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A NOTE ON GENERAL COINCIDENCE THEORY FOR

SET–VALUED MAPS IN TOPOLOGICAL VECTOR SPACES

DONAL O’REGAN

Abstract. In this paper we present some coincidence results for maps which
are not necessarily compact.

1. Introduction

Coincidence theory for compact maps (or alternatively maps whose domain is
compact) has received some attention in the literature; we refer the reader to [[2], [3],
[4], [5], [6], [7], [8], [9]] and the references therein. A typical example is the following
result due to Granas and Liu [5]: Let X, Y be convex subsets of topological vector
spaces and A, B : X → Y be set valued maps satisfying:
(i). A is upper semicontinuous and has nonempty compact acyclic values,
(ii). B has nonempty convex values and open fibres.
If A is compact then there exists x0 ∈ X with A(x0) ∩ B(x0) ̸= ∅. A special case
of this result is when A compact is replaced by X compact.

In this paper we present results in the noncompact situation. With appropriate
assumptions we use results in the literature (when the domain space is compact
or alternatively one of the maps is compact) to establish our theory. We present
four results in Section 2. Other approaches obtaining coincidence results in the
noncompact case will be presented by the author is a series of future papers.

2. Coincidence Theory.

By a space we mean a Hausdorff topological space. We consider the classes A
and B. Let E be a space and X a subset of E.

Definition 2.1. We say F ∈ M(X,E) if F : X → 2E and F ∈ A(X,E); here 2E

denotes the family of nonempty subsets of E.

Definition 2.2. We say G ∈ MB(X,E) if G : X → 2E and G ∈ B(X,E).

Remark 2.3. Examples of the classes A and B can be found for example in [[7],
[8], [9]].
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Theorem 2.4. Let Ω be a closed, convex subset of a Hausdorff topological vector
space E with x0 ∈ Ω. Suppose F : Ω → 2Ω, Φ : Ω → 2E and assume the following
conditions hold:

A ⊆ Ω, A = co ({x0} ∪ F (A)) implies A is compact (2.1)

and 
for any nonempty convex compact subset W of Ω
with F (W ) ⊆ W, F ∈ M(W,W ), Φ ∈ MB(W,E) and
(W,F,Φ) has the coincidence property
(i.e. there exists x ∈ W with F (x) ∩ Φ(x) ̸= ∅).

(2.2)

Then there exists x ∈ Ω with F (x) ∩ Φ(x) ̸= ∅.

PROOF: Consider S the family of all closed, convex subsets D of Ω with x0 ∈ D
and F (x) ⊆ D for all x ∈ D. Note S ̸= ∅ since Ω ∈ S. Let

D0 = ∩D∈S D.

Notice D0 is nonempty, closed and convex and F : D0 → 2D0 (note if x ∈ D0

then F (x) ⊆ D for all D ∈ S). Let

D1 = co ({x0} ∪ F (D0)). (2.3)

We now show D1 = D0. Now F : D0 → 2D0 together with D0 closed and convex
implies D1 ⊆ D0. Also F (D1) ⊆ F (D0) ⊆ D1 (see (2.3)). Thus D1 is closed and
convex with F (D1) ⊆ D1. As a result D1 ∈ S, so D0 ⊆ D1. Consequently

D0 = co ({x0} ∪ F (D0)). (2.4)

Now (2.1) guarantees that D0 is compact and (2.4) implies F (D0) ⊆ D0. Now
(2.2) guarantees that there exists x ∈ D0 with F (x) ∩ Φ(x) ̸= ∅. �

Note in Theorem 2.4 we could replace (2.2) with for any W ⊆ Ω, W = co ({x0} ∪ F (W )) (so W is convex and compact)
we have that F ∈ M(W,W ), Φ ∈ MB(W,E) and (W,F,Φ) has the
coincidence property (i.e. there exists x ∈ W with F (x) ∩ Φ(x) ̸= ∅).

Theorem 2.5. Let Ω be a closed, convex subset of a Hausdorff topological vector
space E with x0 ∈ Ω and suppose F : Ω → 2Ω and Φ : Ω → 2E. Let

D0 = co ({x0} ∪ F (Ω)), Dn+1 = co ({x0} ∪ F (Dn)) for n ∈ {0, 1, 2, ...},
and D = ∩∞

n=0Dn. Assume

D is compact (2.5)

and suppose (2.2) holds. Then there exists x ∈ Ω with F (x) ∩ Φ(x) ̸= ∅.

Remark 2.6. In Theorem 2.5 note D is closed and convex. Also note (see below)
that co ({x0} ∪ F (D)) ⊆ D but it is not clear whether D satisfies the inclusion
D ⊆ co ({x0} ∪ F (D)). To show co ({x0} ∪ F (D)) ⊆ D first note F (D) ⊆ F (Ω) ⊆
D0. Also note D ⊆ D0 implies F (D) ⊆ F (D0) ⊆ D1, D ⊆ D1 implies F (D) ⊆
F (D1) ⊆ D2 and by induction F (D) ⊆ Dk for k ∈ {0, 1, 2, ...}. Consequently
F (D) ⊆ ∩∞

n=0Dn = D so co ({x0} ∪ F (D)) ⊆ D.

Remark 2.7. Examples where (2.5) holds can be found in the literature. For example
if F is countably condensing then D is compact (see [[11], Theorem 2.2]).

