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Abstract

This paper is devoted to the existence and asymptotic behavior in p-th moment
of the mild solution to a class of impulsive neutral stochastic functional integro-
differential equations with infinite delay in Hilbert spaces. A new and sufficient set
of conditions are formulated concerning the existence of solutions and the stability
of the nonlinear stochastic system. To obtain the desired result, the theory of the
resolvent operator in the sense of Grimmer, the stochastic analysis theory, the fixed
point theorem and the Hausdorff measure of non-compactness are used. However, it
is very important to specify that in this paper, we have left the classical framework
in which the nonlinear terms are assumed to be Lipschitz continuous. At the end of
this paper, an illustration is also given to show the application of our results.

1. Introduction

Stochastic differential equations have attracted great interest because of their
applications in characterizing many problems in physics, mecanics, electrical en-
gineering, biology, ecology and so on. On this matter, we refer the reader to
[19, 20, 23] and references therein. In particular, integro-differential equations arise
in the mathematical modeling of several natural phenomena and various investi-
gations led to the exploration of their different aspects. The theory of semigroups
of bounded linear operators is closely related to the solution of differential and
integro-differential equations in Banach spaces. In recent years, this theory has
been applied to a large class of nonlinear differential equations in Banach spaces.
The existence, uniqueness, stability, invariant measures and other quantitative and
qualitative properties of solutions to stochastic partial integrodifferential equations
have been extensively considered by many authors see [19, 23] for details. Based on
the method of semigroups, the existence and uniqueness of mild, strong and classical
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solutions of semilinear integro-differential evolution equations were discussed by
Ezzinbi et al. [6] in the deterministic case and Diop et al. [5] in the stochastic case.

In addition to stochastic effects, impulsive effects have become more important
in some mathematical models of real phenomena. The perturbations are performed
discretely and their duration is negligible in comparison with the total duration of the
processes. That is why the perturbations are considered to take place instantaneously
in the form of impulses. The theory of impulsive differential and integro-differential
equations have seen considerable development, see [15, 30]. With regard to this
topic, see the monographs of Lakshmikanthan and al. [15], Hale and Lunel [13]. On
the other hand, there has been intense interest in the study of impulsive neutral
stochastic partial integro-differential equations with resolvent operator in the sense
of Grimmer. Moreover, it is very important to note that, compared to the finite
delay, the problems with infinite delay is clearly more complicated, because the
properties of solutions depend on the choice of the phase space B which is proposed
by Hale and Kato [11]. For the fundamental theory related to functional differential
equations with infinite delay, one can see [14].

In recent years, the existence of solution for partial neutral integro-differential
equation with infinite delay in infinite dimensional spaces has been extensively
studied by many authors. Ezzinbi and al. [7] investigated the existence and
regularity of solutions for some partial functional integrodifferential equations in
Banach spaces. More recently, Cui and Yan [4] investigated the existence of mild
solutions for a class of fractional neutral stochastic integro-differential equations
with infinite delay in Hilbert spaces.

In particular, the stability theory of stochastic differential equations has been
popularly applied in variety fields of science and technology. Several authors have
established the stability results of mild solutions for these equations by using various
techniques. Govindan [8] considered the existence and stability for mild solution
of stochastic partial differential equations by applying the comparison theorem.
Caraballo and Liu [3] proved the exponential stability for mild solution to stochas-
tic partial differential equations with delays by utilizing the well-known Gronwall
inequality. The exponential stability of the mild solutions for semilinear stochastic
delay evolution equations have been discussed by using Lyapunov functionals in [17].
The author in [16] considered the exponential stability for stochastic partial func-
tional differential equations by means of the Razuminkhin-type theorem. Taniguchi
[6] discussed the exponential stability for stochastic delay differential equations by
the energy inequality. Using fixed point approach, Luo [18] studied the asymptotic
stability of mild solutions of stochastic partial differential equations with infinite
delays. Further, Sakthivel et al.[27, 28, 29] established the asymptotic stability
and exponential stability of second-order stochastic evolution equations in Hilbert
spaces.

But it seem that little is known about asymptotic behavior of impulsive partial
stochastic functional neutral integro-differential equations with infinite delay, and
the aim of this paper is to fill this gap.

Motivated by the above works, the purpose of this paper is to study the existence
and asymptotic stability of mild solutions for a class of impulsive neutral partial
stochastic functional integro-differential equations with infinite delay in Hilbert
spaces of the form
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d[x(t)− g(t, x(t− ρ1(t)))] =
[
A[x(t)− g(t, x(t− ρ1(t)))]

+
∫ t

0
B(t− s)[x(s)− g(s, x(s− ρ1(s)))]ds

+h
(
t, x(t− ρ2(t)),

∫ t

0
a(t, s, x(s− ρ3(s)))ds

)]
dt (1)

+ f

(
t, x(t− ρ4(t)),

∫ t

0
b(t, s, x(s− ρ5(s)))ds

)
dw(t), t ≥ 0, t 6= tk,

∆x(tk) = Ik(x(t−k )), t = tk, k = 1, · · · ,m,
x0(·) = ϕ ∈ BF0([m̃(0), 0], H),

where the state x(·) takes values in a separable real Hilbert space H with inner
product 〈·, ·〉H ; and norm ‖ · ‖H . The operator A : D(A)→ H is the infinitesimal
generator of a strongly continuous semigroup on H, and B(t− s) is a closed linear
operator with domain at least D(A). Let K be another separable Hilbert space with
inner product 〈·, ·〉K and norm ‖ · ‖K . Suppose {w(t), t ≥ 0} is a given K-valued
Wiener process with a covariance operator Q > 0 defined on a complete probability
space (Ω,F ,P) equipped with a normal filtration {Ft}t≥0, which is generated by
the Wiener process w, and g : [0,+∞)×H → H; a, b : [0,+∞)× [0,+∞)×H → H;
f : [0,+∞)×H ×H → L(K,H), are all Borel measurable, where L(K;H) denotes
the space of all bounded linear operators fromK intoH; Ik : H → H (k = 1, · · · ,m),
is a given function. Moreover, tk, k ∈ 1,m are fixed moments of time and satisfy
0 < t1 < · · · < tm < limk→∞ tk = ∞, x(t+k ) and x(t−k ) represent the right and
left limits of x(t) at t = tk, respectively, ∆x(tk) = x(t+k ) − x(t−k ), represents the
jump in the state x at time tk with Ik, Jk determining the size of the jump; let
ρi(t) ∈ C(R+,R+) satisfy t − ρi(t) → ∞ as t → ∞, and m̃(0) = max{infs≥0(s −
ρi(s)), i = 1, 2, 3, 4, 5}. Here BF0([m̃(0), 0], H) denote the family of all almost surely
bounded, F0-measurable, continuous random variables ϕ(t) : [m̃(0), 0] → H with
norm ‖ϕ‖B = supm̃(0)≤t≤0 E‖ϕ(t)‖H .

To the best of the authors knowledge, there is no result about the existence
and asymptotic stability of mild solutions for this class of impulsive neutral par-
tial stochastic functional integrodifferential equations with infinite delay, which is
expressed in the form (1). Using mainly the theory of resolvent operator in the
sense of Grimmer, the Hölder’s inequality, stochastic analysis, the Darbo fixed point
theorem combined with techniques of the Hausdorff measure of noncompactness, we
get the existence and asymptotic stability of mild solutions for system (1).

It is also very important to clarify that the most common and easily verified
conditions to guarantee the existence and stability of mild solutions are the impulsive
stochastic systems for which the nonlinear function is a Lipschitz function, but in
this paper, we will not suppose these classical Lipschitz conditions. In fact, we
assume that the nonlinear items f, h are continuous functions while the neutral item
g satisfies the generally Lipschitz continuity condition, and some suitable conditions
on the above-defined functions, which can make the solution operator satisfies all
conditions of the Darbo fixed point theorem.
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The rest of this paper is organized as follows. In Section 2, we introduce some
notations and the theory of the resolvent operator in the sense of Grimmer which
will be used to establish the existence of our mild solution. In Section 3, we give
the main results of this paper. In Section 4, an illustration is given to show the
application of the obtained theory.

2. Preliminaries

Let K and H be two real separable Hilbert spaces with inner products 〈·, ·〉K
and 〈·, ·〉H and ‖ · ‖K and ‖ · ‖H , their vector norms respectively.

