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SOLUTIONS FOR SINGULAR KIRCHHOFF PROBLEM

INVOLVING CRITICAL NONLINEARITY

H. BENCHIRA, A. MATALLAH AND S. GUENDOUZ

Abstract. This paper deals with a class of singular Kirchhoff problem in-

volving a critical nonlinearity. The existence and multiplicity of solutions for

this problem are obtained by the variational methods.

1. Introduction

In this paper, we are concerned with the existence and multiplicity of solutions
to the following Kirchhoff problem with the critical Sobolev exponent

(Pλ)

 −M(‖u‖2µ)

(
∆u+ µ

u

|x|2

)
= u5 + λg (x) in R3

u ∈ Hµ

(
R3
)
,

where M(t) = at+ b, a and b are two positive constants, λ is a positive parameter,

µ < 1/4, ‖u‖2µ =
∫
R3(|∇u|2 − µ u2

|x|2
)dx is the norm in Hµ

(
R3
)

and g belongs to

H−1
(
R3
)
, (H−1

(
R3
)

is the dual of Hµ

(
R3
)
).

Such problems are frequently called nonlocal because the function M contains
an integral over the domain R3 which implies that the equation in (Pλ) is no longer
a pointwise identity.

The original one-dimensional Kirchhoff equation was first introduced by Kirch-
hoff [11] in 1883, he take into account the changes in length of the strings produced
by transverse vibrations.

The problem (Pλ) is also related to the stationary analogue of the following
evolutionary higher order problem which can been considered as an extension of
the classical D’Alembert wave equation for free vibrations of elastic strings: utt − (a

∫
Ω
|∇u|2 dx+ b)4 u = h(x, u) in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x), ut(x, 0) = u1(x),
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where Ω ⊂ RN is an open bounded domain (N ≥ 1), T is a positive constant, u0,

u1 are given functions. In such problems, u denotes the displacement, h(x, u) the
external force, b is the initial tension and a is related to the intrinsic properties of
the strings (such as Young’s modulus). For more details, we refer the readers to
the works [3], [4] and the references therein.

It is well known that the Kirchhoff type problem has mechanical and biologi-
cal motivations; for example when an elastic string with fixed ends is subjected
to transverse vibrations. They also serve as model in biological systems where u
describes a process depending on the average of itself as population density. The
presence of the nonlocal term makes the theorical study of these problems so diffi-
cult, then they have attracted the attention of many researchers in particular after
the work of Lions [12], where a functional analysis approach was proposed to attack
them.

In recent years, the existence and multiplicity of solutions for stationary problems
of Kirchhoff type were also investigated in some papers, via variational methods like
the Ekeland variational principle and the Mountain Pass Theorem. Some interesting
results in bounded domains can be found in [1, 5, 7, 9, 14, 15].

In the regular case and in the unbounded domain RN , some earlier classical
investigations of the following Kirchhoff equations

(PV,g)
{
−M

(∫
RN |∇u|

2dx
)

∆u+ V (x)u = g(x, u) in RN

have been done, where N ≥ 3, M(t) = at + b, a > 0, b is a positive con-
stants, V ∈ C

(
RN ,R

)
and g ∈ C

(
RN × R, R

)
is subcritical and satisfies suf-

ficient conditions to ensure the boundedness of any Palais Smale or Cerami se-
quence. Such problems become more complicated since the Sobolev embedding(
H1(RN ), ‖.‖

)
↪→
(
Lp
(
RN
)
, |.|p

)
is not compact for all p ∈ [2, 2∗ (N)], where

‖u‖ =
(∫

RN |∇u|
2dx
)1/2

is the standard norm in H1
(
RN
)
, |u|p =

(∫
RN |u|

pdx
)1/p

is the norm in Lp
(
RN
)

and 2∗ (N) is the critical Sobolev exponent.
To overcome the lack of compactness of the Sobolev embedding, many authors

imposed some conditions on the potential function V (x) for example in [18], Wu
used the following assumption:

(∗) inf
RN

V (x) ≥ c > 0 and for all d > 0; meas
{
x ∈ RN : V (x) ≤ d

}
<∞,

to show the existence of nontrivial solutions to (PV,h). On the other hand, Chena
and Li in [8] studied (PV,g) where g(x, u) = h (x, u)+k (x), h satisfies the Ambrosetti–
Rabinowitz type condition, k ∈ L2

(
R3
)

and V verifies (∗). They proved the ex-
istence of multiple solutions by using Ekeland’s variational principle [10] and the
Mountain Pass Theorem [2]. Recently, Li et al. [13] studied (PV,g) where V ≡ 0,
they proved the existence of a constant a0 > 0 such that (P0,g) admits a positive
solution for all a ∈ (0, a0).

