GLOBAL 2-RAINBOW DOMINATION IN GRAPHS

AKRAM ALQESMAH, ANWAR ALWARDI AND R. RANGARAJAN

Abstract

A 2-rainbow dominating function (2RDF) $g: V \rightarrow \mathcal{P}(A)$ (where $\mathcal{P}(A)$ is the power set of the set of two colors $A=\{1,2\})$ of a graph $G=(V, E)$ is defined to be satisfying the condition that for every vertex $v \in V$ with $g(v)=$ ϕ we have $\bigcup_{u \in N(v)} g(u)=A$. The minimum value of $w(g)=\sum_{v \in V}|f(v)|$ among all such functions g of G is called the 2-rainbow domination number of G and is denoted by $\gamma_{r 2}(G)$. A set $S \subseteq V$ is a global dominating set of a graph G if S dominates both G and its complement \bar{G}. The minimum cardinality $\gamma_{g}(G)$ of a global dominating set of G is called the global domination number of the graph G. In this paper, we introduce the global 2-rainbow domination number $\gamma_{g r 2}(G)$ of a graph G, study some of its properties, determine its exact values for some specific graphs and we characterize the graphs G with $\gamma_{g r 2}(G)=p$, where p is the number of vertices of G.

1. Introduction

All graphs considered here are finite, undirected without loops and multiple edges. For a graph $G=(V, E)$, let V and E denote the set of all vertices and edges of G with $|V|=p$ and $|E|=q$, respectively. The open neighborhood and the closed neighborhood of a vertex $v \in V$ are defined by $N(v)=\{u \in V: u v \in E\}$ and $N[v]=N(v) \cup\{v\}$, respectively. The cardinality of $N(v)$ is called the degree of the vertex v and denoted by $\operatorname{deg}(v)$ in G. The maximum and the minimum degrees in G are denoted respectively by $\Delta(G)$ and $\delta(G)$. That is $\Delta(G)=\max _{v \in V}|N(u)|$, $\delta(G)=\min _{v \in V}|N(u)|$. For more terminology and notations about graph, we refer the reader to [1, 10].

A subset D of V is called dominating set if for every vertex $v \in V-D$, there exists a vertex $u \in D$ such that v is adjacent to u. The minimum cardinality of a dominating set in G is called the domination number of G and is denoted by $\gamma(G)$. For more details about domination of graphs, we refer the reader to [11].

In [14, the concept of domination of a graph G has extended to be a domination of the graph G and its complement \bar{G} and is called the global domination of G. A set $S \subseteq V$ is a global dominating set of a graph G if S dominates both G and its

2010 Mathematics Subject Classification. 05C69.
Key words and phrases. 2-rainbow dominating function, 2-rainbow domination number, Global 2-rainbow dominating function, Global 2-rainbow domination number.

Submitted Sep. 6, 2017. Revised April 19, 2018.
complement \bar{G}. The minimum cardinality $\gamma_{g}(G)$ of a global dominating set of G is called the global domination number of the graph G.

The Roman domination of graphs has introduced in [6]. A function $f: V \rightarrow$ $\{0,1,2\}$ is called a Roman dominating function (RDF) of a graph G, if each vertex $v \in V$ with $f(v)=0$ is adjacent to at least one vertex $u \in V$ for which $f(u)=2$. The minimum weight $w(f)=\sum_{x \in V} f(x)$ among all the RDFs of G is called the Roman domination number of G and is dented by $\gamma_{R}(G)$. In [13], the authors have extended the concept of global domination number to the Roman domination number $\gamma_{g R}(G)$ of a graph G and study some of its properties.
Proposition 1[13] For any graph $G, \gamma_{g}(G) \leq \gamma_{g R}(G) \leq 2 \gamma_{g}(G)$.
The rainbow domination of graphs has introduced in [2] and has been studied extensively by several authors in [3, 4, [5, 7, 8, 9, 12, 15, 16. A 2 -rainbow dominating function (2RDF) on a graph G is a function $g: V \rightarrow \mathcal{P}(A)$ (where $\mathcal{P}(A)$ is the power set of the set of two colors $A=\{1,2\})$ satisfying the condition that for every vertex $v \in V$ with $g(v)=\phi$ we have $\bigcup_{u \in N(v)} g(u)=A$. The weight $w(g)$ or simply $g(V(G))$ of a function g is defined by $g(V(G))=\sum_{v \in V}|g(v)|$. The 2-rainbow domination number $\gamma_{r 2}(G)$ of a graph G is defined to be the minimum value of $g(V(G))$ among all the 2RDFs g of G. In this paper, we introduce the global 2rainbow domination number of a graph G that we denote it by $\gamma_{g r 2}(G)$ as follows: we define a global 2-rainbow dominating function (G2RDF) $f: V \rightarrow \mathcal{P}(A)$ on G to be a 2RDF for both G and \bar{G}. The global 2-rainbow domination number $\gamma_{g r 2}(G)$ of G is the minimum value of $w(f)=f(V(G))=\sum_{v \in V}|f(v)|$ among all the G2RDFs f of G.