Let (Ω,F ,P,F) (F = {Ft}t≥0) be a complete probability space satisfying that
F0 contains all P-null sets. Let {ei}∞i=1 be a complete orthonormal basis of K.
Suppose that {w(t) : t ≥ 0} is a cylindrical K-valued Brownian motion with a trace
class operator Q, denote Tr(Q) =

∞∑
i=1

λi = λ <∞, which satisfies that Qei = λiei.

So, actually, w(t) =
∞∑
i=1

√
λiwi(t)ei, where {wi(t)}∞i=1 are mutually independent

one-dimensional standard Brownian motions. Then, the above K-valued stochastic
process w(t) is called a Q-Wiener process. Let L(K,H) be the space of bounded
linear operators mapping K into H equipped with the usual norm ‖ · ‖H and
L(H) denotes the Hilbert space of bounded linear operators from H to H. For
ψ̃ ∈ L(K,H) we define

‖ψ̃‖2
L0

2
= Tr(ψ̃Qψ̃∗) =

∞∑
i=1
‖
√
λiψ̃ei‖2.

If ‖ψ̃‖2
L0

2
<∞ then ψ̃ is called a Q-Hilbert-Schmidt operator, and let L0

2(K,H)
denote the space of all Q-Hilber-Schmidt operators ψ̃ : K → H.

Let Y be the space of all F0-adapted process ψ(t, w̃) : [m̃(0),∞)×Ω→ R which
is almost certainly continuous in t for fixed w̃ ∈ Ω. Moreover ψ(s; w̃) = ϕ(s) for
s ∈ [m̃(0), 0] and E‖(t, w̃)‖pH → 0 as t→∞.
Also Y is a Banach space when it is equipped with a norm defined by

‖ψ‖pY = sup
t≥0

E‖ψ(t)‖pH .

The notation Br(x,H) stands for the closed ball with center at x and radius
r > 0 in H.

3. Partial integrodifferential equation in Banach space

Now for the question of existence of mild solutions of the integrodifferential
equation (1), we recall some needed fundamental results. Regarding the theory of
resolvent operator, we refer the reader to [9]. Let Y be the Banach space D(A)
equipped with the graph norm defined by ‖y‖Y = ‖T (0)y‖ + ‖y‖ for y ∈ Y,
(where ‖ · ‖ is the norm on H). The notation C(R+,Y) stands for the space of all
continuous functions from R+ into Y. We consider the following Cauchy problem:{

v′(t) = Av(t) +
∫ t

0 B(t− s)v(s)ds for t ≥ 0,
v(0) = v0 ∈ H.

(2)
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The process {v(t), t ≥ 0} satisfying the above equation takes values in the space
H.

The notation C([0,+∞),Y) stands for the space of all continuous function from
[0,+∞) into Y.

Definition 3.1. [9] A resolvent operator of (2) is a bounded linear operator valued
function R(t) ∈ L(H) for t ≥ 0, satisfying the following properties:

(1) R(0) = I and ‖R(t)‖L(H) ≤Me−βt for some constants M and β,

(2) for each x ∈ H, R(t)x is strongly continuous for t ≥ 0,
(3) R(t) ∈ L(Y) for t ≥ 0. For x ∈ Y, R(·)x ∈ C1(R+, H) ∩ C(R+,Y).

R′(t)x = AR(t)x+
∫ t

0
B(t− r)R(s)xds

R′(t)x = R(t)Ax+
∫ t

0
R(t− r)B(s)xds, t ≥ 0.

For additional details on resolvent operators, we refer the reader to [9, 10]. The
resolvent operator plays an important role to study the existence of solutions and
to etablish a variation of constants for non-linear systems. For this reason, we need
to know when the linear system (1) possesses a resolvent operator. Theorem 3.1
below provides a satisfactory answer to this problem. In what follows we suppose
the following assumptions:
(A1) The operator A generates a C0-semigroup (T (t))t≥0 on H.
(A2) For all t ≥ 0, B(t) is closed linear operator from D(A) to H and B(t) ∈

L(Y, H). For any y ∈ H, the map t 7→ B(t)y is bounded, differentiable and
the derivative t 7→ B(t)y is bounded uniformly continuous on R+. Moreover,
there is an integrable function µ : J → R+ such that for each z ∈ H, the map
t→ B(t)z belongs to W 1,1(J,H) and

∥∥∥dB(t)z
dt

∥∥∥ ≤ µ(t)‖z‖, z ∈ H, t ∈ J.

Theorem 3.1. [9] Assume that (A1)-(A2) hold. Then there exists a unique resolvent
operator to the Cauchy problem (2).

In the following, we give some results for the existence of solutions for the following
integro-differential equation.{

v′(t) = Av(t) +
∫ t

0 B(t− s)v(s)ds+ q(t) for t ≥ 0,
v(0) = v0 ∈ H.

(3)

where q : [0,+∞[→ H is continuous function.

Definition 3.2. [9] A continuous function v : [0,+∞[→ H is said to be a strict
solution of the Eq. (3) if

(1) v ∈ C1([0,+∞[, H) ∩ C([0,+∞[,Y),

(2) v satisfies Eq. (3) for t ≥ 0.

The next theorem provides sufficient conditions ensuring the regularity of solutions
of the Eq. (2).
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Theorem 3.2. [9] Assume that hypotheses (A1) and (A2) hold. If v is a strict
solution of the Eq.(2), then the variation of constant formula holds

v(t) = R(t)v0 +
∫ t

0
R(t− s)q(s)ds, for t ≥ 0. (4)

Accordingly, we can establish the following definition.

Theorem 3.3. [9] Let q ∈ C1([0,+∞),H) and v be defined by (4). If v0 ∈ D(A),
then v is a strict solution of the Eq.(2).

Now we will derive the appropriate definition of mild solutions of (2).

Definition 3.3. [9] A function v : [0,+∞)→ H is called mild solution of the Eq.
(2), for v0 ∈ H, if v satisfies the variation of constants formula (4).

Accordingly, we can establish the following definition of the equation (1).

Definition 3.4. A stochastic process {x(t), t ∈ [0, T ]} (0 ≤ T < ∞) is called a
mild solution of system (1) if

(i) x(t) is adapted to Ft, t ≥ 0.
(ii) x(t) ∈ H has càdlàg paths on t ∈ [0, T ] a.s and for each t ∈ [0, T ], x(t)

satisfies the integral equation
x(t) =R(t)[ϕ− g(0, ϕ(−ρ1(0)))] + g(t, x(t− ρ1(t)))

+
∫ t

0
R(t− s)h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ))dτ

)
ds

+
∫ t

0
R(t− s)f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ2(τ))dτ

)
dw(s) (5)

+
∑

0<tk<t
R(t− tk)Ik(x(t−k )),

and

x0(·) = ϕ ∈ BF0([m̃(0), 0], H).

Definition 3.5. Let p ≥ 2 be an integer. Eq. (5) is said to be stable in p-th moment
if for arbitrarily given ε > 0, there exists a δ̃ > 0 such that ‖ϕ‖B < δ̃ guarantees that

E
[
sup
t≥0
‖x(t)‖pH

]
< ε.

Definition 3.6. Let p ≥ 2 be an integer. Eq. (5) is said to be asymptotically stable
in p-th moment if it stable in p-th moment and for any ϕ ∈ BF0([m̃(0), 0], H),

lim
T→∞

E
[
sup
t≥T
‖x(t)‖pH

]
= 0.

Now, we introduce the Hausdorff measure of noncompactness χ
Ỹ

defined by

Definition 3.7. The Hausdorff measure of non-compactness of a nonempty and
bounded subset Γ of Ỹ , denoted by χ(Γ), is the infimum of all numbers ε > 0 such
that Γ has a finite ε-net in Y, i.e.,

χ
Ỹ

(Γ) = inf{ε > 0; Γ ⊂ S + εΓ
Ỹ
, S ⊂ Ỹ , S is finite }.
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for bounded set Γ in any Hilbert space Ỹ . Some basic properties of χ
Ỹ

(·) are
given in the following lemma.

