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HUB-INTEGRITY OF LINE GRAPHS

SULTAN SENAN MAHDE AND VEENA MATHAD

Abstract. The hub-integrity of a graph G = (V (G), E(G)) is denoted as

HI(G) and defined by HI(G) = min{|S| + m(G − S), S is a hub set of G},
where m(G− S) is the order of a maximum component of G− S. This paper

includes results on the hub-integrity of line graphs of some graphs.

1. Introduction

By a graph G = (V,E), we mean a finite, undirected graph without loops or
multiple edges. For any graph G, let V (G) and E(G) denote the vertex set and the
edge set of G, respectively. The vertices and edges of a graph are called its elements.
Two elements of a graph are neighbors if they are either incident or adjacent. For
graph theoretic terminology, we refer to [4].

The complement G of a graph G has V (G) as its vertex set, two vertices are
adjacent in G if and only if they are not adjacent in G [4].

Networks appear in many different applications and settings. The most common
networks are telecommunication networks, computer networks, the internet, road
and rail networks and other logistic networks. In all applications, vulnerability and
reliability are crucial and important features. Network designers often build a net-
work configuration around specific processing, performance and cost requirements.
But there is little consideration given to the stability of the networks communication
structure when under the pressure of link or node loses. This lack of consideration
makes the networks have low survivability. Therefore network design process must
identify the critical points of failure and be able to modify the design to eliminate
them [6].

The stability of a communication network composed of processing nodes and
communication links is of prime importance to network designers. As the network
begins losing links or nodes, eventually there is a loss in its effectiveness. In an
analysis of the stability of a communication network to disruption, two questions
that come to mind are: (i) How many vertices can still communicate? (ii) How
difficult is it to reconnect the graph? The concept of integrity was introduced as
a measure of graph stability by Barefoot, Entringer and Swart [1]. Formally, the
integrity is I(G) = minS⊂V {|S| + m(G − S)}, where m(G − S) denotes the order
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of a largest component of G − S. The integrity is a measure which deals with
the first question stated above, namely how many vertices can still communicate?
If the set S achieves the integrity, then it is called an I-set of G. That is, if
|S|+m(G− S) = I(G) for any set S, then S is called an I-set.

Suppose that H ⊆ V (G) and let x, y ∈ V (G). An H-path between x and y is
a path where all intermediate vertices are from H. (This includes the degenerate
cases where the path consists of the single edge xy or a single vertex x if x = y, call
such an H-path trivial). A set H ⊆ V (G) is a hub set of G if it has the property
that, for any x, y ∈ V (G) − H, there is an H-path in G between x and y. The
smallest size of a hub set in G is called a hub number of G, and is denoted by h(G)
[10]. A set S ⊆ V (G) is called a dominating set of G if each vertex of V − S is
adjacent to at least one vertex of S. The domination number of a graph G, denoted
as γ(G) is the minimum cardinality of a dominating set in G.

Sultan et al. [7] have introduced the concept of hub-integrity of a graph as a
new measure of vulnerability which is defined as follows.
Definition 1.1 [7] The hub-integrity of a graph G denoted by HI(G) is defined
by, HI(G) = min{|S| + m(G − S), S is a hub set of G}, where m(G − S) is the
order of a maximum component of G − S. For more details on the hub-integrity
see [8, 9].
Definition 1.2 [7]A subset S of V (G) is said to be a HI-set, if HI(G) =
|S|+m(G− S).
The integrity of middle graphs is discussed by Mamut and Vumar [5], while in-
tegrity of total graphs is discussed by Dndar and Ayta [2]. In the present work
we investigate hub-integrity of line graphs. We need the following to prove main
results.
Proposition 1.3 [7] For any complete graph Kp, HI(Kp) = p.

2. Some properties of hub-integrity of Line Graphs

Definition 2.1 [4] The line graph L(G) of G has the edges of G as its vertices
which are adjacent in L(G) if and only if the corresponding edges are adjacent in
G.
Theorem 2.2 If G is a simple graph such that G ∼= L(G), then HI(G) =
HI(L(G)) = HI(G) if and only if G = C5 or G is the graph shown on the Figure
1 below.
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Figure 1.

