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ON SOLUTIONS OF THE RECURSIVE EQUATIONS

xn+1 = xpn−1/x
p
n (p > 0) VIA FIBONACCI-TYPE SEQUENCES

ÖZKAN ÖCALAN AND OKTAY DUMAN

Abstract. In this paper, by using the classical Fibonacci sequence and the

golden ratio, we first give the exact solution of the nonlinear recursive equation
xn+1 = xn−1/xn with respect to certain powers of the initial values x−1 and

x0. Then we obtain a necessary and sufficient condition on the initial values

for which the equation has a non-oscillatory solution. Later we extend our
all results to the recursive equations xn+1 = xpn−1/x

p
n (p > 0) in a similar

manner. We also get a characterization for unbounded positive solutions. At

the end of the paper we analyze all possible positive solutions and display some
graphical illustrations verifying our results.

1. Introduction

We consider the following second order nonlinear recursive equation

xn+1 =
xn−1
xn

, n = 0, 1, · · · , (1)

with any nonzero initial values x−1 and x0. We should note that this equation
and its generalization have been studied extensively (see, for instance, [1, 4, 5, 6,
8, 9, 11]). However, to the best of our knowledge, there is no information in the
literature about the exact solution of Eq. (1). In this paper, we find an interesting
connection between the exact solution of Eq. (1) and the classical Fibonacci se-
quence. This connection enables us to obtain necessary and sufficient condition for
a non-oscillatory positive solution of Eq. (1), which are convergent monotonically
to the equilibrium point 1. Later, we extend our all results to solutions of the
following nonlinear recursive equations

xn+1 =

(
xn−1
xn

)p

, p > 0 and n = 0, 1, · · · , (2)

with any nonzero initial values x−1 and x0. For recent improvements about (2),
see the papers [2, 3, 7, 10, 12, 13].

We first recall some basic concepts used in the paper. For all other details, we
refer the book by Grove and Ladas [9] (see also [10]).
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A difference (recursive) equation of order (k + 1) is an equation of the form of

xn+1 = F (xn, xn−1, · · · , xn−k) , n = 0, 1, · · · , (3)

where F is a continuous function mapping some set Jk+1 into J. The set J is
usually an interval of real numbers, or a union of intervals. A solution of Eq. (3)
is a sequence {xn}∞n=−k satisfying (3) for all n = 0, 1, · · · . If we prescribe a set of
(k + 1) initial conditions x−k, x−k+1, · · · , x0 ∈ J, then we can write

x1 = F (x0, x−1, · · · , x−k) ,

x2 = F (x1, x0, · · · , x−k+1) ,

· · ·

which enables the existence of the solution {xn}∞n=−k uniquely determined by the
initial conditions. A solution of Eq. (3) which is constant for all n ≥ −k is said
to be an equilibrium solution of (3). If xn = x̄ for all n ≥ −k is an equilibrium
solution of (3), then x̄ is called an equilibrium point.

A positive semi-cycle of a solution {xn}∞n=−k of Eq. (3) consists of a string of
terms {xl, xl+1, · · · , xm}, all greater than or equal to x, with l ≥ −k and m ≤ ∞
and such that

either l = −k or l > −k and xl−1 < x

and

either m =∞ or m <∞ and xm+1 < x.

A negative semi-cycle of {xn}∞n=−1 of Eq. (3) consists of a string of terms
{xl, xl+1, · · · , xm}, all less than x, with l ≥ −k and m ≤ ∞ and such that

either l = −k or l > −1 and xl−1 ≥ x

and

either m =∞ or m <∞ and xm+1 ≥ x.

Finally, a solution {xn}∞n=−k of Eq. (3) is said to be non-oscillatory about x̄ if
there exists N ≥ −k such that

either xn > x for all n ≥ N

or

xn < x for all n ≥ N.