Lemma 3.4. ([2]) Let Ỹ be a real Hilbert space and Γ, C ⊆ Ỹ be bounded, the
following properties are satisfied:

(1) Γ is pre-compact if and only if χ
Ỹ

(Γ) = 0;
(2) χ

Ỹ
(Γ) = χ

Ỹ
(Γ) = χ

Ỹ
(convΓ), where Γ and convΓ are the closure and the

convex hull of Γ respectively;
(3) χ

Ỹ
(Γ) ≤ χ

Ỹ
(C) when Γ ⊆ C;

(4) χ
Ỹ

(Γ + C) ≤ χ
Ỹ

(Γ) + χ
Ỹ

(C) where Γ + C = {x+ y : x ∈ Γ, y ∈ C};
(5) χ

Ỹ
(Γ ∪ C) = max{χ

Ỹ
(Γ), χ

Ỹ
(C)};

(6) χ
Ỹ

(λΓ) ≤ |λ|χ
Ỹ

(Γ) for any λ ∈ R;
(7) If the map D(Φ) ⊆ Y → Z is Lipschitz continuous with constant κ, then

χZ(ΦΓ) ≤ κχ
Ỹ

(Γ) for any bounded subset Γ ⊆ D(Φ), where Z is a Banach
space;

Definition 3.8. [26] The map Φ : V ⊆ Ỹ → Y is said to be a χ
Ỹ
-contraction if

there exists a positive constant κ < 1 such that χ
Ỹ

(Φ(Γ)) ≤ κχ
Ỹ

(Γ) for any bounded
close subset Γ ⊆ V where Ỹ is a Banach space.

In this paper we denote by χC the Hausdorff’s measure of noncompactness of
C([0, b], H) and by χY , the Hausdorff’s measure of noncompactness of Ỹ .

Lemma 3.5. [23] For any p ≥ 1 and for arbitrary L0
2(K,H)-valued predictable

process φ(·), we have the following inequality

sup
s∈[o,t]

E
∥∥∥∥∫ s

0
φ(v)dw(v)

∥∥∥∥2p

H

≤ (p(2p− 1))p
(∫ t

0
(E‖φ(s)‖1/p

L0
2

)ds
)p

, t ∈ [0,∞).

In the rest of this paper, we denote by Cp = (p(p− 1)/2)p/2.

Lemma 3.6. ([1] Darbo) If V ⊆ Y is closed and convex and 0 ∈ V, the continuous
map Φ : V → V is a χY -contraction, if the set {x ∈ V : x = λΦx} is bounded for
0 < λ < 1, then the map Φ has at least one fixed point in V.

4. Main Results

In this section we present our main results on the existence and asymptotic
stability in the p-th moment of mild solutions of system (1). To do this, we make
the following hypotheses:
(H1) A is the infinitesimal generator of a strongly continuous semigroup {T (t) : t ≥

0} on H. We will also suppose that the resolvent operator R(t), t > 0 of (1)
is compact and there exists M > 0, β > 0 such that ‖R(t)‖L(H) ≤Me−βt,
that is R is exponentially stable.

(H2) The function g : [0,∞)×H → H is continuous and there exists Lg > 0 such
that

E‖g(t, ψ1)− g(t, ψ2)‖pH ≤ Lg‖ψ1 − ψ2‖pH , t ≥ 0, ψ1, ψ2 ∈ H,

and
E‖g(t, ψ)‖ph ≤ LgE‖ψ‖

p
H , t ≥ 0, ψ ∈ H
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with MpLg < 1.

(H3) There exists a continuous function ma : [0,∞)→ [0,∞) such that

E
∥∥∥∥∫ t

0
a(t, s, ψ)ds

∥∥∥∥p
H

≤ ma(t)Θa(E‖ψ‖pH)

for a.e. t ≥ 0 and all ψ ∈ H, where Θa : [0,∞)→ (0,∞) is a continuous
and nondecreasing function.

(H4) The function h : [0,∞)×H ×H → H satisfies the following conditions:
(i) The function h : [0,∞)×H ×H → H is continuous.
(ii) There exists a continuous function mh : [0,∞)→ [0,∞) and a continu-

ous nondecreasing function Θh : [0,∞)→ (0,∞) such that

E‖h(t, ψ, x)‖pH ≤ mh(t)Θh(E‖ψ‖pH) + E‖x‖pH′ , t ≥ 0, ψ, x ∈ H.

(iii) The set
{
R(t− s)h

(
s, ψ,

∫ s
0 a(s, τ, ψ)dτ

)
: t, s ∈ [0, b], ψ ∈ Br(0, H)

}
is relatively compact in H.

(H5) There exists a function continuous function mb : [0,∞)→ [0,∞) such that

E
∥∥∥∥∫ t

0
b(t, s, ψ)ds

∥∥∥∥p
H

≤ mb(t)Θ(E‖ψ‖pH)

for a.e. t ≥ 0 and all ψ ∈ H, where Θb : [0,∞)→ (0,∞) is a continuous
and nondecreasing function.

(H6) The function f : [0,∞)×H×H → L(K,H) satisfies the following conditions:
(i) The function f : [0,∞)×H ×H → L(K,H) is continuous.
(ii) There exists a continuous function mf : [0,∞)→ [0,∞) and a continu-

ous nondecreasing function Θf : [0,∞)→ (0,∞) such that

E‖f(t, ψ, x)‖pH ≤ mf (t)Θf (E‖ψ‖pH) + E‖x‖pH′ , t ≥ 0, ψ, x ∈ H.

(iii) The set
{
R(t− s)f

(
s, ψ,

∫ s
0 b(s, τ, ψ)dτ

)
: t, s ∈ [0, b], ψ ∈ Br(0, H)

}
is relatively compact in H.

(H7) The functions Ik, Jk : H → H are completely continuous and that
there are constants d(j)

k , k ∈ 1,m, j = 1, 2, 3, 4 such that E‖Ik(x)‖pH ≤
d

(1)
k E‖x‖pH + d

(2)
k , for every x ∈ H.

In the proof of the main results, we need the following lemmas.

Lemma 4.1. Assume that conditions (H1), (H2) hold. Let Φ1 be the operator
defined by: for each x ∈ Y,

(Φ1x)(t) = g(t, x(t− ρ1(t))). (6)
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Then Φ1 is continuous on [0,∞) in p-th mean and maps Y into itself.

Proof. The continuity in p-th moment of Φ1 on [0,∞) follows from (H2).
Next we show that Φ1(Y ) ⊂ Y. By (H1) and (H2), from the equation (6), we

have for t ∈ [m̃(0),∞),
E‖(Φ1x)(t)‖pH ≤ E‖g(t, x(t− ρ1(t)))‖pH

≤ LgE‖x(t− ρ1(t))‖pH .

That is to say E‖(Φ1x)(t)‖pH → 0 as t→∞. So we conclude that Φ1(Y ) ⊂ Y. •

Lemma 4.2. Assume that conditions (H1), (H3), (H4)(i)− (ii) hold. Let Φ2 be
the operator defined by: for each x ∈ Y,

(Φ2x)(t) =
∫ t

0
R(t− s)h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)
ds. (7)

Then Φ2 is continuous and maps Y into itself.

Proof. We first prove that Φ2 is continuous in p-th moment on [0,∞). Let x ∈ Y, t̃ ≥ 0
and |ξ| be sufficiently small, we have

E‖(Φ2x)(t̃+ ξ)− (Φ2x)(t̃)‖pH

≤ 2p−1E

∥∥∥∥∥
∫ t̃

0
[R(t̃+ ξ − s)−R(t̃− s)]h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)
ds

∥∥∥∥∥
p

H

+ 2p−1E

∥∥∥∥∥
∫ t̃+ξ

t̃

R(t̃+ ξ − s)h
(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)
ds

∥∥∥∥∥
p

H

≤ 2p−1E

[∫ t̃

0

∥∥∥∥[R(t̃+ ξ − s)−R(t̃− s)]h
(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥
H

ds

]p

+ 2p−1MpE

[∫ t̃+ξ

t̃

e−β(t̃+ξ−s)
∥∥∥∥h(s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥
H

ds

]p

≤ 2p−1

[∫ t̃

0

∥∥R(t̃+ ξ − s)−R(t̃− s)
∥∥(p/p−1)
L2(H) ds

]p−1 ∫ t̃

0
E
∥∥∥∥h(s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥p
H

ds

+ 2p−1Mp

[∫ t̃+ξ

t̃

e−(pβ/p−1)(t̃+ξ−s)ds

]p−1

×
∫ t̃+ξ

t̃

E
∥∥∥∥h(s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥p
H

ds→ 0 as ξ → 0.