PROOF: Note from Remark 2.6 that F (D) ⊆ D. Now apply (2.2). �
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Theorem 2.8. Let Ω be a closed, convex subset of a Hausdorff topological vector
space E with x0 ∈ Ω. Suppose F : Ω → 2Ω is a closed map (i.e. has closed graph)
and Φ : Ω → 2E. Also assume the following conditions hold:

A ⊆ Ω, A = co ({x0} ∪ F (A)) implies A is compact (2.6)

and
for any A ⊆ Ω, A = co ({x0} ∪ F (A)) (so A is convex and compact)
we have that Φ ∈ MB(A,E) and the map G given by
G(x) = F (x) ∩A, x ∈ A, is in M(A,A) and
(A,G,Φ) has the coincidence property.

(2.7)

Then there exists x ∈ Ω with F (x) ∩ Φ(x) ̸= ∅.

Remark 2.9. Notice G is well defined i.e. G(x) ̸= ∅ for x ∈ A. To see this it
is enough to show A ⊆ F−1(A). If x ∈ A then xα → x for some net {xα} in
A. Take any yα ∈ F (xα). Since F (A) ⊆ A (note A = co ({x0} ∪ F (A))) we have
yα ∈ A ⊆ A. The compactness of A guarantees that we may assume without loss
of generality that yα → y for some y ∈ A. Since (xα, yα) ∈ graphF and graphF
is closed, we have (x, y) ∈ graphF . Thus y ∈ F (x) ∩A i.e. x ∈ F−1(A).

PROOF: Let

D0 = {x0}, Dn = co ({x0} ∪ F (Dn−1)) for n ∈ N = {1, 2, ......}

and D = ∪∞
n=0 Dn. Now for n ∈ N notice Dn is convex and by induction we see

that

D0 ⊆ D1 ⊆ ........ ⊆ Dn−1 ⊆ Dn .......... ⊆ Ω.

Consequently D is convex. It is also immediate that

D =
∞∪

n=1

co ({x0} ∪ F (Dn−1)) = co ({x0} ∪ F (D));

for each n ∈ {1, 2, ...}; for one side note Dn−1 ⊆ D so F (Dn−1) ⊆ F (D) whereas for
the other side note F (Dn−1) ⊆ Dn ⊆ D so F (D) = F (∪∞

n=0 Dn) = ∪∞
n=0 F (Dn) ⊆

D. Now (2.6) guarantees that D is compact. Let G(x) = F (x) ∩ D for x ∈ D.
Now (2.7) guarantees that there exists a x ∈ D with G(x) ∩ Φ(x) ̸= ∅. �

Remark 2.10. (i). If we assume F (Q) ⊆ F (Q) for any Q ⊆ Ω (or alternatively any
Q ⊆ Ω with Q = co ({x0} ∪ F (Q))) then the map G given in (2.7) is G(x) = F (x),
x ∈ A. To see this notice A = co ({x0} ∪ F (A)) so F (A) ⊆ A and as a result

F (A) ⊆ F (A) ⊆ A
(ii). There are classes M where F ∈ M(Ω,Ω) guarantees that G ∈ M(A,A); see

for example [10].

Next we present a Mönch type coincidence result [[1], [10]].

Theorem 2.11. Let Ω be a closed, convex subset of a Hausdorff topological vector
space E with x0 ∈ Ω. Suppose F : Ω → 2Ω is a closed map which maps compact
sets into relatively compact sets and Φ : Ω → 2E. Also assume the following
conditions hold:{

A ⊆ Ω, A = co ({x0} ∪ F (A)) with A = C
and C ⊆ A countable, implies A is compact

(2.8)
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for any relatively compact subset A of Ω there
exists a countable set B ⊆ A with B = A

(2.9)

if A is a compact subset of Ω then co (A) is compact (2.10)

and 
for any A ⊆ Ω, A = co ({x0} ∪ F (A)) with A = C
and C ⊆ A countable (so A is convex and compact),
we have that Φ ∈ MB(A,E) and the map G given by
G(x) = F (x) ∩A, x ∈ A, is in M(A,A) and
(A,G,Φ) has the coincidence property.

(2.11)

Then there exists x ∈ Ω with F (x) ∩ Φ(x) ̸= ∅.

PROOF: Let

D0 = {x0}, Dn = co ({x0} ∪ F (Dn−1)) for n ∈ N and D = ∪∞
n=0 Dn.

As in Theorem 2.8 we have that D is convex and D = co ({x0} ∪ F (D)). We now
show Dn is relatively compact for n ∈ {0, 1, ...}. Suppose Dk is relatively compact
for some k ∈ N . Then F (Dk) is relatively compact and this together with (2.10)

implies co ({x0} ∪ F (Dk)) is compact. Consequently Dk+1 is relatively compact.
For each n ∈ {0, 1, ...}, (2.9) guarantees that there exists Cn ⊆ Dn with Cn

countable and Cn = Dn. Let C = ∪∞
n=0 Cn. Now since

∞∪
n=0

Dn ⊆
∞∪

n=0

Dn ⊆
∞∪

n=0

Dn

we have
∞∪

n=0

Dn =
∞∪

n=0

Dn = D and
∞∪

n=0

Dn =
∞∪

n=0

Cn =
∞∪

n=0

Cn = C.

Thus C = D, and so (2.8) implies D is compact. Let G(x) = F (x)∩D for x ∈ D.
Now (2.11) guarantees that there exists a x ∈ D with G(x) ∩ Φ(x) ̸= ∅. �
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