Otherwise, {xn}∞n=−k is called oscillatory about x̄.
Our strategy for this paper is as follows:

• In Section 2, we get the exact solution of (1) by means of the Fibonacci
sequence and the golden ratio, and obtain a necessary and sufficient condi-
tion on the initial values x−1 and x0 for which Eq. (1) has a non-oscillatory
solution.
• In Section 3, we extend our all results to the solutions of Eq. (2). We also

get a characterization for unbounded positive solutions.
• In the last section, we analyze all possible positive solutions and display

some graphical illustrations verifying our results.
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2. Non-Oscillatory Solutions of Eq. (1)

We first obtain the exact solution of Eq. (1) with the help of the classical
Fibonacci sequence defined by{

fn+2 = fn + fn+1, n = 0, 1, 2, · · ·
f0 = 1 and f1 = 1.

(4)

It is easy to check that

fn =
ϕn+1
1 − ϕn+1

2√
5

, n = 0, 1, 2, · · · , (5)

where

ϕ1 =
1 +
√

5

2
(the golden ratio),

ϕ2 =
1−
√

5

2
Then we get the following result.

Theorem 1. For any nonzero initial values x−1 and x0, the exact solution of Eq.
(1) is

xn =



x
fn−1

−1

xfn0
, if n = 1, 3, 5, · · ·

xfn0

x
fn−1

−1
, if n = 2, 4, 6, · · · ,

(6)

where fn is the n-th Fibonacci number given by the formula (5).

Proof. Consider (1) by taking n = 0, 1, 2, · · · as follows:

n = 0⇒ x1 =
x−1
x0

n = 1⇒ x2 =
x0
x1

=
x20
x−1

,

n = 2⇒ x3 =
x1
x2

=
x−1/x0
x20/x−1

=
x2−1
x30

,

n = 3⇒ x4 =
x2
x3

=
x20/x−1
x2−1/x

3
0

=
x50
x3−1

,

· · ·
If we continue this process and also consider (4), then the solution in (6) immedi-
ately follows from a simple induction. �

Now we need the following well-known properties of the Fibonacci numbers:

lim
n→∞

fn
fn−1

= ϕ1 (7)

and
f2n−1
f2n−2

< ϕ1 <
f2n
f2n−1

, n = 1, 2, 3, · · · , (8)

where ϕ1 is the golden ratio as stated before.
The next result is a special case of Lemma 4.4 in [9, p. 78] (see also [1]).
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Lemma 1. If {xn}∞n=−1 is a positive solution of Eq. (1) which consists of a single
semi-cycle, then {xn}∞n=−1 converges monotonically to the equilibrium point x = 1.

Now, we are ready to study the semi-cycle analysis of Eq. (1).

Theorem 2. For Eq. (1) , the following statements hold true:

(i) A positive solution of Eq. (1) consists of a single positive semi-cycle if and
only if

x0 ≥ 1 and x−1 = xϕ1

0 . (9)

(ii) A positive solution of Eq. (1) consists of a single negative semi-cycle if and
only if

0 < x0 < 1 and x−1 = xϕ1

0 . (10)

Furthermore, in both cases, the solution {xn} converges monotonically to 1.

Proof. From the similarity, we just prove (i).
Necessary. Assume that a positive solution of Eq. (1) consists of a single positive
semi-cycle, which means that {xn} is a non-oscillatory solution. From (6), we may
write that

x
fn−1

−1 ≥ xfn0 for n = 1, 3, 5, · · ·
and

xfn0 ≥ x
fn−1

−1 for n = 2, 4, 6, · · ·
Then, we get

x
fn/fn−1

0 ≤ x−1 for n = 1, 3, 5, · · ·
and

x
fn/fn−1

0 ≥ x−1 for n = 2, 4, 6, · · ·
Taking limit as n → ∞ on the both sides of the last inequalities and using the
property (7), we observe that

x−1 = xϕ1

0 .

And also, from the assumption, it must be x0 ≥ 1. Hence, the proof of (9) is
completed.
Sufficiency. Assume that (9) holds. Then, it follows from (6) that, for n =
1, 2, 3, · · · ,

x2n−1 = x
ϕ1f2n−2−f2n−1

0

and

x2n = x
f2n−ϕ1f2n−1

0 .

Using the property (8) we get

xn ≥ 1 for n = 1, 2, 3, · · · .