Thus Φ2 is continuous in p-th moment on [0,∞).
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Next we show that Φ2(Y ) ⊂ Y. By (H1), (H3) and (H4)(i) − (ii), from the
equation (7), we have for t ∈ [m̃(0),∞),

E‖(Φ2x)(t)‖pH

≤ E
[∫ t

0

∥∥∥∥R(t− s)h
(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥
H

ds

]p
≤MpE

[∫ t

0
e−β(t−s)

∥∥∥∥h(s, x(s− ρ2(s)),
∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥
H

ds

]p
≤Mp

[∫ t

0
e−β(t−s)ds

]p−1 ∫ t

0
e−β(t−s)E

∥∥∥∥h(s, x(s− ρ2(s)),
∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥p
H

ds

≤Mpβ1−p
∫ t

0
e−β(t−s)[mh(s)Θ(E‖x(s− ρ2(s))‖pH) +ma(s)Θa(E‖x(s− ρ3(s))‖pH)]ds

= K2

∫ t

0
e−β(t−s)[mh(s)Θh(E‖x(s− ρ2(s))‖pH) +ma(s)Θa(E‖x(s− ρ3(s))‖pH)]ds.

However, for any any ε > 0 there exists a τ̃1 > 0 such that E‖x(s− ρ2(s))‖pH < ε
and E‖x(s− ρ3(s))‖pH < ε for t ≥ τ̃1. Thus, we obtain

E‖(Φ2x)(t)‖pH ≤ K2

∫ t

0
e−β(t−s)[mh(s)Θh(E‖x(s− ρ2(s))‖pH) +ma(s)Θa(E‖x(s− ρ3(s))‖pH)]ds

≤ K2

∫ τ̃1

0
e−β(t−s)[mh(s)Θh(E‖x(s− ρ2(s))‖pH) +ma(s)Θa(E‖x(s− ρ3(s))‖pH)]ds

+K2

∫ t

τ̃1

e−β(t−s)[mh(s)Θh(E‖x(s− ρ2(s))‖pH) +ma(s)Θa(E‖x(s− ρ3(s))‖pH)]ds

≤ K2e
−βt

∫ τ̃1

0
eβs[mh(s)Θh(E‖x(s− ρ2(s))‖pH) +ma(s)Θa(E‖x(s− ρ3(s))‖pH)]ds

+K2

∫ t

τ̃1

e−β(t−s)[mh(s)Θh(ε) +ma(s)Θa(ε)]ds

≤ K2e
−βt

∫ τ̃1

0
eβs[mh(s)Θh(E‖x(s− ρ2(s))‖pH) +ma(s)Θa(E‖x(s− ρ3(s))‖pH)]ds

+K2Lh,a[Θh(ε) + Θa(ε)],

where Lh,a = supt≥0
∫ t
τ̃1
e−β(t−s)[mh(s) +ma(s)]ds. As e−βt → 0 as t→∞ and,

there exists τ̃2 ≥ τ̃1 such that for any t ≥ τ̃2 we have

K2e
−βt

∫ τ̃1

0
eβs[mh(s)Θh(E‖x(s−ρ2(s))‖pH)+ma(s)Θa(E‖x(s−ρ3(s))‖pH)]ds < ε−K2Lh,a[Θh(ε)+Θa(ε)].

From the above inequality, for any t ≥ τ̃2, we obtain E‖(Φ2x)(t)‖pH < ε. That is
to say E‖(Φ2x)(t)‖pH → 0 as t→∞. So we conclude that Φ2(Y ) ⊂ Y. •
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Lemma 4.3. Assume that conditions (H1), (H5), (H6)(i)− (ii) hold. Let Φ3 be
the operator defined by: for each x ∈ Y,

(Φ3x)(t) =
∫ t

0
R(t− s)f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)
dw(s). (8)

Then Φ3 is continuous and maps Y into itself.

Proof. We first prove that Φ3 is continuous in p-th moment on [0,∞). Let x ∈
Y, t̃ ≥ 0 and |ε| be sufficiently small, we have

E‖(Φ3x)(t̃+ ξ)− (Φ3x)(t̃)‖pH

≤ 2p−1E

∥∥∥∥∥
∫ t̃

0
[R(t̃+ ξ − s)−R(t̃− s)]f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ))dτ

)
dw(s)

∥∥∥∥∥
p

H

+ 2p−1E

∥∥∥∥∥
∫ t̃+ξ

t̃

R(t̃+ ξ − s)f
(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)
dw(s)

∥∥∥∥∥
p

H

≤ 2p−1Cp

[∫ t̃

0

(
E
∥∥∥∥[R(t̃+ ξ − s)−R(t̃− s)]f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)∥∥∥∥p
H

)2/p

ds

]p/2

+ 2p−1Cp

[∫ t̃+ξ

t̃

(
E
∥∥R(t̃+ ξ − s) ×f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)∥∥∥∥p
H

)2/p

ds

]p/2

→ 0

as ξ → 0

Thus Φ3 is continuous in p-th moment on [0,∞).
Next we show that Φ3(Y ) ⊂ Y. By (H1),(H5) and (H6)(i)− (ii), from the equation
(8), we have for t ∈ [m̃(0),∞),

E‖(Φ3x)(t)‖pH

≤ Cp

[∫ t

0

(
E
∥∥∥∥R(t− s)f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)∥∥∥∥p
H

)2/p

ds

]p/2

≤ CpMp

[∫ t

0

(
e−pβ(t−s)E

∥∥∥∥f (s, x(s− ρ4(s)),
∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)∥∥∥∥p
H

)2/p

ds

]p/2

≤ CpMp

[∫ t

0

[
e−pβ(t−s)[mf (s)Θf (E‖x(s− ρ4(s))‖pH) +mb(s)Θb(E‖x(s− ρ5(s))‖pH)]

]2/p
ds

]p/2

≤ CpMp

[∫ t

0
e
−
[

2(p−1)
p−2

]
β(t−s)

ds

]p/2−1 ∫ t

0
e−pβ(t−s)[mf (s)Θf (E‖x(s− ρ4(s))‖pH) +mb(s)Θb(E‖x(s− ρ5(s))‖pH)]ds

≤ CpMp

[
2β(p− 1)
p− 2

]1−p/2 ∫ t

0
e−pβ(t−s)[mf (s)Θf (E‖x(s− ρ4(s))‖pH) +mb(s)Θb(E‖x(s− ρ5(s))‖pH)]ds

= K3

∫ t

0
e−pβ(t−s)[mf (s)Θf (E‖x(s− ρ4(s))‖pH) +mb(s)Θb(E‖x(s− ρ5(s))‖pH)]ds.
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However, for any any ε > 0 there exists a θ̃1 > 0 such that E‖x(s− ρ4(s))‖pH < ε

and E‖x(s− ρ5(s))‖pH < ε for t ≥ θ̃1. Thus, we obtain

E‖(Φ3x)(t)‖pH ≤ K3

∫ t

0
e−pβ(t−s)[mf (s)Θf (E‖x(s− ρ4(s))‖pH) +mb(s)Θb(E‖x(s− ρ5(s))‖pH)]ds

≤ K3

∫ θ̃1

0
eβs[mf (s)Θf (E‖x(s− ρ4(s))‖pH)

+mb(s)Θb(E‖x(s− ρ5(s))‖pH)]ds+K3Lf,b[Θf (ε) + Θb(ε)],

where Lf,b = supt≥0
∫ t
θ̃1
e−β(t−s)[mf (s) + mb(s)]ds. As e−βt → 0 as t → ∞ and

there exists θ̃2 ≥ θ̃1 such that for any t ≥ θ̃2 we have

K3e
−δt
∫ t1

0
eδs[mf (s)Θf (E‖x(s−ρ4(s))‖pH)+mb(s)Θb(E‖x(s−ρ5(s))‖pH)]ds < ε−K3Lf,b[Θf (ε)+Θb(ε)].

From the above inequality, for any t ≥ θ̃2, we obtain E‖(Φ3x)(t)‖pH < ε. That is to
say E‖(Φ3x)(t)‖pH → 0 as t→∞. So we conclude that Φ3(Y ) ⊂ Y. •

Now, we are ready to present our main result.

Theorem 4.4. Assume the conditions (H1)− (H7) hold. Let p ≥ 2 be an integer.
Then the impulsive stochastic differential equations (1) is asymptotically stable in
p-th moment, provided that (14m)p−1Mp

∑m
k=1(d(1)

k + d
(3)
k ) < 1, and

∫ ∞
1

1
s+ Θh(s) + Θa(s) + Θf (s) + Θb(s)

ds =∞.