2. Notation and Definitions

The distance between two vertices u and v in a connected graph G is the number of edges in a shortest path connecting them. The eccentricity of a vertex v is the greatest distance between v and any other vertex and denoted by $e(v)$. The diameter $\operatorname{diam}(G)$ of G is the greatest eccentricity of a vertex in G.

The union of two graphs G and H is the graph obtained by combine their vertex sets and edge sets, namely $G \cup H=(V(G) \cup V(H), E(G) \cup E(H))$. The Cartesian product of two graphs G and H, where $|V(G)|=p_{1},|V(H)|=p_{2}$ and $|E(G)|=$ $q_{1},|E(H)|=q_{2}$ is denoted by $G \square H$ has the vertex set $V(G) \times V(H)$ and, two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are connected by an edge if and only if either ($[u=v$ and $\left.u^{\prime} v^{\prime} \in E(H)\right]$) or ($\left[u^{\prime}=v^{\prime}\right.$ and $\left.u v \in E(G)\right]$). The corona product $G \circ H$ of two graphs G and H, where $|V(G)|=p_{1},|V(H)|=p_{2}$ and $|E(G)|=q_{1},|E(H)|=q_{2}$ is the graph obtained by taking $|V(G)|$ copies of H and joining each vertex of the i-th copy with vertex $u \in V(G)$.

A maximal complete subgraph of a graph G is called a clique. The clique number $\omega(G)$ of a graph G is the maximum order among the complete subgraphs of G. A set S of vertices is called independent if no two vertices in S are adjacent. Throughout this paper, we denote to the path, cycle, complete and wheel graphs by P_{p}, C_{p}, K_{p} and W_{p}, respectively. $K_{r, m}$ is the complete bipartite graph on $r+m$ vertices.

3. Some Properties

Definition 1 A global 2-rainbow dominating function of a graph $G=(V, E)$ is a function f that assigns to each vertex a set of colors from the set $A=\{1,2\}$
such that for each vertex $v \in V$ with $f(v)=\phi$ we have $\bigcup_{u \in N_{G}(v)} f(u)=A$ and $\bigcup_{u \in N_{\bar{G}}(v)} f(u)=A$, where $N_{\bar{G}}(v)$ is the open neighborhood set of v in \bar{G}. The global 2-rainbow domination number $\gamma_{g r 2}(G)$ of G is the minimum of $w(f)=$ $f(V(G))=\sum_{v \in V}|f(v)|$ over all such functions of G.

For a graph $G=(V, E)$, let $f: V \rightarrow \mathcal{P}(A)$ be a G2RDF of G and let $\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ be the partition of V induced by f, where $V_{\phi}=\{v \in V: f(v)=\phi\}, V_{\{1\}}=\{v \in$ $V: f(v)=\{1\}\}, V_{\{2\}}=\{v \in V: f(v)=\{2\}\}$ and $V_{A}=\{v \in V: f(v)=A\}$. Clearly that there exists a one to one correspondence between the functions f : $V \rightarrow \mathcal{P}(A)$ and the ordered partition $\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ of V. Thus we will write $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$.

Proposition 2 For any graph $G, \gamma_{g}(G) \leq \gamma_{g r 2}(G) \leq \gamma_{g R}(G) \leq 2 \gamma_{g}(G)$.
Proof. By using Proposition 1, we need only to prove that $\gamma_{g}(G) \leq \gamma_{g r 2}(G)$ and $\gamma_{g r 2}(G) \leq \gamma_{g R}(G)$. Let $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ be a $\gamma_{g r 2}$-function of G. Then clearly that $V_{\{1\}} \cup V_{\{2\}} \cup V_{A}$ dominates V_{ϕ}, so $V_{\{1\}} \cup V_{\{2\}} \cup V_{A}$ is a global dominating set of G. Thus
$\gamma_{g}(G) \leq\left|V_{\{1\}} \cup V_{\{2\}} \cup V_{A}\right| \leq\left|V_{\{1\}}\right|+\left|V_{\{2\}}\right|+\left|V_{A}\right| \leq\left|V_{\{1\}}\right|+\left|V_{\{2\}}\right|+2\left|V_{A}\right|=\gamma_{g r 2}(G)$.
For the other inequality, suppose $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{g R}$-function of G. Define the function $h: V \rightarrow \mathcal{P}(A)$ by

$$
h(v)= \begin{cases}\phi, & v \in V_{0} \\ \{1\} \text { or }\{2\}, & v \in V_{1} \\ A, & v \in V_{2}\end{cases}
$$

It is easy to see that the function h is a G2RDF of G. Hence, $\gamma_{g r 2}(G) \leq w(h)=$ $\left|V_{1}\right|+2\left|V_{2}\right|=\gamma_{g R}(G)$.