And, from the assumption, x0 ≥ 1 and x−1 ≥ 1, we see that xn ≥ 1 for all n ≥ −1.
Furthermore, Lemma 1 implies that the solution in (i) converges decreasingly to 1.
Therefore, the proof is completed. �

Remark 1. From Lemma 1 and Theorem 2, we can say that Eq. (1) has a positive
non-oscillatory solution which is convergent to 1 if and only if x0 > 0 and x−1 =
xϕ1

0 .
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3. Non-Oscillatory Solutions of Eq. (2)

For a given p > 0, define the Fibonacci-type sequences as follows:{
fn+2(p) = p (fn(p) + fn+1(p)) , n = 0, 1, 2, · · · ,
f0(p) = 1 and f1(p) = p

(11)

and {
gn+2(p) = p (gn(p) + gn+1(p)) , n = 0, 1, 2, · · · ,
g0(p) = p and g1(p) = p2.

(12)

Then, by using the characteristic equation of (11) and (12), one can observe that

fn(p) =
(ϕ1(p))

n+1 − (ϕ2(p))
n+1√

p2 + 4p
, n = 0, 1, 2, · · · (13)

and

gn(p) = p
(ϕ1(p))

n+1 − (ϕ2(p))
n+1√

p2 + 4p
, n = 0, 1, 2, · · · , (14)

where

ϕ1(p) =
p+

√
p2 + 4p

2
(say, p-golden ratio)

ϕ2(p) =
p−

√
p2 + 4p

2
.

Then, using the idea as in Theorem 1, we get the next result for the exact solution
of Eq. (2) for each p > 0.

Theorem 3. For any nonzero initial values x−1 and x0 and for every p > 0, the
exact solution of Eq. (2) is

xn =



x
gn−1(p)
−1

x
fn(p)
0

, if n = 1, 3, 5, · · ·

x
fn(p)
0

x
gn−1(p)
−1

, if n = 2, 4, 6, · · · ,

(15)

where fn(p) and gn(p) are the n-th Fibonacci-type numbers given by (13) and (14),
respectively.

Proof. If we take n = 0, 1, 2, · · · in Eq. (2), then we may write that

n = 0⇒ x1 =
xp−1
xp0

n = 1⇒ x2 =
xp0
xp1

=
xp0

xp
2

−1/x
p2

0

=
xp

2+p
0

xp
2

−1
,

n = 2⇒ x3 =
xp1
xp2

=
xp

2

−1/x
p2

0

xp
3+p2

0 /xp
3

−1
=

xp
3+p2

−1

xp
3+2p2

0

,

n = 3⇒ x4 =
xp2
xp3

=
xp

3+p2

0 /xp
3

−1

xp
4+p3

−1 /xp
4+2p3

0

=
xp

4+3p3+p2

0

xp
4+2p3

−1
,

· · ·
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If we continue this process and also consider (11) and (12), then the solution in
(15) is obtained easily by an induction. �

Now we need the following lemmas.

Lemma 2. For every p > 0, we have

lim
n→∞

fn(p)

gn−1(p)
=
ϕ1(p)

p
,

where ϕ1(p) is the p-golden ratio, as stated before.

Proof. Use (13) and (14). �

Lemma 3. For every p > 0, we have

f2n−1(p)

g2n−2(p)
<
ϕ1(p)

p
<

f2n(p)

g2n−1(p)
, n = 1, 2, 3, · · · .

Proof. From (13) and (14), observe that, for all n = 1, 2, 3, · · · ,

ϕ1(p)

p
g2n−2(p)− f2n−1(p) = − (ϕ2(p))

2n−1
> 0

and

f2n(p)− ϕ1(p)

p
g2n−1(p) = (ϕ2(p))

2n
> 0,

whence the result. �

Combining the above facts and following the same lines as in Theorem 2 for each
p > 0 (just replace fn−1 and fn by gn−1(p) and fn(p), respectively), we arrive the
next result; so we omit its proof.

Theorem 4. For every p > 0, the following statements hold true:

(i) A positive solution of Eq. (2) consists of a single positive semi-cycle if and
only if

x0 ≥ 1 and x−1 = x
ϕ1(p)

p

0 .