Remark 2.3 If HI(L(G1)) = HI(L(G2)), then it is not necessary that HI(G1) =
HI(G2), for example, the graphs G1 and G2 in Figure 2,
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Figure 2: G1, G2

we have HI(G1) = 2, while HI(G2) = 3. Also L(G1) = L(G2) ∼= C3, hence
HI(L(G1)) = HI(L(G2)) = 3.
Proposition 2.4 If G is regular graph of degree 2, then HI(G) = HI(L(G)).
Proof. G is regular of degree 2, hence G ∼= Cp, then the proof is completed.
Lemma 2.5 Let G be a connected graph and let α(G) = 1, where α(G) is the
vertex cover number. Then HI(L(G)) = p.
Proof. Suppose α(G) = 1, then G ∼= K1,p. Then L(G) = Kp, so proof follows
from Proposition 1.3.
Observation 2.6 If T is a tree with p vertices and α(T ) = 2, then HI(L(T )) ≤
p− 2.
Lemma 2.7 Let G be a connected graph with ∆(G) ≤ 2. Then HI(L(G)) =
|E(L(G))| if and only if G = Pp or G = C3.
Proof. Suppose that G is a connected graph with ∆(G) ≤ 2. Then G is path
or cycle. But if G is cycle. If G = Cp, p ≥ 4, then we have HI(L(Cp)) ≤ p − 1 6=
|E(L(Cp))|, thus G is C3 or path. The converse is obvious. �
Proposition 2.8 If HI(L(G)) = |E(G)|, then G ∼= K1,p or G ∼= C3.
Theorem 2.9 For any subset D of vertices in a graph L(G), HI(L(G) − D) ≥
HI(L(G))− |D|.
Proof. Let S be a HI- set of L(G), let D ⊆ V (L(G)) and S? be a HI-set of
L(G) − D such that S?? = S? ∪ D. Then |S??| = |S?| + |D| and L(G) − S?? =
L(G)− (S? ∪D) = (L(G)−D)− S?. Therefore

HI(L(G)) = |S|+m(L(G)− S)

≤ |S??|+m(L(G)− S??)

= |S?|+ |D|+m[(L(G)−D)− S?]

= HI(L(G)−D) + |D|.

Proposition 2.10 If G is a non-trivial graph, then for all v ∈ V (L(G)), HI(L(G)−
v) ≥ HI(L(G))− 1. The bound is sharp for G = K1,p.
Proposition 2.11 Let G be a graph, then for all e ∈ E(L(G)), HI(L(G) − e) ≥
HI(L(G))− 1. The bound is sharp for G = K1,p.
Proposition 2.12 For any graph G,

(1) 1 ≤ HI(L(G)) ≤ p. The lower bound attains for P2 and the upper bound
attains for star graph K1,p.

(2) For any graph H ≤ G, HI(L(H)) ≤ HI(L(G)).

Lemma 2.13 HI(L(K1,p)) +HI(L(K1,p)) = 2p.
Proof. Since L(K1,p) ∼= Kp, it follows from Proposition 1.3 that HI(Kp) = p,

and L(K1,p) ∼= Kp, so HI(Kp) = p, hence the result. �
Proposition 2.14 For any graph G, p ≤ HI(L(G)) +HI(L(G)) ≤ 3p− 1.
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The lower bound attains for a graph G below, and the upper bound attains for
wheel graph W1,3.
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Remark 2.15 The hub-integrity of graph G and hub-integrity of line graph are
not comparable. For this situation consider the graphs in the following cases:

• In the star K1,p, HI(L(K1,p)) > HI(K1,p).
• In the cycle Cp, HI(L(Cp)) = HI(Cp).
• In the path Pp, p > 3, HI(L(Pp)) < HI(Pp).

Proposition 2.16 For any path Pp,

HI(L(Pp)) +HI(L(Pp)) =

{
p+ 1, if p = 3, 4 ;
2p− 4, p ≥ 5.

Remark 2.17 IfG is a connected graph, and |E(L(G))| < |E(G)|, thenHI(L(G)) <
HI(G). We note that |E(L(G))| < |E(G)| obtained only in a path graph, hence
the result.
But the converse is not true, for example, the graphs shown in Figure 3, and Figure
4.
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Figure 3 Figure 4

HI(G) = 5 and HI(L(G)) = 4, while |E(L(G))| > |E(G)|.
Proposition 2.18 Let S be a HI-set of L(G). Then m(L(G)−S) ≤ HI(L(G)−S).
Proof. Let S? be a HI-set of L(G)− S.

|S|+m(L(G)− S) = HI(L(G))

≤ m(L(G)− (S ∪ S?)) + |S ∪ S?|
= |S|+ |S?|+m((L(G)− S)− S?)

