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DYNAMICS AND CONTROL MEASURES FOR MALARIA

USING A MATHEMATICAL EPIDEMIOLOGICAL MODEL

S. I. ONAH, O. C. COLLINS, C. OKOYE, G. C. E. MBAH

Abstract. Malaria is one of the most prevalent illness globally especially in

the tropic and sub-tropic regions of the world. This work investigates the
transmission dynamics of malaria disease and the different ways the disease

can be controlled by formulating appropriate mathematical epidemiological

model. To evaluate the impacts of control measures, we determine the impor-
tant mathematical features of the model such as the basic reproduction number

and analyze then accordingly. The disease free equilibrium and endemic equi-

librium point of the model were derived and its stability investigated. For
instance, our analysis showed that the disease free equilibrium point is stable

when R0 < 1. Stability analyses of the endemic equilibrium is investigated

using the centre manifold theorem. Numerical simulations were carried out
using realistic parameter values to support our analytical predictions.

1. Introduction

Malaria is an infectious disease caused by the plasmodium parasite and transmit-
ted between humans through the bite of the female Anopheles mosquito. Malaria
can also be spread by other medium such as organ transplants, blood transfusions
and sharing of needles by intravenous drug (IV drugs) users. There are several
species of plasmodium parasites in different parts of the world but there are only
four species of parasite that can cause infections in humans, and they are Plas-
modium Falciparum, Plasmodium Vivax, Plasmodium Malariae, Plasmodium [1].
Malaria infection in human begins with an inoculums of plasmodium parasites from
an infectious Anopheles Mosquito. Malaria shares many characteristics with other
Protozoan parasites, which cause disease such as African Trypanosomiasis and Vis-
ceral Leishmaniasis. However, malaria is most prevalent of these diseases among
humans. In 2002, it was estimated that 2.2 billion people were exposed to the
threat of the most dangerous species, Plasmodium Falciparum. People who live in
the poor areas of the world are more prone to the risk of malaria. These people
constitute above 40 percent of the worlds population. The malaria disease accord-
ing to the WHO 2010 report, is prevalent in the tropic and sub-tropic regions of
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the world [2]. Malaria constitutes the cause of death in different parts of this area
which is about one million annually. Given the human and economic costs of this
disease, there is a great need for eradication through a better understanding on how
to effectively control the spreads of the disease just like some other diseases such as
Ebola, chiken-pox etc that are almost wiped out by effective control intervention
([3], [4]). Therefore in this work, we considered the incidence of malaria, some of
the factors influencing the spread of the disease and how to control it and then
formulate a mathematical model describing the dynamics of malaria.

2. Model Equation

Many approaches have been used in studying the dynamics of malaria disease
([5], [6], [7], [8], [9]). For this paper we consider a mathematical model for malaria
transmission in the form of model by ([10],[11],[12],[13]) and extended the model
by introducing different control measures such as reduction of breeding sites of
mosquito, use of ITNs, prophylactic drugs and treatment.

 

Table 1.0. 

 

Symbols Meaning  𝑁ℎ Total human population 𝜋ℎ Recruited humans 𝜑 Rate of loss of immunity for humans ܵℎ Susceptible humans 𝐼ℎ Infected humans 𝐸ℎ Exposed humans 𝐼ℎ𝑇2  Infected humans treated 𝐼ℎ𝑁 Infected humans not treated ܴℎ Recovered humans ߙℎ Rate of progression from susceptible 

human to exposed human ߚℎ Rate of progression from exposed 

human to infected human ߣଶℎ Rate at which humans are treated ߣଵℎ Rate at which humans are not treated 𝛿 Disease induced death of humans ݐℎ Rate of progression from treated human 

to recovered humans 𝜏ℎ Rate of progression from untreated 

human to recovered humans 𝑐 Campaign strategy for malaria control ߤ Natural death rate of humans ଵܶ Treatment in form of Prophylactic for 

humans ଶܶ Treatment of infected humans with 

drugs 𝑁௠ Total mosquito population 𝜋௠ Recruited mosquito ܵ𝑣 Susceptible class of mosquitoes 𝜖௟ Death of mosquito caused by natural 

death, quest to suck blood and 

insecticides  𝑟 Reduction of breeding sites for 

mosquitoes 𝜏𝑣 Rate of progression from susceptible 

class to exposed class 𝐸𝑣 Exposed class of mosquitoes 𝐼𝑣  Class of mosquitoes that are infective ݑଵ Adherence to awareness program on 