(ii) A positive solution of Eq. (2) consists of a single negative semi-cycle if and
only if

0 < x0 < 1 and x−1 = x
ϕ1(p)

p

0 .

Furthermore, in both cases, the solution {xn} converges monotonically to 1.

Remark 2. Observe that, for p = 1, all Fibonacci-type sequences used above and
the corresponding golden ratios are equivalent, i.e.

fn = fn(1) = gn(1), n = 0, 1, 2, · · ·

and

ϕ1 = ϕ1(1) =
1 +
√

5

2
.

One can check that, for every p > 0, Eq. (2) has the following positive non-
oscillatory solution, which is convergent to 1, for given initial values x−1 and x0
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such that x−1 = x
ϕ1(p)/p
0 :

xn := xn(p, x0) =


x

ϕ1(p)
p gn−1(p)−fn(p)

0 , if n = 1, 3, 5, · · ·

x
fn(p)−ϕ1(p)

p gn−1(p)

0 , if n = 2, 4, 6, · · · .

(16)

Then, for each p > 0, the corresponding solution in (16) converges decreasingly to
1 for x0 > 1 while it converges increasingly to 1 for 0 < x0 < 1. Hence, we can say
that, for given p, x−1, x0 > 0, if {xn}∞n=−1 is a solution of Eq. (2), then

{xn}∞n=−1 is non-oscillatory ⇔ x−1 = x
ϕ1(p)

p

0 . (17)

This answers the open problem for α = 0 and p > 0 posed by Stević (see [12, p. 2]).
Obviously, if x−1 = x0 = 1, then for every p > 0, we get the equilibrium solution
xn = 1 for n ≥ −1. See the next section for more details.

Before closing this section, we focus on the unbounded solutions of Eq. (2). First
observe that

ϕ1(p) > 1⇔ p >
1

2
. (18)

Then (18) implies that

if p >
1

2
, then fn(p)→∞ and gn(p)→∞ as n→∞. (19)

Theorem 5. Let x−1, x0 > 0 and p > 1/2 be given. Assume that {xn}∞n=−1 :=
{xn(p, x−1, x0)}∞n=−1 is a solution of Eq. (2). Then,

{xn}∞n=−1 is unbounded ⇔ x−1 6= x
ϕ1(p)

p

0 .

Furthermore, in this case,

either lim
n→∞

x2n−1 = 0 and lim
n→∞

x2n = +∞, (20)

or

lim
n→∞

x2n−1 = +∞ and lim
n→∞

x2n = 0. (21)

Proof. Necessity. Assume that the solution {xn}∞n=−1 is unbounded. Then, it
follows from (15) and (19) that {xn}∞n=−1 cannot be non-oscillatory. Hence, by

(17), we get x−1 6= x
ϕ1(p)/p
0 .

Sufficiency. Assume now that x−1 6= x
ϕ1(p)/p
0 holds. Then, we consider the

following possible cases:

(a) x0 > 1 and x−1 > x
ϕ1(p)/p
0 ,

(b) x0 > 1 and 1 ≤ x−1 < x
ϕ1(p)/p
0 ,

(c) x0 ≥ 1 and 0 < x−1 < 1 or x0 > 1 and 0 < x−1 ≤ 1,
(d) 0 < x0 < 1 and x−1 ≥ 1 or 0 < x0 ≤ 1 and x−1 > 1,

(e) 0 < x0 < 1 and x
ϕ1(p)/p
0 < x−1 ≤ 1,

(f) 0 < x0 < 1 and 0 < x−1 < x
ϕ1(p)/p
0 .

In the case of (a), there exists a number a > 1 such that

1 < x
ϕ1(p)

p

0 < x
a

ϕ1(p)
p

0 ≤ x−1.
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Then, we may write from (15) that, for every n = 1, 2, 3, · · · ,

x2n−1 =
x
g2n−2(p)
−1

x
f2n−1(p)
0

≥ x
a

ϕ1(p)
p g2n−2(p)

0

x
f2n−1(p)
0

= x
a

ϕ1(p)
p g2n−2(p)−f2n−1(p)

0 . (22)

We also get

a
ϕ1(p)

p
g2n−2(p)− f2n−1(p) = a

(
ϕ1(p)

p
g2n−2(p)− f2n−1(p)

)
+ (a− 1) f2n−1(p).