= |S|+HI(L(G)− S).

Hence m(L(G)− S) ≤ HI(L(G)− S). �
Observation 2.19 If G is connected graph, then HI(L(G)) ≤ |V (L(G))|.
If G is disconnected, then HI(L(G)) may be greater than m(L(G)). For example
if G = P3 ∪K3, then HI(L(G)) = 5 > 3 = m(L(G)). Also may be HI(L(G)) ≤
m(L(G)), for example, let G = K2 ∪ C7, then HI(L(G)) = 6 and m(L(G)) = 7.
Proposition 2.20 If a connected graph G is isomorphic to its line graph, then
HI(G) = HI(L(G)). But the converse is not true, for example the graph G is given
in the following Figure 5.
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HI(G) = 4 = HI(L(G)), but G and L(G) are not isomorphic.
Theorem 2.21 Let G ∼= Kp − e, e ∈ E(G). Then HI(G) = p.

Proof. If G ∼= Kp − e, then G ∼= K2 ∪ (p − 2)K1. By definition of hub-integrity
of disconnected graph, we have

HI(G) = p− 2 +HI(K2)

= p− 2 + 2 = p.

Corollary 2.22 Let G ∼= Kp−e, e ∈ E(G). Then HI(G) = HI(G)+1. Therefore,

HI(G)−HI(G) = 1.
Theorem 2.23 Let G ∼= Kp − e, e ∈ E(G). Then HI(L(G)) = 1.

Proof. Since G ∼= Kp − e, then G ∼= K2 ∪ (p − 2)K1, and L(G) ∼= K1. Thus

HI(L(G)) = 1. �
In general, if G ∼= Kp − F, where F is a set of independent edges in G, then

G ∼= |F |K2 ∪ (p− 2|F |)K1. So we can conclude the following theorem.
Theorem 2.24 Let G ∼= Kp − F, where F is a set of maximum number of

independent edges in G, then HI(G) = p.
Theorem 2.25 IfG ∼= Kp−F, where F is a set of maximum number of independent

edges in G, then HI(L(G)) = |F |.
Proof. Since G ∼= Kp − F, then G ∼= |F |K2 ∪ (p − 2|F |)K1. Therefore L(G) =
|F |K1. By definition of hub-integrity of disconnected graph, we have,

HI(L(G)) = 1 + 1 + 1 + . . .+ 1︸ ︷︷ ︸
|F |−1 times

+HI(K1)

= 1 + 1 + 1 + . . .+ 1︸ ︷︷ ︸
|F |−1 times

+ 1

= |F |.

Lemma 2.26 If G is a graph, then γ(L(G)) ≤ h(L(G)) + 1.
Proof. Let S be a hub set in L(G), and suppose that the set of vertices Q which
are not adjacent to anything in S (nor in S themselves). The only S-paths between
vertices in Q must therefore be trivial, since there are S-paths between all pairs
of vertices in V − S, it follows that G[Q] is complete. Then, S ∪ {q} must be a
dominating set for any q ∈ Q. �
Theorem 2.27 For any graph G, γ(L(G)) ≤ HI(L(G)).
Proof. By the definition of HI(G), h(L(G)) + 1 ≤ HI(L(G)) and by Lemma
2.26, γ(L(G)) ≤ h(L(G)) + 1 ≤ HI(L(G)). Therefore γ(L(G)) ≤ HI(L(G)). �

3. Hub-integrity of line graph of some graphs

Theorem 3.1 Let G be a star K1,p, and G′ be a graph obtained from G by
dividing each edge of G exactly once. Then HI(L(G′)) = p+ 1.
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Proof. Since L(G′) contains a complete graph Kp as its subgraph, if we choose
the set S as all vertices of Kp of L(G′), then there exist p components each con-
taining only one vertex. So HI(L(G′)) = p+ 1. �
Definition 3.2 [11] The p-sunlet graph is the graph on 2p vertices obtained by
attaching p pendant edges to a cycle graph Cp and is denoted by Lp.
Theorem 3.3 Let Lp be p-sunlet graph, then HI(L(Lp)) = p+ 1.
Proof. Let V (Lp) = {v1, v2, ..., vp, u1, u2, ..., up} and E(Lp) = {e1, e2, ..., ep, e′1, e′2, ..., e′p}.
By the definition of line graph, V (L(Lp)) = {ei, 1 ≤ i ≤ p} ∪ {e′i, 1 ≤ i ≤ p} as
shown in Figure 6. Consider S = {e1, e2, ..., ep} a hub set of L(Lp) and |S| = p.
Then m(L(Lp)− S) = 1, therefore