malaria control practices ߣ𝑣 Rate of progression of mosquitoes from 

exposed class to infective class 𝜃௠ℎ Probability of malaria transmission 

from an infectious mosquito to a 

susceptible human, if there is a bite. 𝜃ℎ௠ Probability of malaria transmission 

from an infectious human to a 

susceptible mosquito, if there is a bite. 𝛷 Biting rate of mosquitoes. 
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2.1 FLOW DIAGRAM FOR THE MODEL 
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Considering the assumptions, definitions of state variables and parameters above
and the flow diagram in Fig 2.1, we obtain the system of non-linear differential equa-
tions.
dSh

dt = πh + ϕRh − (1− c)αhSh + T1Eh − µSh
dEh

dt = (1− c)αSh − βhEh − µEh − T1Eh
dIh
dt = βhEh − λ1hIh − λh
dIhN

dt = λ1hIh − (µ+ δ)IhN − τhIhN
dRh

dt = thIhT2 + τhIhN − µRh − ϕRh
dSv

dt = πm − εvSv − (1− r)τvSv
dEv

dt = (1− r)τvSv − εvEv − (1− u1)λvEv
dIv
dt = (1− u1)λvEv − εvIv

where
αh = θmhφIv

Nh
and τv = θhmφIh

Nh

The meaning of variables and parameters are given in Table 1.0. The initial condi-
tions are assumed as follows:
Sh(0) = Sh0, Eh(0) = Eh0, Ih(0) = Ih0, IhN (0) = IhN0, IhT2(0) = IhT20, Rh(0) =
Rh0
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3. Results

In this section, we present the results of the mathematical analyses of the malaria
model.
Theorem 3.1 The solutions of system (2.1) are positive and meaningful for all
t > 0 if they enter the invariant region
Ω = Ωh × Ωm where
Ωh = (Sh, Eh, Ih, IhN , IhT2, Rh) and
Ωm = (Sv, Ev, Iv)
Ω = {(Sh, Eh, Ih, IhN , IhT2, Rh, Sv, Ev, Iv) ∈ R+

9; (Sh, Sv) > 0, (Eh, Ih, Rh, Ev, Iv) ≥
0, Nh ≤ πh

µ ;Nm ≤ πm

εv
}

Therefore, the region Ω is positively invariant (ie. solution remain positive for all
times, t) . So, the model (2.1) is biologically meaningful and mathematically well
posed in the domain Ω

3.1. Disease Free Equilibrium. The disease free equilibrium point of the malaria
model (2.1) is given by, E0 = (St0h , E

t0
h , I

t0
h , I

t0
hN , I

t0
hT2, R

t0
h , S

t0
v , E

t0
v , I

t0
v )

= (πh

µ , 0, 0, 0, 0, 0,
πm

εv
, 0, 0) . . . . . . . 3.1.1

3.2. Basic Reproduction Number (R0). Diekmann et al. [14] defined the basic
reproduction number, R0, as the number of secondary infections that one infectious
individual will create over the duration of the infectious period, provided that
everyone else is susceptible. If the basic reproduction number R0 < 1 it implies that
an infected individual produces an average less than one infected person, and by
that calculation it means that with time the disease will die out from the population.
On the other hand, if R0 > 1, it means that an infected person produces more than
one infected person in the population. For this case, the disease will remain in the
population. Therefore for the disease to die out of the population R?0must be less
than one. The basic reproduction number R0 of the malaria model is the dominant
eigenvalue of the next generation matrix FV −1, where V −1 is the inverse of V and
is given by
R0 =

√
R0hR0m . . . . . . 3.2.3

where
R0h = (1−c)φβhθmhµ

πh(βh+µ+T1)(λ1h+λ2h)

R0m = (1−r)((1−u1)λv)θhmφπm

ε2v(εv+(1−u1)λv)

The value of R0 here is the product of two parameters, since the model is between
two interactions ie. mosquito and human. Therefore, R0 is divided into R0h and
R0m, where R0h is the number of humans, a mosquito bites and transmits malaria
in its lifetime, while R0m signifies the number of susceptible mosquitoes an infected
human infects malaria parasite during its infection period. This is true for all
humans and mosquitoes been susceptible. The bite of mosquito is what determines
the transmission of human to mosquito and vice versa, that is why the quantity F
appeared in the both expressions above. The basic reproduction number can be
useful in investigating the stability of the disease free equilibrium point.