However, from the results mentioned above, there are very few existence results
for singular nonlocal type problems (when µ > 0) in particular for those who contain
singularity in the diverge operator. This is a more difficult and interesting situation
comparing with the regular case (when µ = 0). Moreover, the main difficulties in
such problem appear in the fact that for nonlocal problems with critical exponent,
to overcome the lack of compactness, we need to determine a good level of the
Palais-Smale and have to verify that the critical value is contained in the range of
this level.
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The main result of this paper is given in the following theorems.
Theorem 1 . Let a > 0, b > 0, µ < 1/4 and g 6≡ 0. Then there exists Λ1 > 0 such
that problem (Pλ) has at least one nontrivial solution for any λ ∈ (0,Λ1) .
Theorem 2 . Let a > 0, b > 0, µ < 1/4 and g 6≡ 0. Then there exists Λ2 > 0
with Λ2 ≤ Λ1 such that problem (Pλ) has at least two nontrivial solutions for any
λ ∈ (0,Λ2) .

Here we give a brief sketch of the way how we get two distinct critical points
of the energy functional. First, we minimize the functional in a neighborhood of
zero and use the Ekeland variational principle to find the first critical point which
achieves a local minimum. Moreover, the level of this local minimum is negative.
Next around the zero point, using the Mountain Pass Theorem we also obtain a
critical point whose level is positive.

This paper is organized as follows. In Section 2, we give some notations and
technical results which allow us to give a variational approach of our main results
that we prove in Section 3.

2. Auxiliary results

To start this section, we need to introduce the following notation.
||.||− denotes the norm in H−1

(
R3
)
, Bρ is the ball centred at 0 and of radius ρ,

and ◦n (1) denotes ◦n (1)→ 0 as n→∞.

Define the constant

Sµ := inf

{∫
R3

(
|∇u|2 − µ u2

|x|2

)
dx; u ∈ Hµ

(
R3
)
,

∫
R3

u6dx = 1

}

It is well known that the embedding
(
Hµ(R3), ‖.‖µ

)
↪→
(
L6
(
R3
)
, |.|p

)
is con-

tinuous but not compact and Sµ is achieved by a family of functions

Uε (x) =

[
12ε

(
1
4 − µ

)] 1
4[

ε |x|1−2
√

1
4−µ + |x|1+2

√
1
4−µ

] 1
2

, ε > 0,

see [17]. Moreover, there holds

∆Uε + µ
Uε

|x|2
= U5

ε in R3/ {0} ,

and ∫
R3

(
|∇Uε|2 − µ

U2
ε

|x|2

)
dx =

∫
R3

U6
ε dx = S

3
2
µ .

Since our approach is variational, we define the energy functional associated to the
problem (Pλ) by

Iλ(u) =
a

4
||u||4µ +

b

2
||u||2µ −

1

6
|u|66 − λ

∫
R3

gu dx, for all u ∈ Hµ

(
R3
)
.

It is clear that Iλ is well defined in Hµ

(
R3
)

and belongs to C1
(
Hµ

(
R3
)
,R
)
.

u ∈ Hµ

(
R3
)

is said to be a weak solution of problem (Pλ) if it satisfies
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(
a||u||2µ + b

) ∫
R3

(
∇u∇ϕ− µ uϕ

|x|2

)
dx−

∫
R3

(
u5ϕ− λgϕ

)
dx = 0, ∀ ϕ ∈ Hµ

(
R3
)
.

We recall the following standard definitions.
Definition 1. Let c ∈ R, a sequence (un) ⊂ Hµ

(
R3
)

is called a Palais Smale
sequence ((PS)c sequence for short), if

Iλ (un)→ c and I ′λ (un)→ 0 in H−1
(
R3
)

as n→∞. (1)

Definition 2. Let c ∈ R. We say that Iλ satisfies the Palais Smale condition at
level c, if any (PS)c sequence contains a convergent subsequence in Hµ

(
R3
)
.

In order to prove our main result, we give the following lemmas.
Lemma 1. Let (un) ⊂ Hµ

(
R3
)

be a (PS)c sequence of Iλ for some c ∈ R. Then

un ⇀ u in Hµ

(
R3
)

for some u with I ′λ (u) = 0.
Proof . By (1) we get

c+ ◦n (1) = Iλ (un)− 1

6
〈I ′λ (un) , un〉

≥ a

12
||un||4µ +

b

3
||un||2µ − λ

5

6
‖g‖− ‖un‖µ .

Then (un) is bounded in Hµ

(
R3
)
. Up to a subsequence if necessary, we obtain

un ⇀ u in Hµ

(
R3
)
, un ⇀ u in L6

(
RN
)

and un → u a.e. in RN ,

then 〈I ′λ (un) , ϕ〉 = 0 for all ϕ ∈ C∞0
(
RN
)
, which means that I ′λ (u) = 0. �

Lemme 2. There exist positive constants Λ1, ρ1 and δ1 such that for all λ ∈ (0,Λ1)
we have

Iλ (u)|∂Bρ1 ≥ δ1 and Iλ (u)|Bρ1 ≥ −
λ3/2

2
‖g‖2− .