HI(L(Lp)) ≤ |S|+m(L(Lp)− S) = p+ 1. (1)

We will show that the number |S|+m(L(Lp)−S) is minimum. If S1 is any hub set
differently S and m(L(Lp)− S1) ≥ 1, then trivially |S1|+m(L(Lp)− S1) > p+ 1,
hence for any hub set S1,

|S1|+m(L(Lp)− S1) > p+ 1. (2)

From (1) and (2), HI(L(Lp)) = p+ 1. �
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Corollary 3.4 HI(Lp) = HI(L(Lp)).
Proposition 3.5

(1) For any path Pp with p ≥ 3,

HI(L(Pp)) =

{
2, if p = 3 ;
p− 2, if p ≥ 4.

(2) For any cycle Cp, p ≥ 4,

HI(L(Cp)) =

{
p− 1, if p = 4, 5 ;
p− 2, if p ≥ 6.

(3) For the star K1,p, HI(L(K1,p)) = p.

Definition 3.6 [3] A double star Sn,m is a tree with exactly two vertices that
are not pendant vertices, with one adjacent to n pendant vertices and the other to
m pendant vertices.
Lemma 3.7 h(L(Sn,m) = 1.
Proof. The graph L(Sn,m) consists of two complete graphs of orders n,m re-
spectively, and the vertex e that is adjacent to all vertices in L(Sn,m). The number
of vertices of L(Sn,m) is n + m − 1. The graphs Sn,m and L(Sn,m) are shown
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in Figure 7. Consider S = {e} a hub set of L(Sn,m). Since e is adjacent to all
vertices in L(Sn,m), if we remove it from the graph L(Sn,m), there is no S-path
between the vertices that are not adjacent. So S is a minimum hub set. Therefore
h(L(Sn,m) = 1. �
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Figure 7: Sn,m and L(Sn,m)

Theorem 3.8

HI(L(Sn,m) =

{
n+ 1, if n = m ;
1 +max{n,m}, if n 6= m.

Proof. The number of the vertices of L(Sn,m) is n + m − 1. We have the two
cases :
Case 1 : n = m. From Lemma 3, h(L(Sn,n)) = 1 and H = {e}, a hub set of
L(Sn,n). Then m(L(Sn,n)−H) = n. Therefore,

HI(L(Sn,n)) ≤ h(L(Sn,) +m(L(Sn,n)−H) = n+ 1. (3)

If S is any hub set other than H and m(L(Sn,n)− S) = 1, then |S| ≥ 2n− 1, so

HI(L(Sn,n)) ≥ 2n. (4)

If S1 is any hub set other than H and m(L(Sn,m)−S1) = 2, then |S1| ≥ 2n− 3, so

HI(L(Sn,n)) ≥ 2n− 1. (5)

If S2 is any hub set other than H and m(L(Sn,n)− S2) = n− 1, then |S2| = 3, so

HI(L(Sn,n)) = n+ 2. (6)

Then from 3, 4, 5 and 6, we have HI(L(Sn,n)) = n+ 1.
Case 2 : n 6= m. From Lemma (3), h(L(Sn,m) = 1 and H = {e}, a hub set of
L(Sn,m). Then m(L(Sn,m)−H) = max {n,m}. Therefore,

HI(L(Sn,m)) ≤ h(L(Sn,m) +m(L(Sn,m)−H) = 1 +max {n,m}. (7)

If S is any hub set other thanH andm(L(Sn,m)−S) = 1, then |S| ≥ max {n,m}+1,
so

HI(L(Sn,m)) ≥ max {n,m}+ 2. (8)

If S1 is any hub set other than H and m(L(Sn,m) − S1) = max {n,m}, then
|S1| ≥ 1, so

HI(L(Sn,m)) ≥ max {n,m}+ 1. (9)