Proof. Let the nonlinear operator Ψ : Y → Y be defined as (Ψx)(t) = ϕ(t) for
t ∈ [m̃(0), 0] and for t ≥ 0,

(Ψx)(t) = R(t)[ϕ− g(0, ϕ(−ρ1(0)))] + g(t, x(t− ρ1(t)))

+
∫ t

0
R(t− s)h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)
ds

+
∫ t

0
R(t− s)f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)
dw(s)

+
∑

0<tk<t
R(t− tk)Ik(x(t−k )).

Using (H1) − (H7), and the proof of the Lemmas 4.1-4.3, it is clear that the
nonlinear operator Ψ is well defined and continuous. Moreover, for each t ≥ 0 we
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have

E‖(Ψx)(t)‖pH ≤ 5p−1E‖R(t)[φ− g(0, ϕ(−ρ1(0)))]‖pH + 5p−1E ‖g(t, x(t− ρ1(t)))‖pH

+ 5p−1E
∥∥∥∥∫ t

0
R(t− s)h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)
ds

∥∥∥∥p
H

+ 5p−1E
∥∥∥∥∫ t

0
R(t− s)f

(
s, x(s− ρ4(s)),

∫ s

0
a(s, τ, x(τ − ρ5(τ)))dτ

)
dw(s)

∥∥∥∥p
H

+ 5p−1E

∥∥∥∥∥ ∑
0<tk<t

R(t− tk)Ik(x(t−k ))

∥∥∥∥∥
p

H

.

(9)
Using (H1) and (H2),we have

5p−1E‖R(t)[φ− g(0, ϕ(−ρ1(0)))]‖pH ≤ 10p−1Mpe−pβt[E‖φ‖pH + LgE‖ϕ(−ρ1(0))‖pH ]→ 0 as t→∞.

By (H1)-(H7) and the proof of the Lemmas 4.1-4.3 again, we obtain

5p−1E ‖g(s, x(s− ρ1(s)))‖pH → 0 as t→∞,

5p−1E
∥∥∥∥∫ t

0
R(t− s)h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)
ds

∥∥∥∥p
H

→ 0 as t→∞,

5p−1E
∥∥∥∥∫ t

0
R(t− s)f

(
s, x(s− ρ4(s)),

∫ s

0
a(s, τ, x(τ − ρ5(τ)))dτ

)
dw(s)

∥∥∥∥p
H

→ 0 as t→∞,

and

5p−1E

∥∥∥∥∥ ∑
0<tk<t

R(t− tk)Ik(x(t−k ))

∥∥∥∥∥
p

H

≤ 5p−1
∑

0<tk<t
E‖R(t− tk)Ik(x(t−k ))‖pH

≤ 5p−1Mpe−pβtE‖Ik(x(t−k ))‖pH → 0 as t→∞

so Ψ maps Y into itself.
Next we prove that the operator Ψ has a fixed point, which is a mild solution of

the problem (1). We shall employ Lemma 3.6. For better readability, we break the
proof into a sequence of steps.

Step 1. For 0 < λ < 1, set {x ∈ Y : x = λΨx} is bounded.
Let x ∈ Y be a possible solution of x = λΨ(x) for some 0 < λ < 1. Then, by

(H1)-(H7), we have for each t ∈ [0, T ]
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E‖x(t)‖pH ≤ 5p−1E‖R(t)[φ− g(0, ϕ(−ρ1(0)))]‖pH + 5p−1E ‖g(t, x(t− ρ1(t)))‖pH

+ 5p−1E
∥∥∥∥∫ t

0
R(t− s)h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)
ds

∥∥∥∥p
H

+ 5p−1E
∥∥∥∥∫ t

0
R(t− s)f

(
s, x(s− ρ4(s)),

∫ s

0
a(s, τ, x(τ − ρ5(τ)))dτ

)
dw(s)

∥∥∥∥p
H

+ 5p−1E

∥∥∥∥∥ ∑
0<tk<t

R(t− tk)Ik(x(t−k ))

∥∥∥∥∥
p

H

≤ 10p−1e−βptMp[E‖φ‖pH + LgE‖ϕ(−ρ1(0))‖pH ] + 5p−1E‖g(s, x(s− ρ1(s)))‖pH

+ 5p−1MpE
[∫ t

0
e−β(t−s)

∥∥∥∥h(s, x(s− ρ2(s)),
∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥
H

ds

]p

+ 5p−1Cp

[∫ t

0

[
e−pβ(t−s)E

∥∥∥∥f (s, x(s− ρ4(s)),
∫ s

0
a(s, τ, x(τ − ρ5(τ)))dτ

)∥∥∥∥p
H

]2/p]p/2

+ (5m)p−1Mp
m∑
k=1

e−βp(t−tk)E‖Ik(x(t−k ))‖pH

≤ 10p−1e−βptMp[E‖φ‖pH + LgE‖ϕ(−ρ1(0))‖pH ] + 5p−1LgE‖x(t− ρ1(t))‖pH

+ 5p−1MpT p−1
∫ t

0
e−βp(t−s)[mh(s)Θh(E‖x(s− ρ2(s))‖pH) +ma(s)Θa(E‖x(s− ρ3(s))‖pH)]ds

+ 5p−1CpM
pT p/2−1

∫ t

0
e−βp(t−s)[mf (s)Θf (E‖x(s− ρ4(s))‖pH) +mb(s)Θb(E‖x(s− ρ5(s))‖pH)]ds

+ (5m)p−1Mp
m∑
k=1

e−βp(t−tk)[d(1)
k E‖x(t−k )‖pH + d

(2)
k ].

By the definition of Y, it follows that

E‖x(s− ρi(s))‖pH ≤ 2p−1‖ϕ‖pB + 2p−1 sup
s∈[0,t]

‖x(s)‖pH , i = 1, 2, 3, 4, 5.

If µ(t) = 2p−1‖ϕ‖pB + 2p−1 sup
s∈[0,t]

‖x(s)‖pH , we obtain that

µ(t) ≤ 2p−1‖ϕ‖pB + 20p−1e−βptMp[E‖φ‖pH + LgE‖ϕ(−ρ1(0))‖pH ] + 10p−1Lgµ(t)

+ 10p−1MpT p−1e−βpt
∫ t

0
e−βpt

∫ t

0
eβps[mh(s)Θh(µ(s)) +ma(s)Θa(µ(s))]ds

+ 10p−1CpM
pT p/2−1e−βpt

∫ t

0
eβps[mf (s)Θf (µ(s)) +mb(s)Θb(µ(s))]ds

+ (10m)p−1Mpe−βpt
m∑
k=1

e−βpt
m∑
k=1

eβptk [d(1)
k µ(t) + d

(2)
k ].

Since L̃ = (14m)p−1Mp
m∑
k=1

(d(1)
k ) + 10p−1Lg < 1, we obtain
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eβptµ(t) ≤ 1
1− L̃

[
M̃ + 10p−1MpT p−1

∫ t

0
eβps[mh(s)Θh(µ(s)) +ma(s)Θa(µ(s))]ds

+10p−1CpM
pT p/2−1

∫ t

0
eβps[mf (s)Θf (µ(s)) +mb(s)Θb(µ(s))]ds

]
,

where

M̃ = 2p−1‖ϕ‖pB + 20p−1Mp[E‖φ‖pH + LgE‖ϕ(−ρ1(0))‖pH ]

+ (10m)p−1Mp
m∑
k=1

d
(2)
k .

Denoting by ζ(t) the right-hand side of the above inequality, we have

eβptµ(t) ≤ ζ(t) for all t ∈ [0, T ],
and ζ(0) = 1

1−L̃M̃,

ζ ′(t) = 1
1− L̃

[
14p−1MpT p−1eβpt[mh(s)Θh(µ(s)) +ma(s)Θa(µ(s))]

+14p−1CpM
pT p/2−1eβpt[mf (s)Θf (µ(s)) +mb(s)Θb(µ(s))]

]
≤ 1

1− L̃
[
14p−1MpT p−1eβpt[mh(s)Θh(e−βptζ(t)) +ma(s)Θa(e−βptζ(t))]

+14p−1CpM
pT p/2−1eβpt[mf (s)Θf (e−βptζ(t)) +mb(s)Θb(e−βptζ(t))]

]
.