From (13), (14), (19) the right hand side of the last inequality goes to the infinity
as n → ∞. Since x0 > 1 and a > 1, (22) implies that x2n−1 → ∞ as n → ∞.
Similarly, from (15),

0 < x2n =
x
f2n(p)
0

x
g2n−1(p)
−1

≤ x
f2n(p)
0

x
a

ϕ1(p)
p g2n−1(p)

0

= x
f2n(p)−aϕ1(p)

p g2n−1(p)

0 ,

which yields that x2n → 0 as n→∞ due to (19).
Since the case of (b) is a symmetric position of (a), it is omitted.
The cases of (c) and (d) are straightforward from the definition in (15).
By using a similar idea as in (a) and (b) one can also prove that if (e) or (f)

holds, then we easily get either (20) or (21). Therefore the proof is completed. �

We should note that if we take p = 1 in Theorem 5, then wee see that Eq. (1)
has unbounded positive solutions if and only if x−1 6= xϕ1

0 . In this case, either (20)
or (21) is satisfied.

The case of 0 < p ≤ 1/2 is little bit complicated. A natural question arises: Is
there any unbounded positive solution of Eq. (2) for 0 < p ≤ 1/2? We also answer
this question after the following discussion.

• If 0 < p < 1/2, then we see from (13) and (14) that limn→∞ fn(p) =
limn→∞ gn(p) = 0. In this case, (15) implies that limn→∞ xn = 1 for every
initial values x−1, x0 > 0. Hence, if 0 < p < 1/2, every positive solution
of Eq. (2) is oscillatory and convergent to 1 for all choices of initial values

x−1, x0 > 0 provided that x−1 6= x
ϕ1(p)/p
0 .

• If p = 1/2, then we get limn→∞ fn(1/2) = 2/3 and limn→∞ gn(1/2) = 1/3.
In this case, by (15) we observe that

lim
n→∞

x2n−1 =
x
1/3
−1

x
2/3
0

and lim
n→∞

x2n =
x
2/3
0

x
1/3
−1

for every initial values x−1, x0 > 0. Therefore, we get the following result.

Corollary 1. The following statements hold true:
(i) Eq. (2) has positive prime period-2 solutions if and only if p = 1/2.
(ii) Let p = 1/2 and {xn}∞n=−1 be a positive solution of Eq. (2). Then,

{xn}∞n=−1 is periodic with period 2 if and only if x−1 =
1

x0
with x0 6= 1.

Proof. (i) Necessity. Suppose that {xn}∞n=−1 is a positive prime period-2 solution
of Eq. (2). Then, we get

xn+1 = xn−1 and xn+2 = xn.
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Using this fact and also considering (2), we see that

xn+2 = xn =

(
xn
xn+1

)p

=

(
xn
xn−1

)p

=
1

xn+1
=

1

xn−1
,

which gives xn = 1/xn−1. Hence

x2pn−1 = xn−1,

which implies p = 1/2.
Sufficiency. If p = 1/2, then by taking x−1 = 1

x0
with x0 > 0 and x0 6= 1, it

follows from Eq. (2) that

n = 0⇒ x1 =

(
x−1
x0

)1/2

=
1

x0

n = 1⇒ x2 =

(
x0
x1

)1/2

= x0,

n = 2⇒ x3 =

(
x1
x2

)1/2

=
1

x0
,

n = 3⇒ x4 =

(
x2
x3

)1/2

= x0,

· · ·

Hence the corresponding positive solution {xn}∞n=−1 of Eq. (2) satisfies the relation

xn−1 =
1

xn
for n = 0, 1, 2, · · · .

