral equations of

the first kind by adomian decomposition method. Appl. Math. Comput., 139:249–258, 2003.
[40] J. Biazar, E. Babolian, and R. Islam. Solution of the system of ordinary differential equations

by adomian decomposition method. Appl. Math. Comput., 147:713–719, 2004.
[41] Z. Odibat and S. Momani. Numerical methods for nonlinear partial differential equations of

fractional order. Appl. Math. Model., 32(1):28–39, 2008.

[42] M. Javidi A. Golbabai. A spectral domain decomposition approach for the generalized
burgers-fisher equation. Chaos Solitons Fract., 39:385–392, 2009.
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