3.3. Local Stability of the Disease Free Equilibrium. The local stability of
the disease-free equilibrium is summarized in the Theorem below.
Theorem 3.2
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The disease free equilibrium point for system (2.1) is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1
We can show that the determinants of the Hurwitz matrices are positive, then by
implication all eigenvalues of the Jacobian matrices have negative real part when
R0 < 1, [15]. Thus, disease-free equilibrium is stable provided R0 < 1. The
epidemiological implication of this is that the disease can be eradicated from the
population in the presence of control measures provided R0 < 1. On the other hand,
if R0 > 1, we obtain that all the roots of the polynomial cannot have negative
real parts. Therefore, the disease-free equilibrium point is unstable if R0 > 1.
In this case the epidemiological implication is that the disease will persist in the
population. Consequently, it will be difficult to completely eradicate the disease
from the population when R0 > 1 since the average transmission is greater than
one.

3.4. Endemic Equilibrium Point. The endemic equilibrium (EEP) of the model
is given by
EEP = (Seh, E

e
h, I

e
h, I

e
hN , I

e
hT2, R

e
h, S

e
v , E

e
v , I

e
v)......3.2.4

where
Iev =

(1−u1)λvE
e
v

εv
, Eev =

(1−r)θhmφI
e
hE

e
v

Nh(εv+(1−u1)λv)
, follows that Iev =

((1−u1)λv)(1−r)θhmφI
e
hS

e
v

εvNh(εv+(1−u1)λv)

but Sev = πmNh

(1−r)θhmφIeh+εvNh
therefore Iev =

εv((1−u1)λv)(1−r)θhmφI
e
hπm

ε2v(εv+(1−u1)λv)((1−r)θhmφIh+εvNh)
=

R0mεvI
e
h

(1−r)θhmφIh+εvNh
since R0m = (1−r)((1−u1)λv)θhmφπm

ε2v(εv+(1−u1)λv)

Also Eeh =
(λ1h+λ2h)I

e
h

βh
, Seh =

µ(1−r)θhmφI
e
h+εvπh

R2
0εvµ

, Reh =
thI

e
hT2+τhI

e
hN

µ+ϕ where IehN +

IehT2 = Ieh, thenReh =
(th+τh)I

e
h

µ+ϕ , it implies that Ieh = −B+
√
B2−4AC
2A =

√
B2−4AC−B

2A =

φ, Ieh ≥ 0
Substituting accordingly, we have the following:
Theorem 3.3
The malaria model (2.1) has,

(1) Precisely one unique endemic equilibria if C < 0 ⇐⇒ R0 > 1.
(2) Precisely one unique endemic equilibria if B < 0andC = 0orB2−4AC = 0.
(3) Precisely two unique endemic equilibria if C > 0, B < 0andB2 − 4AC > 0.
(4) No endemic equilibria otherwise.

3.5. Local Stability of the Endemic Equilibrium. There are many methods
of investigating the stability of a system, such as the geometric approach Li and
Muldowney [16] and the use of Lyapunov function ([17],[18],[19]). In this work we
consider the Centre Manifold Theorem as described in Castillo Chavez and Song
[20] and the results of our stability analyses is summarized in the Theorem below.
Theorem 3.4
The model (4.2.1) has a unique endemic equilibrium which is locally asymptotically
stable when R0 > 1 and unstable when R0 < 1.

4. Numerical Simulation

This section we consider numerical simulations to investigate the dynamics of
the malaria disease in both the human and mosquito population. The effect of the
control measures on human and mosquito at different phases in the transmission
process is also investigated numerically. Parameter values used in the simulations
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and their reference are given in Table 4.2.

 

Table 2.1:  

 

PARAMET

ER 

VALUE REFERENCES 𝜋ℎ 0.03914 Silva & Torres 

[12] 𝜑 0.0146 Chitnis  et al.  [10] 0.000039 ߤ

14 

Silva & Torres 

[12] 𝛽ℎ 0.08333 Chitnis et al. [11] ݐℎ 0.25 Silva & Torres 

[12] 𝜏ℎ 0.003704 Chitnis  et al.  [10] 𝑐 0.50 Estimated 𝑇ଵ 0.02 Estimated ߣଵℎ 0.0723 Estimated ߣଶℎ 0.0533 Estimated 𝛿 0.001 Silva & Torres 