Proof . Let u ∈ Hµ

(
R3
)
\ {0} and ρ = ‖u‖µ . Then by the Sobolev and Hölder

inequalities, we have

Iλ(u) ≥ a

4
ρ4 +

b

2
ρ2 − 1

6S3
µ

ρ6 −
(
λ3/4 ‖g‖−

)(
λ1/4ρ

)
,

On the other hand, by applying the inequality αβ <
α2

2
+
β2

2
for any α, β > 0 we

get

Iλ(u) ≥ a

4
ρ4 +

b− λ1/2

2
ρ2 − 1

6S3
µ

ρ6 − λ3/2

2
‖g‖2− ,

≥ a

4
ρ4 − 1

6S3
µ

ρ6 − λ3/2

2
‖g‖2− , for all λ ≤ b2.

Let

Ψ (ρ) =
a

4
ρ4 − 1

6S3
µ

ρ6,

direct calculation shows that

Ψ (ρ) ≥ 0 for all ρ ≤ ρ1 with ρ1 =

(
3

2
aS3

µ

)1/2

,
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from this and for all λ ≤ b2, we immediately derive that

Iλ (u)|Bρ1 ≥ −
λ3/2

2
‖g‖2− ,

and also

Iλ (u)|∂Bρ1 ≥
Ψ (ρ1)

2
for all λ ≤

(
Ψ (ρ1)

‖g‖2−

)2/3

.

Taking

Λ1 = min

b2,
(

Ψ (ρ1)

‖g‖2−

)2/3
 and δ1 =

Ψ (ρ1)

2
,

the conclusion holds. �
Lemma 3. Let (un) ⊂ Hµ

(
R3
)

be a (PS)c sequence of Iλ for some c ∈ R such

that un ⇀ u in Hµ

(
R3
)
. Then

either un → u or c ≥ Iλ (u) + C∗,

where C∗ =
ab

4
S3
µ +

a3

24
S6
µ +

(
a2

24
S3
µ +

b

6

)(
a2S6

µ + 4bS3
µ

)1/2
.

Proof . By the proof of Lemma 1 we have (un) is a bounded sequence in Hµ

(
R3
)
,

furthermore, if we write vn = un − u; we derive that vn ⇀ 0 in Hµ, then by
Brezis-Lieb Lemma [6] we have

‖un‖2µ = ‖vn‖2µ + ‖u‖2µ + on(1) and |un|66 = |vn|66 + |u|66 + on(1). (2)

Using together (1) and (2) , we get

c+ on(1) = Iλ(u) +
a

4
‖vn‖4µ +

b

2
‖vn‖2µ +

a

2
‖vn‖2µ ‖u‖

2
µ −

1

6
|vn|66 ,

and

on(1) = a ‖vn‖4µ + b ‖vn‖2µ + 2a ‖vn‖2µ ‖u‖
2
µ − |vn|

6
6 . (3)

Therefore,

c+ on(1) = Iλ(u) +
a

12
‖vn‖4µ +

b

3
‖vn‖2µ +

a

6
‖vn‖2µ ‖u‖

2
µ (4)

Assume that ‖vn‖ → l > 0, then by (3) and the Sobolev inequality we obtain

S−3
µ l6 ≥ al4 + bl2,

this implies that

l2 ≥ a

2
S3
µ +

1

2
Sµ
(
a2S4

µ + 4Sµb)
)1/2

.

From the above inequality and (4) we conclude

c ≥ Iλ(u) +
a

12
l4 +

b

3
l2

≥ Iλ(u) +
ab

4
S3
µ +

a3

24
S6
µ +

(
a2

24
S3
µ +

b

6

)(
a2S6

µ + 4bS3
µ

)1/2
.

This finishes the proof of lemma 3. �
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3. Proof of the main results

3.1. Proof of Theorem 1. First, by Lemma 2 we define

c1 = inf
{
Iλ (u) ; u ∈ B̄ρ1

}
.

Since g 6≡ 0, we can choose Φ ∈ C∞0
(
R3\ {0}

)
such that

∫
R3 gΦ dx > 0. Hence,

there exists t0 > 0 small enough such that ‖t0Φ‖µ < ρ1 and

Iλ(t0Φ) =
a

4
t40 ‖Φ‖

4
µ +

b

2
t20 ‖Φ‖

2
µ −

t60
6
|Φ|66 − λt0

∫
R3

gΦ dx < 0,

which implies that c1 < 0 = Iλ(0). Using the Ekeland variational principle, for
the complete metric space B̄ρ1 with respect to the norm of Hµ

(
R3
)
, we obtain

that there exists a (PS)c1 sequence (un) ⊂ B̄ρ1 such that un ⇀ u1 in Hµ

(
R3
)

for

some u1 with ‖u1‖µ ≤ ρ1. Assume that un 9 u1 in Hµ

(
R3
)
, then it follows from

Lemma 3 that

c1 ≥ Iλ (u1) + C∗ > c1,

which is a contradiction. Thus u1 is a nontrivial solution of (Pλ) with negative
energy.