Proposition 3 Let G be a graph. Then $\gamma_{g}(G)=\gamma_{g r 2}(G)$ if and only if $G=K_{p}$ or $G=\overline{K_{p}}$.
Proof. Suppose $\gamma_{g}(G)=\gamma_{g r 2}(G)$. Let $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ be a $\gamma_{g r 2}$-function of G. Then $\left|V_{\{1\}}\right|+\left|V_{\{2\}}\right|+\left|V_{A}\right|=\left|V_{\{1\}}\right|+\left|V_{\{2\}}\right|+2\left|V_{A}\right|$ which means $\left|V_{A}\right|=0$. Therefore $\gamma_{g}(G)=p$. Since $\gamma_{g}(G)=p$ if and only if $G=K_{p}$ or $G=\overline{K_{p}}$ (see [14]). Hence the result holds.
The converse is clear.
Proposition 4 Let G be a graph. Then $\gamma_{g r 2}(G)=\gamma_{r 2}(G)$ if and only if there exists a $\gamma_{r 2}$-function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ of G such that for every vertex $v \in V_{\phi}$ there exists either a vertex $u \in V_{A}$ such that $u \notin N(v)$ or two vertices $x \in V_{\{1\}}$, $y \in V_{\{2\}}$ such that $x, y \notin N(v)$.
Proof. Let $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ be a $\gamma_{r 2}$-function of G. Suppose f satisfies the given condition, clearly that f is a G2RDF of G. Then $\gamma_{g r 2}(G) \leq \gamma_{r 2}(G)$. Hence, $\gamma_{g r 2}(G)=\gamma_{r 2}(G)$.
Conversely, we have $\gamma_{g r 2}(G)=\gamma_{r 2}(G)$. For any $\gamma_{r 2}$-function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ of G, suppose there exists a vertex $v \in V_{\phi}$ such that either $V_{A} \subseteq N(v)$ or at least $V_{\{1\}} \subseteq N(v)$. Then $\bigcup_{u \in N_{\bar{G}}(v)} f(v) \neq A$. Therefore, $\gamma_{r 2}(G)<\gamma_{g r 2}(G)$, a contradiction. Hence the result holds.

Proposition 5 For any graph G of order $p \geq 4$ with $\Delta(G)=p-1$ and $\delta(G)=1$, we have $\gamma_{g r 2}(G)=4$.
Proof. Let u and v be two vertices of G such that $\operatorname{deg}(u)=p-1$ and $\operatorname{deg}(v)=1$. Define $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f(u)=f(v)=A$ and $f(x)=\phi, \forall x \in V(G) \backslash\{u, v\}$. Clearly that $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ is a G2RDF of G with a minimum weight because we cannot assign more than $p-2$ vertices by ϕ in G under a function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$. Hence, $\gamma_{g r 2}(G)=4$.

Observation 1 For any graph G on $p \geq 4$ vertices, $4 \leq \gamma_{g r 2}(G) \leq p$.

4. Exact values of some specific graphs

In this section, we determine the exact values of $\gamma_{g r 2}$ for some standard graphs like paths, cycles, complete, complete bipartite and wheel graphs and also for $G \square K_{2}, G \circ \overline{K_{n}}$, where G is a connected graph and $\overline{K_{n}}$ is the null graph with n vertices.

Proposition 6 3]

(1) $\gamma_{r 2}\left(P_{p}\right)=\left\lfloor\frac{p}{2}\right\rfloor+1$.
(2) For $p \geq 3, \gamma_{r 2}\left(C_{p}\right)=\left\lfloor\frac{p}{2}\right\rfloor+\left\lceil\frac{p}{4}\right\rceil-\left\lfloor\frac{p}{4}\right\rfloor$.

Theorem 1

(1) $\gamma_{g r 2}\left(P_{p}\right)= \begin{cases}p, & p=2,3,4 ; \\ 4, & \mathrm{p}=5 ; \\ \left\lfloor\frac{p}{2}\right\rfloor+1, & p \geq 6 .\end{cases}$
(2) $\gamma_{g r 2}\left(C_{p}\right)= \begin{cases}p, & p=3,4 ; \\ 4, & \mathrm{p}=5 ; \\ \left\lfloor\frac{p}{2}\right\rfloor+\left\lceil\frac{p}{4}\right\rceil-\left\lfloor\frac{p}{4}\right\rfloor, & p \geq 6 .\end{cases}$
(3) $\gamma_{g r 2}\left(K_{p}\right)=p$.
(4) $\gamma_{g r 2}\left(K_{r, m}\right)=4$, where $r+m \geq 4$.
(5) For $p \geq 5, \gamma_{g r 2}\left(W_{p}\right)= \begin{cases}5, & p=5,7,8,9 ; \\ 4, & p=6 ; \\ 6, & p \geq 10 .\end{cases}$