[12] 𝜋𝑚 0.4 Chitnis  et al.  [10] 𝜏𝑣 0.09091 Chitnis  et al.  [10] ߣ𝑣 0.1 Chitnis  et al.  [10] 𝜖𝑣 0.04762 Silva & Torres 

[12] 𝑟 0.15 Estimated ݑଵ 0.75 Estimated 𝜃ℎ𝑚 0.020 Chitnis  et al.  [10] 𝜃𝑚ℎ 0.0833 Chitnis  et al.  [10] 𝛷 0.4 Chitnis  et al.  [10] 

 

The basic reproduction number R0 obtained using this parameter values is less
than unity. This means that malaria can be eradicated from the population with
time for this parameter value since R0 < 1.

 

Figure 2.2: Plot illustrating the long term dynamics of the state variables of the malaria model 

with time. 
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Figure 2.3: Plot illustrating the impact of control strategy  on the 𝑆ℎሺ𝑡ሻ,  𝐸ℎሺ𝑡ሻ  and  𝐼ℎሺ𝑡ሻ,  for 

various values of  𝑐. 
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Figure 2.4: : Plot illustrating the impact of prophylactic treatment on the ࡿ𝒉ሺ𝒕ሻ,  𝑬𝒉ሺ𝒕ሻ  and  𝑰𝒉ሺ𝒕ሻ,   for various values of  𝟏ࢀ   
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Figure 2.5: Plot showing impact of use of insecticides on the  𝐸𝑣ሺݐሻ  and  𝐼𝑣ሺݐሻ  for various 

values of  1ݑ. 
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5. Conclusion

We have investigated the transmission dynamics and control of malaria infection
using a mathematical epidemiological model. We computed the basic reproduction
number R0 for the model and showed that if R0 < 1, the disease cannot persist in
the population and when R0 > 1 the disease persists. Our analyses revealed that
the disease free equilibrium of the model is stable when R0 < 1. Epidemiologically,
this results implies that malaria disease can be eradicated from the population
using control measures provided that R0 < 1. On the other hand, when R0 > 1, we
discovered using center manifold theorem that the endemic equilibrium is stable.
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Next, we considered numerical simulation to gain deeper understanding on the
dynamics and control of malaria disease. The results of our simulations revealed
the following: (i) Fig. 4.1 shows the long term dynamics of the malaria model
with time. From this figure we discovered that each of the disease state variables
decreases for the basic reproduction number less than unity. This suggests that
the control measure have some influence in reducing the spread of the disease.
(ii) Fig. 4.2 illustrates the impact of control strategy, on the susceptible, exposed
and infectious humans. From the plot it can be seen that an increase in c leads
to a decrease in exposed and infected population and an increase in susceptible
population. This implies that control strategy reduces the rate at which humans
are exposed to malaria and the rate at which humans become infectious. (iii) Fig.
4.3 illustrates the impact of treatment in form of prophylactic drugs (T1) on the
susceptible, exposed and infectious human. From the figure we discovered that
an increase in T1 results to a decrease in exposed and infected population with
an increase in susceptible population. Thus, this shows that prophylactic drugs
reduce the rate at which human population becomes exposed or infectious. (iv)Fig.
4.4 illustrates the impact of adherence to mosquito control strategies (u1) such as
sleeping under treated nets, use of insecticides etc. For this figure, we discovered
that an increase in u1 leads to a decrease in exposed and infectious mosquitoes
population respectively. It is also important to highlights some effects of pesticides
on our environment and on our body, Pesticides can contaminate soil, water, turf,
and other vegetation. In addition to killing insects or weeds, pesticides can be toxic
to a host of other organisms including birds, fish, beneficial insects, and non-target
plants. Its Oral exposure can contaminate the foods or water containing we drink.
Its exposure can cause irritation or burns. In more serious cases, your skin can
absorb the pesticide into the body, causing other health effects. But if well handled,
the pesticide could be of great advantage to curbing the malaria disease. Thus,
increasing the reduction of mosquito breeding sites, malaria control strategy in form
of spraying of insecticides reduces infectious mosquitoes and exposed mosquitoes.
It means that if the breeding sites of mosquitoes are reduced and insecticides are
well sprayed, it will go a long way to eradicate the vector in the population. All
our findings using the malaria model agree with intuitive expectation. Thus, our
model can be used to study and make predictions of future dynamics of malaria in
any community where the disease is endemic.
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