If ξ(t) = e−βptζ(t), then ξ(0) = ζ(0) ≤ ξ(t), and

ζ ′(t) ≤ 1
1− L̃

[
14p−1MpT p−1eβpt[mh(s)Θh(ξ(t)) +ma(s)Θa(ξ(t))]

+14p−1CpM
pT p/2−1eβpt[mf (s)Θf (ξ(t)) +mb(s)Θb(ξ(t))]

]
,

and we have

ξ′(t) = (−βp)e−βptζ(t) + e−βptζ ′(t)

≤ (−βp)ξ(t) + 1
1− L̃

[
14p−1MpT p−1[mh(s)Θh(ξ(t)) +ma(s)Θa(ξ(t))]

+14p−1CpM
pT p/2−1eβpt[mf (s)Θf (ξ(t)) +mb(s)Θb(ξ(t))]

]
≤ m∗(t)[ξ(t) + Θh(ξ(t)) + Θa(ξ(t)) + Θf (ξ(t)) + Θb(ξ(t))],

where

m∗(t) = max
{

(−βp), 1
1− L̃

14p−1MpT p−1mh(t), 1
1− L̃

14p−1MpT p−1ma(t),

1
1− L̃

14p−1CpM
pT p/2−1mf (t), 1

1− L̃
14p−1CpM

pT p−1mb(t)
}
.

This implies for each t ∈ [0, T ] that
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∫ ξ(t)

ξ(0)

du

u+ Θh(u) + Θa(u) + Θf (u) + Θb(u) ≤
∫ T

0
m∗(s)ds <∞.

This inequality shows that there is a constant K̃ such that ξ(t) ≤ K̃, t ∈ [0, T ],
and hence ‖x‖pY ≤ µ(t) ≤ K̃, where K̃ depends only on p, β, M, T and on the
functions mh(·),Θa(·),mf (·),Θb(·). This indicates that x(·) are bounded on [0, T ].

Step 2. Ψ : Y → Y is continuous.
Let {xn(t)}∞n=0 ⊆ Y with xn → x (n→∞) in Y. Then there is a number r > 0

such that E‖xn(t)‖pH ≤ r for all n and a.e. t ∈ [0, T ], so xn ∈ Br(0, Y ) = {x ∈ Y :
‖x‖pY ≤ r} and x ∈ Br(0, Y ). By the assumptions (H3)-(H7), we have

E
∥∥∥∥h(s, xn(s− ρ2(s)),

∫ s

0
a(s, τ, xn(τ − ρ3(τ)))dτ

)
−h
(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥p
H

→ 0 as n→∞,

E
∥∥∥∥f (s, xn(s− ρ4(s)),

∫ s

0
b(s, τ, xn(τ − ρ5(τ)))dτ

)
−f
(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)∥∥∥∥p
H

→ 0 as n→∞,

for each s ∈ [0, T ], and since

E

∥∥∥∥h(s, xn(s− ρ2(s)),
∫ s

0
a(s, τ, xn(τ − ρ3(τ)))dτ

)
− h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥p
H

≤ 2 max{Θh(r∗),Θa(r∗)}[mh(s) +ma(s)],

E

∥∥∥∥f (s, xn(s− ρ4(s)),
∫ s

0
b(s, τ, xn(τ − ρ5(τ)))dτ

)
− f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)∥∥∥∥p
H

≤ 2 max{Θf (r∗),Θb(r∗)}[mf (s) +mb(s)].

Then by the dominated convergence theorem and Ik, Jk, k = 1, 2, · · · ,m; are
completely continuous, we have for t ∈ [0, T ],
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E‖(Ψxn)(t)− (Ψx)(t)‖pH
≤ 4p−1E ‖g(s, xn(s− ρ1(s)))− g(s, x(s− ρ1(s)))‖pH

+ 4p−1E
∥∥∥∥∫ t

0
R(t− s)

[
h

(
s, xn(s− ρ2(s)),

∫ s

0
a(s, τ, xn(τ − ρ3(τ)))dτ

)
−h
(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)]
ds

∥∥∥∥p
H

+ 4p−1E
∥∥∥∥∫ t

0
R(t− s)

[
f

(
s, xn(s− ρ4(s)),

∫ s

0
b(s, τ, xn(τ − ρ5(τ)))dτ

)
−f
(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)]
dw(s)

∥∥∥∥p
H

+ 4p−1E

∥∥∥∥∥ ∑
0<tk<t

R(t− tk)[Ik(xn(t−k ))− Ik(x(t−k ))]

∥∥∥∥∥
p

H

≤ 4p−1E‖g(s, xn(s− ρ1(s)))− g(s, x(s− ρ1(s)))‖pH

+ 4p−1T p−1
∫ t

0
e−βp(t−s)E

∥∥∥∥h(s, xn(s− ρ2(s)),
∫ s

0
a(s, τ, xn(τ − ρ3(τ)))dτ

)
−h
(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥p
H

ds

+ 4p−1MpCpT
p/2−1

∫ t

0
e−βp(t−s)E

∥∥∥∥f (s, xn(s− ρ4(s)),
∫ s

0
b(s, τ, xn(τ − ρ5(τ)))dτ

)
−f
(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)∥∥∥∥p
H

ds

+ (4m)p−1
∑

0<tk<t
e−β(t−tk)E‖Ik(xn(t−k ))− Ik(x(t−k ))‖pH → 0 as n→∞.

Then, we have for all t ∈ [0, T ],

‖Ψxn −Ψx‖pY → 0 as n→∞.

Therefore, Ψ is continuous.

Step 3. Ψ is χ-contraction.
To see this, we decompose Ψ as Ψ1 + Ψ2 for t ∈ [0, T ], where

(Ψ1x)(t) = R(t)[φ− g(0, ϕ(−ρ1(0)))] + g(s, x(s− ρ1(s))),
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and

(Ψ2x)(t) =
∫ t

0
R(t− s)h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ))dτ

)
ds

+
∫ t

0
R(t− s)f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ2(τ))dτ

)
dw(s)

+
∑

0<tk<t
R(t− tk)Ik(x(t−k )),

(1) Ψ1 is a contraction on Y.
Let t ∈ [0, T ] and x, y ∈ Y. From (H1) and (H2), we have

E‖(Ψ1x)(t)− (Ψ1y)(t)‖pH
= E ‖g(s, x(s− ρ1(s)))− g(s, y(s− ρ1(s)))‖pH
≤ LgE‖x(s− ρ1(s))− y(s− ρ1(s))‖pH
≤ Lg sup

s∈[0,T ]
E‖x(s)− y(s)‖pH

≤ Lg‖x− y‖pY .

Taking supremum over t

‖Ψ1x−Ψ1y‖pY ≤ L0‖x− y‖pY .

where L0 = Lg < 1. Hence, Ψ1 is a contraction on Y.
(2) Ψ2 is a compact operator.
For this purpose, we decompose Ψ2 by Ψ2 = Υ1 + Υ2, where

(Υ1x)(t) =
∫ t

0
R(t− s)h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ))dτ

)
ds

+
∫ t

0
R(t− s)f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ))dτ

)
dw(s),

and
(Υ2x)(t) =

∑
0<tk<t

R(t− tk)Ik(x(t−k )).

(i) Υ1 is a compact operator.
We now prove that Υ1(Br(0, Y ))(t) = {(Υ1x)(t) : x ∈ Br(0, Y )} is relatively

compact for every t ∈ [0, T ]. If x ∈ Br(0, Y ), from the definition of Y, it follows that

E‖x(s− ρi(s))‖pH ≤ 2p−1‖ϕ‖pB + 2p−1 sup
s∈[0,T ]

E‖x(s)‖pH

≤ 2p−1‖ϕ‖pB + 2p−1r := r∗, i = 1, 2, 3, 4, 5.

It follows from conditions (H4)(iii) and (H6)(iii) that the sets
{
R(t−s)h

(
s, ψ,

∫ s
0 a(s, τ, ψ)dτ

)
:

t, s ∈ [0, T ], ‖ψ‖pH ≤ r∗
}
and

{
R(t− s)f(s, ψ,

∫ s
0 b(s, τ, ψ)dτ) : t, s ∈ [0, T ], ‖ψ‖pH ≤ r∗

}
are relatively compact in H. Moreover, for x ∈ Br(0, Y ), from the mean value theorem
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for the Bochner integral, we can infer that

(Υ1x)(t) ∈ tconv
{
R(t− s)h

(
s, ψ,

∫ s

0
a(s, τ, ψ)dτ

)
: t, s ∈ [0, T ], ‖ψ‖pH ≤ r

∗
}

+ t1/2conv

{
R(t− s)f

(
s, ψ,

∫ s

0
b(s, τ, ψ)dτ

)
: t, s ∈ [0, T ], ‖ψ‖pH ≤ r

∗
}

for all t ∈ [0, T ], and conv denotes the convex hull. As a result we conclude that
the set {(Υ1x)(t) : x ∈ Br(0, Y )} is relatively compact in H for every t ∈ [0, T ].