Proof. We only prove (5) and (1)-(4) are obvious. Let $V\left(W_{p}\right)=\left\{v, v_{1}, \ldots, v_{p-1}\right\}$, where v is the center vertex and let $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ be a $\gamma_{g r 2}$-function of W_{p}. For $p=5$, we define $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f(u)=\{1\}$ for all $u \in V\left(W_{p}\right)$ and for $p=7$, we define $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f(v)=\{1\}$, $f\left(v_{1}\right)=f\left(v_{4}\right)=A$ and $f(u)=\phi$ for all $u \in V\left(W_{p}\right) \backslash\left\{v, v_{1}, v_{4}\right\}$ and for $p=8$, we define $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f(v)=f\left(v_{1}\right)=\{1\}, f\left(v_{2}\right)=f\left(v_{4}\right)=f\left(v_{7}\right)=\{2\}$ and $f\left(v_{3}\right)=f\left(v_{5}\right)=f\left(v_{6}\right)=\phi$, also when $p=9$, we define $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f(v)=f\left(v_{1}\right)=\{1\}, f\left(v_{2}\right)=f\left(v_{5}\right)=f\left(v_{8}\right)=\{2\}$ and $f(u)=\phi$ for all $u \in V\left(W_{p}\right) \backslash\left\{v, v_{1}, v_{2}, v_{5}, v_{8}\right\}$. It is clear that, f is a $\gamma_{g r 2}$-function of W_{p} with $w(f)=5$. Hence, $\gamma_{g r 2}\left(W_{p}\right)=5$, for $p=5,7,8,9$.
Now, for $p=6$, we define $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f(v)=f\left(v_{1}\right)=\{1\}$, $f\left(v_{2}\right)=f\left(v_{5}\right)=\{2\}$ and $f\left(v_{3}\right)=f\left(v_{4}\right)=\phi$, which is a $\gamma_{g r 2}$-function of W_{6} with $w(f)=4$. Hence, $\gamma_{g r 2}\left(W_{6}\right)=4$. Finally, for $p \geq 10$, we define $f=$ $\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f(v)=f\left(v_{1}\right)=A, f\left(v_{2}\right)=f\left(v_{p-1}\right)=\{2\}$ and $f(u)=\phi$
for all $u \in V\left(W_{p}\right) \backslash\left\{v, v_{1}, v_{2}, v_{p-1}\right\}$. Hence, $\gamma_{g r 2}\left(W_{p}\right)=6$, for $p \geq 10$.
Rainbow domination in a graph G has a natural connection with the study of $\gamma\left(G \square K_{k}\right)$ with $k \geq 1$. If the vertex set of K_{k} is $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, then there is a one-to-one correspondence between the set of k-rainbow dominating functions of G and the dominating sets of $G \square K_{k}$. For a given k-rainbow dominating function of G the set

$$
D_{f}=\bigcup_{v \in V}\left(\bigcup_{i \in f(v)}\left\{\left(v, x_{i}\right)\right\}\right)
$$

is a dominating set of $G \square K_{k}$. The reverse correspondence is clear [2].
Observation 2[2] For any graph G and $k \geq 1, \gamma_{r k}(G)=\gamma\left(G \square K_{k}\right)$.
Actually, the result in Observation 2, is not always true for $\gamma_{g r 2}(G)$ and $\gamma_{g}\left(G \square K_{2}\right)$. In the following theorem we show that when the equality between $\gamma_{g r 2}(G)$ and $\gamma_{g}\left(G \square K_{2}\right)$ holds.
Theorem 2 Let G be a connected graph. Then $\gamma_{g r 2}(G)=\gamma_{g}\left(G \square K_{2}\right)$ if and only if $\gamma_{g r 2}(G)=\gamma_{r 2}(G)$.
Proof. By using Observation 2, it is enough if we prove that $\gamma\left(G \square K_{2}\right)=$ $\gamma_{g}\left(G \square K_{2}\right)$ for any connected graph G. Since G is connected, then it is clear that, any γ-set D of $G \square K_{2}$ must contain vertices from the two copies of G (let us consider $|G|=n \geq 3$ because $n=2$ is trivial). Thus any vertex $x \in V\left(G \square K_{2}\right) \backslash D$ has at least a vertex $y \in D$ such that $y \notin N(x)$ (see Figure 1). Therefore, D is a global dominating set of $G \square K_{2}$. Hence, $\gamma_{r 2}(G)=\gamma\left(G \square K_{2}\right)=\gamma_{g}\left(G \square K_{2}\right)$.