Therefore, from (7), (8) and (9), HI(L(Sn,m) = max {n,m}+ 1. �
Definition 3.9 [4] The (Cartesian)product G×H of graphs G and H has V (G)×
V (H) as its vertex set and (u1, u2) is adjacent to (v1, v2) if either u1 = v1 and u2
is adjacent to v2 or u2 = v2 and u1 is adjacent to v1.
Lemma 3.10 h(L(K2 × Pp)) = 2p− 3, p ≥ 3.
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Proof. The number of vertices of line graph L(K2 × Pp) is 3p− 2.
Let V (L(K2 × Pp)) = {w1, w2, ..., w3p−2}. Two vertices wp and w2p in L(K2 × Pp)
are adjacent to two vertices, and the vertices w1, wp−1, wp+1, w2p−1 are adjacent to
three vertices, while, the remaining vertices are adjacent to 4 vertices. The graph
L(K2 × P6) is shown in Figure 7, to understand more of the encoding and arrange
of vertices.
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Figure 7. Graph L(K2 × P6)

We have the two cases :
Case 1 : p is even. Consider S = {w1, w3, ..., wp−1} ∪ {wp+2, wp+4, ..., w2p−2} ∪
{w2p+1, w2p+2, ..., w3p−2}, a hub set of L(K2 × Pp) and |S| = 2p − 3. We claim
that S is minimum hub set. If w1 or wp−1 is removed from set S, then there does
not exist S-path between wp with w2p. Hence S is minimum hub set, therefore,
h(L(K2 × Pp)) = 2p− 3.
Case 2 : p is odd. Consider S = {w1, w3, ..., wp−2} ∪ {wp+1, wp+3, ..., w2p−2} ∪
{w2p+1, w2p+2, ..., w3p−2}, a hub set of L(K2×Pp) and |S| = 2p−3. Proof is similar
to Case 1. Hence h(L(K2 × Pp)) = 2p− 3. �
Theorem 3.11 HI(L(K2 × Pp)) = 2p− 1, p ≥ 3.
Proof. The number of vertices of line graph L(K2 × Pp) is 3p− 2.
Let V (L(K2 × Pp)) = {w1, w2, ..., w3p−2}.
From Lemma 3.10 , h(L(K2 × Pp)) = 2p − 3, and H = {w1, w3, ..., wp−1} ∪
{wp+2, wp+4, ..., w2p−2}∪{w2p+1, w2p+2, ..., w3p−2}, if p is even, andH = {w1, w3, ..., wp−2}∪
{wp+1, wp+3, ..., w2p−2}∪{w2p+1, w2p+2, ..., w3p−2}, if p is odd, then m(L(K2×Pp)−
H) = 2. Therefore,

HI(L(K2 × Pp)) ≤ h(L(K2 × Pp) +m(L(K2 × Pp)−H) = 2p− 1. (10)

If S is any hub set other than H and m(L(K2×Pp)−S) = 1, then |S| ≥ 2p− 1, so

HI(L(K2 × Pp)) ≥ 2p. (11)

Now, if S1 is any hub set other than H and m(L(K2×Pp)−S1) ≥ 2, then trivially

|S1|+m(L(K2 × Pp)− S1) ≥ 2p− 1. (12)

We consider S2 = {w1, w2, ..., wp−1}∪{wp+1, wp+2, ..., w2p−1}, and m(L(K2×Pp)−
S2) = 1. Therefore,

HI(L(K2 × Pp)) ≤ |S2|+m(L(K2 × Pp)− S2) = 2p− 1. (13)

Therefore, from (10), (11), (12) and (13), we have HI(L(K2 × Pp)) = 2p− 1. �
Corollary 3.12 For p ≥ 4, HI(L(K2 × Pp)) ≥ 2HI(L(Pp)) + 3.

Theorem 3.13 HI(L(K2 × Cp)) =

{
2p+ 2, if p is even ;
2p+ 1, if p is odd.
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Proof. The number of vertices of line graph L(K2 × Cp) is 3p− 2.
Let V (L(K2 × Cp)) = {w1, w2, ..., w3p}. The graph L(K2 × C6) is shown in Figure
8, to understand more of the encoding and arrange of vertices.
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Figure 8. Graph L(K2 × C5)
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We have the two cases:
Case 1: p is even. Consider S = {w1, w3, ..., wp−1} ∪ {wp+2, wp+4, ..., w2p−2} ∪
{w2p+1, w2p+2, ..., w3p−2} ∪ {wp, w2p}, a hub set of L(K2 ×Cp) , |S| = 2p− 1, then
m(L(K2 × Cp)− S) = 3.
Therefore,