Next we show that Υ1 maps bounded sets into equicontinuous sets of Y. Let
0 < ε < t < T. From (Υ1Br(0, Y ))(t) is relatively compact for each t and by the
strong continuity of R(t), we can choose 0 < ξ < T − t with

‖R(t+ ξ)x−R(t)x‖H ≤ ε

for x ∈ (Φ2Br(0, Y ))(t). For any x ∈ Br(0, Y ). Using (H1)-(H5) and Hölder’s
inequality, it follows that

E‖(Υ1x)(t+ ξ)− (Υ1x)(t)‖pH

≤ 6p−1E
∥∥∥∥∫ t−ε

0
[R(t+ ξ − s)−R(t− s)]h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)
ds

∥∥∥∥p
H

+ 6p−1E
∥∥∥∥∫ t

t−ε
[R(t+ ξ − s)−R(t− s)]h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)
ds

∥∥∥∥p
H

+ 6p−1E

∥∥∥∥∥
∫ t+ξ

t

R(t+ ξ − s)h
(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)
ds

∥∥∥∥∥
p

H

+ 6p−1E
∥∥∥∥∫ t−ε

0
[R(t+ ξ − s)−R(t− s)]f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)
dw(s)

∥∥∥∥p
H

+ 6p−1E
∥∥∥∥∫ t

t−ε
[R(t+ ξ − s)−R(t− s)]f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)
dw(s)

∥∥∥∥p
H

+ 6p−1E
∥∥∥∥∫ t+ε

t

[R(t+ ξ − s)−R(t− s)]f
(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)
dw(s)

∥∥∥∥p
H

≤ 6p−1(t− ε)p−1
∫ t−ε

0
E
∥∥∥∥[R(t+ ξ − s)−R(t− s)]h

(
s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥p
H

ds

+ 6p−1E
[∫ t

t−ε
‖R(t+ ξ − s)−R(t− s)‖H

∥∥∥∥h(s, x(s− ρ2(s)),
∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥
H

ds

]p
+ 6p−1E

[∫ t+ξ

t

‖R(t+ ξ − s)‖H
∥∥∥∥h(s, x(s− ρ2(s)),

∫ s

0
a(s, τ, x(τ − ρ3(τ)))dτ

)∥∥∥∥
H

ds

]p
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+ 6p−1Cp

[∫ t−ε

0

[
E
∥∥∥∥[S(t+ ξ − s)− S(t− s)]f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)∥∥∥∥p
H

]2/p

ds

]p/2

+ 6p−1Cp

[∫ t

t−ε

[
‖R(t+ ξ − s)−R(t− s)‖pHE

∥∥∥∥f (s, x(s− ρ4(s)),
∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)∥∥∥∥p
H

]2/p

ds

]p/2

+ 6p−1Cp

[∫ t+ξ

t

[
‖R(t+ ξ − s)‖pHE

∥∥∥∥f (s, x(s− ρ4(s)),
∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)∥∥∥∥p
H

]2/p

ds

]p/2

≤ 6p−1(t− ε)pεp + 12p−1Mp

[∫ t

t−ε
e−β(t−s)ds

]p−1 ∫ t

t−ε
e−β(t−s)[mh(s)Θh(E‖x(s− ρ1(s))‖pH)

+ma(s)Θa(E‖x(s− ρ2(s))‖pH)]ds

+ 6p−1Mp

[∫ t+ξ

t

e−β(t+ξ−s)ds

]p−1 ∫ t+ξ

t

e−β(t+ξ−s)[mh(s)Θh(E‖x(s− ρ1(s))‖) +ma(s)Θa(E‖x(s− ρ2(s))‖pH)]ds

+ 6p−1Cp(t− ε)p/2−1
∫ t−ε

0
E
∥∥∥∥[S(t+ ξ − s)− S(t− s)]f

(
s, x(s− ρ4(s)),

∫ s

0
b(s, τ, x(τ − ρ5(τ)))dτ

)∥∥∥∥p
H

ds

+ 12p−1CpM
p

[∫ t

t−ε
[e−pβ(t−s)[mf (s)Θf (E‖x(s− ρ4(s))‖pH) +mb(s)Θb(E‖x(s− ρ5(s))‖pH)]]2/pds

]p/2

+ 6p−1CpM
p

[∫ t+ε

t

[e−pβ(t+ξ−s)[mf (s)Θf (E‖x(s− ρ4(s))‖pH) +mb(s)Θb(E‖x(s− ρ5(s))‖pH)]]2/pds
]p/2

≤ 6p−1(t− ε)pεp + 12p−1Mp max{Θh(r∗),Θa(r∗)}β1−p
∫ t

t−ε
e−β(t−s)[mh(s) +ma(s)]ds

+ 6p−1Mp max{Θh(r∗),Θa(r∗)}β1−p
∫ t+ε

t

e−β(τ2−s)[mh(s) +ma(s)]ds+ 6p−1Cp(t− ε)p/2εp

+ 12p−1CpM
p max{Θf (r∗),Θb(r∗)}

[
2β(p− 1)
p− 2

]1−p/2 ∫ t

t−ε
e−β(t−s)[mf (s) +mb(s)]ds

+ 6p−1CpM
p max{Θf (r∗),Θb(r∗)}

[
2β(p− 1)
p− 2

]1−p/2 ∫ t+ε

t

e−β(t+ξ−s)[mf (s) +mb(s)]ds.

Then the right-hand side of the above inequality is independent of x ∈ Br and
tends to zero as ξ → 0 and sufficiently small positive number ε. Thus, the set
{Υ1x : x ∈ Br(0, Y )} is equicontinuous.

(ii) Υ2 is a compact operator.
To prove the compactness of Υ2, note that



196 K. H. BETE, A. MANE, C. OGOUYANDJOU AND M.A.DIOP EJMAA-2019/7(1)

(Υ2x)(t) =
∑

0<tk<t
R(t− tk)Ik(x(t−k ))

=


0, , t ∈ [0, t1],
R(t− t1)I1(x(t−1 )), t ∈ (t1, t2],
· · ·∑m
k=1 R(t− tk)Ik(x(t−k )), t ∈ (tm, T ],

and that the interval [0, T ] is divided into finite subintervals by tk, k = 1, 2, · · · ,m,
so that we only need to prove that

W = {R(t− t1)I1(x(t−1 )), t ∈ [t1, t2], x ∈ Br(0, Y )}

is relatively compact in C([t1, t2], H), as the cases for other subintervals are the
same. In fact, from (H1) and (H7), it follows that the set {R(t− t1)I1(x(t−1 )) x ∈
Br(0, Y )} is relatively compact in H for all t ∈ [t1, t2].

Thus, we see that the functions in W are equicontinuous due to the compactness
of I1 and the strong continuity of the operator R(t) for all t ∈ [0, T ]. Now an
application of the Arzelá-Ascoli theorem justifies the relatively compactness of W.
Therefore, we conclude that operator Υ2 is also a compact map.

Let arbitrary bounded subset V ⊂ Y. Since the mapping Ψ2 is a compact operator,
we get that χY (Ψ2V ) = 0. Consequently

χY (ΨV ) = χY (Ψ1V + Ψ2V ) ≤ χY (Ψ1V ) + χY (Ψ2V ) ≤ L0χY (V ) < χY (V ).