Figure 1. $G \square K_{2}$, where $V\left(K_{2}\right)=\left\{u_{1}, u_{2}\right\}$

Theorem 3 For any connected graph G on $p \geq 2$ vertices,

$$
\gamma_{g r 2}\left(G \circ \overline{K_{n}}\right)= \begin{cases}p+\gamma(G), & \text { if } p \geq 3 \text { and } n=1 \\ 2 p, & \text { otherwise }\end{cases}
$$

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and $V\left(\overline{K_{n}}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ as in Figure 2 . Without loss of generality, to define a G2RDF of $G \circ \overline{K_{n}}$ we have three cases:
Case 1. We can define a function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f\left(u_{i j}\right)=\phi$ for all $i=1,2, \ldots, p, j=1,2, \ldots, n$ and $f(v)=A, \forall v \in V(G)$. Therefore f is a G2RDF
of $G \circ \overline{K_{n}}$ with $w(f)=2 p$.
Case 2. We can define a function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f(v)=\{2\}, \forall v \in D$, $f(v)=\phi, \forall v \in V(G)-D$, for some $D \subseteq V(G)$ and for the leaves $u_{i j}, i=1,2, \ldots, p$, $j=1,2, \ldots, n$ by $f\left(u_{i j}\right)=\{2\}$ if $v_{i} \in D$ and $f\left(u_{i j}\right)=\{1\}$ if $v_{i} \in V(G)-D$. Clearly that f is a G2RDF of $G \circ \overline{K_{n}}$ with $w(f)=p+|D|$ if and only if D is a dominating set of G. Hence, the smallest weight of a function f in this case is when D is a γ-set of G.
Case 3. We can define a function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f(v)=A, \forall v \in D$, $f(v)=\phi, \forall v \in V(G)-D$, where $D \subseteq V(G)$ and $f\left(u_{i j}\right)=\phi$ if $v_{i} \in D$ and $f\left(u_{i j}\right)=$ $\{1\}$ if $v_{i} \in V(G)-D$. Therefore, f is a G2RDF of $G \circ \overline{K_{n}}$ with $w(f)=p+|D|$ if and only if D is a dominating set of G (note that, if $\gamma(G)=1$ with $|G|=p \geq 3$, then we have to label at least one vertex of the leaves $u_{i j}$ by $\{2\}$ when $\left.v_{i} \in V(G)-D\right)$. Thus, the smallest weight of a function f in this case is when $\gamma(G)=|D|$.
Hence,

$$
\gamma_{g r 2}\left(G \circ \overline{K_{n}}\right)= \begin{cases}p+\gamma(G), & \text { if } p \geq 3 \text { and } n=1 \\ 2 p, & \text { otherwise } .\end{cases}
$$

Figure 2. $G \circ \overline{K_{n}}$

5. Graphs with $\gamma_{g r 2}=p$

In this section, we characterize graphs G with $\gamma_{g r 2}(G)=p$.
Proposition 7 For any graph G on $p \leq 4$ vertices, $\gamma_{g r 2}(G)=p$.
Proof. For all graphs of order $p \leq 3$ the proof is clear because in this case we cannot define any $\gamma_{g r 2}$-function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ with $f(v)=\phi$ for any $v \in V(G)$. Suppose now $p=4$. If $G \cong K_{4}$, then $\gamma_{g r 2}(G)=4$. Also, we have the following cases:
Case 1. If $G \cong K_{4}-e\left(e\right.$ is an edge of G), then $G \cong H_{1}$ (see Figure 3). Thus for H_{1}, we have two options to define a function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ of G with minimum weight. Either $f\left(v_{2}\right)$ and $f\left(v_{4}\right)$ equal to singleton sets and $f\left(v_{1}\right)=\phi$, $f\left(v_{3}\right)=A$ and vice versa, or $f\left(v_{i}\right)$ equal to singleton sets for all $i=1,2,3,4$. Hence, $\gamma_{g r 2}(G)=p$.

Case 2. If $G \cong K_{4}-2 e$, then either $G \cong C_{4}$ or $G \cong H_{2}$ (Figure 3). For $G \cong C_{4}$, clearly that $\gamma_{g r 2}(G)=p$ (Theorem 1), and for $G \cong H_{2}$, we have three options to define a function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ with minimum weight. Either $f\left(v_{3}\right)=A$, $f\left(v_{4}\right)=\phi$ and $f\left(v_{1}\right), f\left(v_{2}\right)$ equal to different singleton sets, or $f\left(v_{1}\right)=\phi, f\left(v_{4}\right)=A$ and $f\left(v_{2}\right), f\left(v_{3}\right)$ equal to different singleton sets (with the same thing for $f\left(v_{2}\right)$ instead of $f\left(v_{1}\right)$), or $f\left(v_{i}\right)$ equal to singleton sets for all $i=1,2,3,4$. Hence, $\gamma_{g r 2}(G)=p$.
Case 3. If $G \cong K_{4}-3 e$, then either $G \cong P_{4}$ or $G \cong S_{4}$ or $G \cong C_{3} \cup K_{1}$. Hence, $\gamma_{g r 2}(G)=p$.
Case 4. If $G \cong K_{4}-4 e$, then either $G \cong K_{2} \cup K_{2}$ or $G \cong P_{3} \cup K_{1}$. Then clearly that, $\gamma_{g r 2}(G)=p$.
Note that all the other graphs of four vertices are clear.