If we use the above fact in Eq. (2), then we get

xn+2 =

(
xn
xn+1

)1/2

=

(
xn

(xn−1/xn)
1/2

)1/2

= xn,

whence the result.
(ii) Necessity. Assume that {xn}∞n=−1 is a period-2 solution of Eq. (2). Since

xn+1 = xn−1 for every n = 0, 1, 2, · · · , we get

xn+1 =

(
xn−1
xn

)1/2

= xn−1,

which implies that

xn−1 =
1

xn
for n = 0, 1, 2, · · · (23)

Taking n = 0 in (23), the necessity part of (ii) follows immediately.
Sufficiency. It is clear from (i). �

Finally, the above discussion shows that if 0 < p ≤ 1/2, then every positive
solution of Eq. (2) must be bounded, which clarifies the problem stated above.
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4. Graphical Illustrations

So far we have seen that, for each p, x−1, x0 > 0, Eq. (2) has positive non-
oscillatory (and so convergent) solutions, 2-periodic solutions and unbounded solu-
tions. Now we analyze them with respect to the position of p and the initial values
x−1, x0.

We first consider the non-oscillatory solutions in (16), i.e., the case of x−1 =

x
ϕ1(p)/p
0 .

Now let x0 > 0 (x0 6= 1) be fixed in (16). Then, after some calculations we see
that

∂

∂p
xn(p, x0) =

n (ϕ2(p))
n−1

lnx0

x
(ϕ2(p))

n

0

h(p) for n = 1, 3, 5, · · · ,

and

∂

∂p
xn(p, x0) = −n (ϕ2(p))

n−1
x
(ϕ2(p))

n

0 (lnx0)h(p) for n = 2, 4, 6, · · · ,

where

h(p) =
(p+ 2)

√
p2 + 4p−

(
p2 + 4p

)
2p(p+ 4)

.

Since h(p) > 0 for every p > 0, we observe that

if x0 > 1, then
∂

∂p
xn(p, x0) > 0 for every n = 1, 2, 3, · · · and p > 0 (24)

and

if 0 < x0 < 1, then
∂

∂p
xn(p, x0) < 0 for every n = 1, 2, 3, · · · and p > 0. (25)

From (24) and (25), we can say that:

• if x0 > 1, then the corresponding solution in (16) (for n = 1, 2, 3, · · · ) is
strictly increasing with respect to p > 0. This means that, for each fixed
x0 > 1, if one increases p, then the solution converges to the equilibrium
point 1 more slowly (see Figure 1);
• if 0 < x0 < 1, then the corresponding solution in (16) (for n = 1, 2, 3, · · · ) is

strictly decreasing with respect to p > 0. Therefore, in this case, for bigger
values of p, we get solutions converging more slowly to 1 (see Figure 2).

Let p > 0 be fixed. Then, one can also check that the corresponding solution in
(16) is strictly increasing with respect to x0 > 0 (see Figures 3 and 4).

Now we consider the oscillatory solutions and periodic solutions of Eq. (2).
Take p = 0.2., x−1 = 0.3 and x0 = 2. Then, we know that the corresponding

solution {xn}∞n=−1 in (15) is convergent to 1 by oscillating around 1, which is
indicated in Figure 5.

Taking p = 0.5, x−1 = 0.4 and x0 = 1.2, one can see the positive prime period-2
solution indicated in Figure 6.

Finally, for p = 1/2, if we take x−1 = 1/x0 = 1.4, then we get the 2-periodic
solution of Eq. (2) in Figure 7.
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Figure 1. Graphs of non-oscillatory solutions corresponding to

the values x0 = 2, x−1 = x
ϕ1(p)/p
0 and p = 0.2, 0.5, 1, 2, 3.5, 6.4.

Figure 2. Graphs of non-oscillatory solutions corresponding to

the values x0 = 0.3, x−1 = x
ϕ1(p)/p
0 and p = 0.25, 0.6, 1, 2.1, 3,

4.7.

References

[1] A. M. Amleh, E. A. Grove, G. Ladas and D. A. Georgiou, On the recursive sequence xn+1 =

α+ (xn−1/xn). J. Math. Anal. Appl. 233, 2, 790-798, 1999.
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