Therefore, Ψ is χ-contraction. In view of Lemma 3.6, we conclude that Ψ has
at least one fixed point x∗ ∈ V ⊂ Y. Then, x is a fixed point of the operator
Ψ, which is a mild solution of the system (1) with x(s) = ϕ(s) on [m̃(0), 0] and
E‖x(t)‖pH → 0 as t→∞. This shows the asymptotic stability of the mild solution
of (1). In fact, let ε > 0 be given and choose γ̃ > 0 such that γ̃ < ε and satisfies
[14p−1Mp + 14p−1(K2Lh,a +K3Lf,b]γ̃+ (14p−1K1β

−1 + L̃)ε < ε. If x(t) = x(t, ϕ) is
mild solution of (1), with ‖ϕ‖pB + E‖φ‖pH + LgE‖ϕ(−ρ1(0))‖pH < γ̃, then (Ψx)(t) =
x(t) and satisfies E‖x(t)‖pH < ε for every t ≥ 0. Notice that E‖x(t)‖pH < ε on
t ∈ [m̃(0), 0]. If there exists t̃ such that E‖x(t̃)‖pH = ε and E‖x(s)‖pH < ε for
s ∈ [m̃(0), t̃]. Then (9) show that

E‖x(t)‖pH ≤ [14p−1Mpe−pβt̃+14p−1(K2Lh,a+K3Lf,b)]γ̃+(14p−1K1β
−1 + L̃)ε < ε,

which contradicts the definition of t̃. Therefore, the mild solution of (1) is
asymptotically stable in p-th moment. •

5. Example

Consider the following impulsive partial stochastic neutral integrodifferential
equation of the form
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d[u(t, x)− ϑ(t, u(t− ρ(t), x))] = ∂2

∂t2
[u(t, x)dt− ϑ(t, u(t− ρ(t), x))]

+
∫ t

0
b(t− s)[u(t, x)− ϑ(t, u(t− ρ(t), x))]ds

+ ζ

(
t, u(t− ρ(t), x),

∫ t

0
ζ1(t, u(t− ρ(t), x)

)
dt,

(10)

+ σ

(
t, u(t− ρ(t), x),

∫ t

0
σ1(t, u(t− ρ(t), x)

)
dw(t),

t ≥ 0, 0 ≤ x ≤ π, t 6= tk,

u(t, 0) = u(t, π) = 0, t ≥ 0.
u(t, x) = ϕ(t, x), t ≤ 0, 0 ≤ x ≤ π,

∆u(tk, x) =
∫ tk

0
ηk(tk − s)u(s, x)ds,

where (tk)k ∈ N is a strictly increasing sequence of positive numbers, ρ(t) ∈
C(R+,R+), and ηk, η̃k ∈ C(R+,R+), k = 1, 2, · · · ,m. w(t) denotes a one-dimensional
standard Wiener process in H defined on a probability space (Ω,F ,P). Let H =
L2([0, π]) with the norm ‖ ·‖ and define the operator A by Aω = ω′ with the domain

D(A) := {ω(·) ∈ H : ω, are absolutely continuous, ω′ ∈ H, ω(0) = ω(π) = 0}.

It is well-known that A is the infinitesimal generator of a strongly continuous
semigroup {S(t) : t ≥ 0} in H. Furthermore, A has a discrete spectrum with
eigenvalues of the form −n2, n ∈ N, and corresponding normalized eigenfunctions
given by en(x) =

√
2/πsin(nx).

We assume the following conditions hold.
(1) The function ϑ : [0,∞)× R→ R is continuous and there exists a positive

constant Lϑ such that ϑ(t, 0) = 0, and

|ϑ(t, y)− ϑ(t, z)| ≤ Lϑ|y − z|, t ≥ 0, y, z ∈ R.

(2) The function ζ : [0,∞)×R×R→ R is continuous and there exists a positive
continuous function mζ1(·) : [0,∞)→ R such that∣∣∣∣∫ t

0
ζ1(t, s, z)

∣∣∣∣ ≤ mζ1(t)|z|, t ≥ 0, z ∈ R.

(3) The function ζ1 : [0,∞) × R × R → R is continuous and there exists a
positive continuous function mζ(·) : [0,∞)→ R such that

|ζ(t, z, v)| ≤ mζ(t)|z|+ 21−p|v|, t ≥ 0, z, v ∈ R.

(4) The function ϑ : [0,∞)×R×R→ R is continuous and there exists a positive
continuous function mσ(·) : [0,∞)→ R such that

|σ(t, z, v)| ≤ mσ(t)|z|+ 21−p|v|, t ≥ 0, z, v ∈ R.
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(5) The function ϑ1 : [0,∞)× R→ R is continuous and there exists a positive
continuous function mσ1(·) : [0,∞)→ R such that∣∣∣∣∫ t

0
σ1(t, s, z)

∣∣∣∣ ≤ mσ1(t)|z|, t ≥ 0, z ∈ R.

Let B : D(A) ⊂ H → H be the operator defined by B(t)(z) = b(t)Az for t ≥ 0
and z ∈ D(A). Let u(s)(x) = u(s, x). We define respectively g : [0,∞)×H → H,
h : [0,∞)×H ×H → H, f : [0,∞)×H ×H → L(K,H) and Ik : H → H by

g(t, u(t− ρ(t), x))(x) = ϑ(t, u(t− ρ(t), x)),

h

(
t, u(t− ρ(t)),

∫ t

0
a(t, s, u(s− ρ(s)))ds

)
(x) = ζ

(
t, u(t− ρ(t), x),

∫ t

0
ζ1(t, s, u(s− ρ(s), x), x)ds

)
,

f

(
t, u(t− ρ(t)),

∫ t

0
b(t, s, u(s− ρ(s)))ds

)
(x) = σ

(
t, u(t− ρ(t), x),

∫ t

0
σ1(t, s, u(s− ρ(s), x), x)ds

)
,

Ik(u)(x) =
∫ π

0
ηk(s)u(s, x)ds.

Then the problem (10) can be written as (1).
Moreover, if b is bounded and C1 function such that b′ is bounded and uniformly
continuous, then (A1) and (A2) are satisfied, and hence, by Theorem 3.1, (2) has
a resolvent operator (R(t))t≥0 on H.Using Lemma 5.2 [12], let µ > δ > 1 and
b(t) < 1

a exp (−β), for all t ≥ 0. Then the above resolvent operator decays exponen-
tially to zero. Specifically ||R(t)|| < exp(−at) where a = 1− 1/δ.

Else, using (1) we can prove that

E‖g(t, z1)− g(t, z2)‖p = E

[(∫ π

0
|ϑ(t, z1(x))− ϑ(t, z2(x))|2ds

)1/2
]p

≤

[(∫ π

0
Lϑ|z1(x)− z2(x)|2ds

)1/2
]p

≤ LpϑE‖z1 − z2‖p

for all (t, zj) ∈ [0,∞) ×H, j = 1, 2, and E‖g(t, z)‖pH ≤ Lpϑ‖z‖p for all (t, z) ∈
[0,∞)×H. By assumptions (2) and (3) we have

E‖h(t, u, y)‖p = E

[(∫ π

0
|ζ(t, u(x), y(x))|2dx

)1/2
]p

≤ E

[(∫ π

0
[Lζ(t)|u(x)|+ 21−p|y(x)|]2

)1/2
]p

≤ 2p−1[(Lζ(t))pE‖u(x)‖p + 21−pE‖y‖p]
= mh(t)E‖u‖p + E‖y‖p

for all (t, z, y) ∈ [0,∞, y)×H ×H, and
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E
∥∥∥∥∫ t

0
a(t, s, z)ds

∥∥∥∥p = E

(∫ π

0

∣∣∣∣∫ t

0
ζ1(s, z(x))ds

∣∣∣∣2 dx
)1/2

p

≤

[(∫ π

0
|mζ1(t)z(x)|2dx

)1/2
]p

≤ ma(t)E‖z‖p

for all (t, s, z) ∈ [0,∞) × [0,∞) × H, where mh(t) = mp
ζ(t), ma(t) = mp

ζ1
(t).

Similarly, by using assumptions (4) and (5) we have

E‖f(t, z, y)‖p ≤ mf (t)E‖z‖p + E‖y‖p

for all (t, s, y) ∈ [0,∞)× [0,∞)×H, and

E
∥∥∥∥∫ t

0
b(t, s, z)

∥∥∥∥p ≤ mb(t)E‖z‖p

for all (t, s, z) ∈ [0,∞) × [0,∞) × H, where mf (t) = mp
σ(t), mb(t) = mσ1(t).

Therefore (H1)-(H6) are all satisfied and condition (3.1) holds with Θh(s) = Θa(s) =
Θf (s) = Θb(s) = s. It is clear that Ik are bounded linear maps with

E‖Ik(z)‖p ≤ dkE‖z‖p, z ∈ H, k ∈ 1,m,
where dk =

(∫ π
0 |ηk(s)|2ds

)p/2
, k = 1, · · · ,m. Moreover, the map Ik is completely

continuous. Further, suppose that (14m)p−1
m∑
k=1

dk < 1 holds. Then, from Theorem

4.4, we can conclude that the mild solution of (10) is asymptotically stable in p-th
mean.
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