Figure 3. $H_{1} \cong K_{4}-e$ and $H_{2} \cong K_{4}-2 e$

We consider all the graphs from now to the end of the paper to be connected on p vertices.
Theorem 413 For any graph G with $\gamma_{g R}(G)=p, \operatorname{diam}(G) \leq 3$.
Theorem 5 Any graph G on p vertices with $\gamma_{g r 2}(G)=p$ has diameter less than or equal three.
Proof. The proof is straightforward by Proposition 2 and Theorem 4.

Figure 4. Graphs G_{1} and G_{2}

Theorem 613 Let G be a graph with $\operatorname{diam}(G)=3$. Then $\gamma_{g R}(G)=p$ if and only if G is one of the graphs P_{4}, G_{1}, G_{2}, where G_{1}, G_{2} are given in Figure 4 .

According to Proposition 2 and Theorem 6, we have the following theorem.
Theorem 7 Let G be a graph with $\operatorname{diam}(G)=3$. Then $\gamma_{g r 2}(G)=p$ if and only if $G \cong P_{4}$.
Proof. By Propositions 2, 7 and Theorem 6, we get the same result about P_{4}. But $\gamma_{g r 2}\left(G_{1}\right)$ and $\gamma_{g r 2}\left(G_{2}\right)$ do not equal p, which we are going to clarify in the following. For G_{1} define the function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f\left(v_{1}\right)=f\left(v_{2}\right)=\{1\}$, $f\left(v_{4}\right)=f\left(v_{5}\right)=\{2\}$ and $f\left(v_{3}\right)=\phi$ which is a G2RDF of G_{1}, then $\gamma_{g r 2}\left(G_{1}\right) \neq p$, and for G_{2} define the function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f\left(v_{1}\right)=f\left(v_{4}\right)=\{1\}$, $f\left(v_{5}\right)=f\left(v_{6}\right)=\{2\}$ and $f\left(v_{2}\right)=f\left(v_{3}\right)=\phi$ which is a G2RDF of G_{2}, then $\gamma_{g r 2}\left(G_{2}\right) \neq p$ (see Figure 4).

In the following, we study the graphs G of $\operatorname{diam}(G)=2$.
Definition 2 Let $G=(V, E)$ be a graph with $\operatorname{diam}(G)=2$. We Consider $F_{1} \subseteq V(G)$ induces a maximum clique in $G, F_{2}=V(G) \backslash F_{1}$, where $\left|F_{i}\right|=p_{i}$, $i=1,2$ and $V\left(F_{1}\right)=\left\{y_{1}, y_{2}, \ldots, y_{p_{1}}\right\}, V\left(F_{2}\right)=\left\{x_{1}, x_{2}, \ldots, x_{p_{2}}\right\}$.

Theorem 8 Let $\omega(G)=2$. Then $\gamma_{g r 2}(G)=p$ if and only if G is one of the graphs P_{3}, C_{4} and $K_{1,3}$.
Proof. Since $\operatorname{diam}(G)=2$ and $\omega(G)=2$, then $\left|F_{1}\right|=p_{1}=2$. Therefore, G is a free-triangle graph of diameter two. Suppose $p \leq 4$. Then by Proposition 7 and Theorem $1\left[\right.$ part (4)], the result is satisfied for C_{4} and $K_{1, m}$ with $m=2$ or $m=3$. For the other free-triangle graphs of diameter two (here $p \geq 5$), we have the following cases:
Case 1. Suppose G has a vertex v of degree $p-1$. Then $G \cong K_{1, m}$ with $m \geq 4$. In this case we can define a G2RDF of G with $\gamma_{g r 2}(G)<p$ by labeling the center vertex v and one of its neighborhood by $A=\{1,2\}$ and for all the other vertices in G by ϕ.
Case 2. Suppose now G has no vertex of degree $p-1$. Let v_{1} and v_{2} be two nonadjacent vertices in G which they have a maximum number of common neighbors among all the other vertices in G. Suppose u is a common neighbor for v_{1} and v_{2}. Then there exist at least two non-adjacent vertices to u say x and y (recall that $p \geq 5$ and $\operatorname{diam}(G)=2)$. Define the function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f(u)=\phi$, $f\left(v_{1}\right)=f(x)=\{1\}, f\left(v_{2}\right)=f(y)=\{2\}$ and for all $w \in V(G) \backslash\left\{u, v_{2}, y\right\}$ by $f(w)=\{1\}$, clearly f is a G2RDF of G with $w(f)<p$. Hence the result.
The converse is clear.