HI(L(K2 × Cp)) ≤ |S|+m(L(K2 × Cp)− S) = 2p+ 2. (14)

If S1 is any hub set other than S with m(L(K2 × Cp)− S1) = 2, then |S1| ≥ 2p.
This implies that

|S1|+m(L(K2 × Cp)− S1) ≥ |S|+m(L(K2 × Cp)− S). (15)

If S2 is any hub set other than S with m(L(K2×Cp)−S2) = 1, then |S2| ≥ 2p+ 1.
This implies that

|S2|+m(L(K2 × Cp)− S2) ≥ |S|+m(L(K2 × Cp)− S). (16)

Then from (14), (15) and (16), we have HI(L(K2 × Cp)) = 2p+ 2.
Case 2: p is odd. Consider S = {w1, w3, ..., wp−2} ∪ {wp+1, wp+3, ..., w2p−2} ∪
{w2p+1, w2p+2, ..., w3p−2} ∪ {wp, w2p}, a hub set of L(K2 ×Cp) , |S| = 2p− 1, then
m(L(K2 × Cp)− S) = 2.
Therefore,

HI(L(K2 × Cp)) ≤ |S|+m(L(K2 × Cp)− S) = 2p+ 1. (17)

If S1 is any hub set other than S with m(L(K2×Cp)−S1) = 1, then |S1| ≥ 2p+ 1.
This implies that,

|S1|+m(L(K2 × Cp)− S1) ≥ 2p+ 2. (18)

If m(L(K2 × Cp)− S1) ≥ 2, then trivially

|S1|+m(L(K2 × Cp)− S1) ≥ 2p+ 1. (19)

From (17), (18) and (19), we have HI(L(K2 × Cp)) = 2p+ 1. �
Lemma 3.14 h(L(K2 ×K1,p) = p+ 1.
Proof. The graph L(K2 ×K1,p) consists of two complete graph Kp each with p
vertices and {v, v1, v2, ..., vp} vertices as shown in Figure 9. Thus, the number of
the vertices of L(K2 ×K1,p) is 3p+ 1.
A vertex v in L(K2 ×K1,p) is adjacent to all vertices in both Kp and the vertices
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{v1, v2, ..., vp} are adjacent to one vertex of both complete Kp.
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Figure 9. Graph L(K2 ×K1,p)

Consider H = {v, v1, v2, ..., vp}, a hub set of graph L(K2 ×K1,p).
We claim that H is a minimum hub set. If the vertex v is removed from set H,
then there does not exist H-path between all the vertices of both complete graph
Kp. Thus h(L(K2 ×K1,p) = p+ 1. �
Theorem 3.15 HI(L(K2 ×K1,p) = 2p+ 1.
Proof. The graph L(K2 ×K1,p) consists of two complete graph Kp each with p
vertices and {v, v1, v2, ..., vp} vertices. Thus, the number of the vertices of L(K2 ×
K1,p) is 3p+ 1.
From Lemma 3.15, h(K2 ×K1,p) = p + 1 and H = {v, v1, v2, ..., vp}, a hub set of
graph L(K2 ×K1,p). Then m(L(K2 ×K1,p)−H) = p. This implies that

HI(L(K2 ×K1,p) ≤ h(L(K2 ×K1,p) +m(L(K2 ×K1,p)−H) = 2p+ 1. (20)

If S1 is any hub set other than H with m(L(K2 × K1,p) − S1) = p − 1, then
|S1| ≥ 2p+ 1. This implies that

|S1|+m(L(K2 ×K1,p)− S1) ≥ 3p. (21)

If S2 is any hub set other than H and S1 with m(L(K2 × K1,p) − S2) = 1, then
|S2| ≥ 2p+ 1. This implies that

|S2|+m(L(K2 ×K1,p)− S2) ≥ 2p+ 2. (22)

If m(L(K2 ×K1,p)− S1) > p, then

|S1|+m(L(K2 ×K1,p)− S1) ≥ 2p+ 1. (23)

From (20), (21), (22) and (23), HI(L(K2 ×K1,p) = 2p+ 1. �
Corollary 3.16 HI(L(K2 ×K1,p)) ≥ 2HI(L(K1,p)) + 1.
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