3.2. Proof of Theorem 2. The existence of the second solution follows immedi-
ately from the following lemma.
Lemma 4. Let Λ2 > 0 such that

−λ
3/2

2
‖g‖2− + C∗ > 0, ∀λ ∈ (0,Λ2).

Then there exist uε ∈ Hµ

(
R3
)

and 0 < Λ∗ ≤ Λ2 such that

sup
t≥0

Iλ(tuε) < c1 + C∗, for all λ ∈ (0,Λ∗).

Proof . Since g 6≡ 0, we can choose ε > 0 and uε (x) = ±Uε (x) such that∫
R3

gUεdx > 0.

We consider the functions

Φ1(t) =
at4

4
‖uε‖4µ +

bt2

2
‖uε‖2µ −

t6

6
|uε|66 .

and

Φ2(t) = Φ1(t)− λt
∫
R3

guε dx.

So, for all λ ∈ (0,Λ2) we have

Φ2(0) = 0 < − 5

24
λ2 ‖g‖− + C∗.

Hence, by the continuity of Φ2(t), there exists t1 > 0 small enough such that

Φ2(t) < − 5

24
λ2 ‖g‖− + C∗ for all t ∈ (0, t1) .
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On the other hand, the function Φ1(t) attains its maximum at

tε =

a ‖uε‖4µ +
(
a2 ‖uε‖8µ + 4b ‖uε‖2µ |uε|

6
6

)1/2

2 |uε|66


1/2

.

From the definition of Sµ we have

at4ε
4
‖uε‖4µ =

a

4
‖uε‖4µ

a ‖uε‖4µ +
(
a2 ‖uε‖8µ + 4b ‖uε‖2µ |uε|

6
6

)1/2

2 |uε|66


2

=
a

16

a ‖uε‖6µ
|uε|66

+

[
a2 ‖uε‖12

µ + 4b ‖uε‖6µ |uε|
6
6

|uε|12
6

]1/2
2

=
a

16

[
aS3

µ +
[
a2S6

µ + 4bS3
µ

]1/2]2
=

a3

8
S6
µ +

ab

4
S3
µ +

a2

8

(
a2S12

µ + 4bS9
µ

)1/2
.

Similarly, we obtain

bt2ε
2
‖uε‖2µ =

ab

4
S3
µ +

b

4

(
a2S6

µ + 4bS3
µ

)1/2
,

and
t6ε
6
|uε|66 =

a3

12
S6
µ +

ab

4
S3
µ +

1

12

(
a2S3

µ + b
) (
a2S6

µ + 4bS3
µ

)1/2
.

By the above estimates, we deduce that sup
t≥0

Φ1(t) ≤ C∗.

On the other hand, using Lemma 2 we see that

c1 ≥ −
λ3/2

2
‖g‖2− for all λ ∈ (0,Λ1),

furthermore

c1 > −t1λ
∫
R3

guεdx if λ < 4

(
t1

∫
R3

guε dx

)2

/ ‖g‖4− .

Taking Λ∗ = min
{

Λ2, 4
(
t1
∫
R3 guε dx

)2
/ ‖g‖4−

}
, then we deduce that

sup
t≥0

Iλ(tuε) < c1 +C∗ for all λ ∈ (0,Λ∗) . �

Note that Iλ(0) = 0 and Iλ(Tuε) < 0 for T large enough, also from Lemma 2,
we know that

Iλ (u)|∂Bρ1 ≥ δ1 > 0 for all λ ∈ (0,Λ1).

Then, by the Mountain Pass Theorem, there exists a (PS)c2 sequence, where

c2 = inf
γ∈Γ

max
t∈[0,1]

Iλ (γ (t)) ,

with

Γ =
{
γ ∈ C([0, 1] , Hµ

(
R3
)
), γ(0) = 0 and γ(1) = Tuε

}
.
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Using Lemma 1 we have (un) has a subsequence, still denoted by (un), such that
un ⇀ u2 in Hµ

(
R3
)
, for some u2. Furthermore, we know by Lemma 4 that

sup
t≥0

Iλ(tuε) < c1 + C∗, for all λ ∈ (0,Λ∗),

then from Lemma 3 we deduce that un → u2 in Hµ

(
R3
)
. Thus we obtain a critical

point u2 of Iλ satisfying Iλ (u2) > 0.
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