Theorem 9 Let $\omega(G) \geq 3$ and F_{2} induces a clique. Then $\gamma_{g r 2}(G)=p$ if and only if $G \cong K_{p}-e$ or $\bar{G} \cong p_{2} K_{2} \cup\left(p_{1}-p_{2}\right) K_{1}$. Furthermore, if $\omega(G)=3$ and $\left|F_{2}\right|=p_{2}=1$, then $G \cong K_{4}-e$ or $G \cong K_{4}-2 e$.
Proof. We have $p_{1} \geq 3$. Thus we will discuss the proof according to $\left|F_{2}\right|=p_{2}$ into the following cases:
Case 1. Suppose $p_{2}=1$. Then $V\left(F_{2}\right)=\{x\}$.
(1) If $p_{1}=3$, then $|G|=4$. Thus by Proposition 7 , the results $G \cong K_{4}-e$ or $G \cong K_{4}-2 e$ hold (see Figure 3).
(2) Assume that $p_{1} \geq 4$. We claim that the vertex x is non adjacent to exactly one vertex of F_{1}. For contrary, suppose x is non adjacent to two vertices of F_{1} say y_{1}, y_{2}. We define $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f(x)=\phi, f\left(y_{1}\right)=\{1\}$, $f\left(y_{2}\right)=\{2\}, f\left(y_{3}\right)=\{2\}$ and $f(y)=\{1\}$ for all $y \in V\left(F_{1}\right) \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$.

Then f is a G2RDF of G with $w(f)<p$, a contradiction. Hence, $G \cong$ $K_{p}-e$.

Case 2. Suppose $p_{2} \geq 2$. We claim that each vertex of F_{2} is non adjacent to exactly one vertex of F_{1} and no two vertices of F_{2} are non adjacent to the same vertex of F_{1}. For contrary, suppose x_{1} in F_{2} is non adjacent to y_{1}, y_{2} in F_{1}. Define $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f\left(x_{1}\right)=\phi, f\left(y_{1}\right)=\{1\}, f\left(y_{2}\right)=\{2\}, f(y)=\{1\}$ for all $y \in V\left(F_{1}\right) \backslash\left\{y_{1}, y_{2}\right\}$ and $f(x)=\{2\}$ for all $x \in V\left(F_{2}\right) \backslash\left\{x_{1}\right\}$. Clearly that f is a G2RDF of G with $w(f)<p$, a contradiction. Now, suppose there exists two vertices x_{1} and x_{2} of F_{2} that are non adjacent to the vertex y_{1} of F_{1}. Then the induced subgraph $\left\langle\left(F_{1} \backslash\left\{y_{1}\right\}\right) \cup\left\{x_{1}, x_{2}\right\}\right\rangle$ is a clique of G of order $p_{1}+1$, which contradicts the maximality of F_{1}.
Assume that x_{i} is non adjacent to y_{i}, where $i=1,2, \ldots, p_{2}$ [recall that $p_{2} \leq p_{1}$]. Therefore, $\operatorname{deg}_{G}\left(x_{i}\right)=\operatorname{deg}_{G}\left(y_{i}\right)=p_{1}+p_{2}-2=p-2$ for all $i=1,2, \ldots, p_{2}$ and $\operatorname{deg}_{G}\left(y_{i}\right)=p-1$ for all $i=p_{2}+1, p_{2}+2, \ldots, p_{1}$. Hence, $\bar{G} \cong p_{2} K_{2} \cup\left(p_{1}-p_{2}\right) K_{1}$. The converse is straight forward.

Theorem 10 Let G be a connected graph on $p \geq 5$ vertices. Suppose $\omega(G) \geq 4$ and F_{2} induces an independent subgraph of G. Then $\gamma_{g r 2}(G)=p$ if and only if $G \cong K_{p}-e$.
Proof. Since $\omega(G) \geq 4$, then each vertex $x_{i} \in V\left(F_{2}\right), i=1,2, \ldots, p_{2}$ has at least one vertex in F_{1} which they are non adjacent one to the other.
Claim 1. We claim that $p_{2}=1$. For contrary, suppose that $p_{2} \geq 2$. Assume that x_{1} is non adjacent to y_{1}, we define the function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f\left(x_{1}\right)=\phi, f\left(y_{1}\right)=f\left(y_{2}\right)=\{1\}$ and $f(x)=f(y)=\{2\}$ for all $x \in V\left(F_{2}\right) \backslash\left\{x_{1}\right\}$ and $y \in V\left(F_{1}\right) \backslash\left\{y_{1}, y_{2}\right\}$. Clearly that f is a G2RDF of G with $w(f)<p$, which a contradiction. Then our claim is true. Hence, $V\left(F_{2}\right)=\{x\}$.
Claim 2. Now, we claim that x is non adjacent to exactly one vertex in F_{1}. This claim has proved in the proof of Theorem 9 (Case 1). Hence, $G \cong K_{p}-e$.
The other side is clear.
Theorem 11 Let $\omega(G)=3$ and F_{2} induces an independent subgraph of G. Then $\gamma_{g r 2}(G)=p$ if and only if $G \cong K_{4}-e$ or $G \cong K_{4}-2 e$.
Proof. The proof is same as Theorem 10, with some different in Claim 2. Since Claim 1 holds, then $|G|=4$. Thus from the proof of Proposition 7, we have only two graphs satisfy our conditions which are $G \cong H_{1}=K_{4}-e$ and $G \cong H_{2}=K_{4}-2 e$. The converse is clear.

Theorem 12 Let $\omega(G) \geq 3$ and F_{2} be neither induce a clique nor independent. Then $\gamma_{g r 2}(G) \neq p$.
Proof. Since F_{2} be neither induce a clique nor independent and $\omega(G) \geq 3$, then $p_{2} \geq 3$ and hence each vertex $x_{i} \in V\left(F_{2}\right), i=1,2, \ldots, p_{2}$ has at least one vertex in F_{1} and an other vertex in F_{2} which it is non adjacent to both. Suppose x_{1} is non adjacent to $x_{2} \in V\left(F_{2}\right)$ and $y_{1} \in V\left(F_{1}\right)$. We define the function $f=\left(V_{\phi}, V_{\{1\}}, V_{\{2\}}, V_{A}\right)$ by $f\left(x_{1}\right)=\phi, f\left(y_{1}\right)=f\left(y_{2}\right)=\{1\}$ and $f(x)=f(y)=\{2\}$ for all $x \in V\left(F_{2}\right) \backslash\left\{x_{1}\right\}$ and $y \in V\left(F_{1}\right) \backslash\left\{y_{1}, y_{2}\right\}$. Clearly that f is a G2RDF of G with $w(f)<p$. Hence, $\gamma_{g r 2}(G) \neq p$.

Acknowledgement

The authors would like to thank the referees for their remarks and suggestions that helped to improve the manuscript.

References

[1] J. A. Bondy, U. S. R. Murty, Graph theory with applications, The Macmillan Press Ltd., London, Basingstoke, 1976.
[2] B. Brešar, M. A. Henning and D. F. Rall, Rainbow domination in graphs, Taiwanes Journal of Mathematics, 12(1) (2008) 213-225.
[3] B. Brešar, T. K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394-2400.
[4] G. J. Chang, J. Wu, X. Zhu, Rainbow domination on trees, Discrete Appl. Math. 158 (2010) 8-12.
[5] T. Chunling, L. Xiaohui, Y. Yuansheng, L. Meiqin, 2-rainbow domination of generalized Petersen graphs $P(n, 2)$, Discrete Appl. Math. 157 (2009) 1932-1937.
[6] E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi, S. Hedetniemi, Roman domination in graphs, Discrete Math. 78 (2004) 11-22.
[7] N. Dehgardi, S. M. Sheikholeslami, L. Volkmann, The k-rainbow bondage number of a graph, Discrete Appl. Math. 174 (2014) 133-139.
[8] N. Dehgardi, S. M. Sheikholeslami, L. Volkmann, The rainbow domination subdivision numbers of graphs, Mat. Vesnik 67 (2015) 102-114.
[9] M. Falahat, S. M. Sheikholeslami, L. Volkmann, New bounds on the rainbow domination subdivision number, Filomat 28 (2014) 615-622.
[10] F. Harary, Graph theory, Addison-Wesley, Reading Mass (1969).
[11] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York (1998).
[12] D. Meierling, S.M. Sheikholeslami, L. Volkmann, Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph, Appl. Math. Lett. 24 (2011) 1758-1761.
[13] P. Roushini Leely Pushpama and S. Padmaprieab, Global Roman domination in graphs, Discrete Applied Mathematics, 200 (2016) 176-185.
[14] E. Sampathkumar, The global domination number of a graph, J. Math. Phy. Sci. 23 (1989) 377-385.
[15] S. M. Sheikholeslami, L. Volkmann, The k-rainbow domatic number of a graph, Discuss. Math. Graph Theory 32 (2012) 129-140.
[16] G. Xu, 2-rainbow domination of generalized Petersen graphs $P(n, 3)$, Discrete Appl. Math. 157 (2009) 2570-2573.

Akram Alqesmah
Department of Studies in Mathematics, University of Mysore, Mysore 570 006, India
E-mail address: aalqesmah@gmail.com
Anwar Alwardi
Department of Studies in Mathematics, University of Mysore, Mysore 570 006, India
Department of Mathematics, College of Education, Yafea, University of Aden, Yemen
E-mail address: a_wardi@hotmail.com
R. Rangarajan

Department of Studies in Mathematics, University of Mysore, Mysore 570 006, India E-mail address: rajra63@gmail.com

