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SHAPE AND TOPOLOGY DESIGN OF HEAT CONDUCTION USING
TOPOLOGICAL SENSITIVITY ANALYSIS METHOD

K. AFEF

Abstract. In this paper, we propose to extend the notion of the topological sensitivity analysis

for parabolic equations. It consists in deriving an asymptotic expansion of a shape function
with respect to the presence of a small insulator with an adiabatic condition on its boundary

in a homogeneous heat conductor. Based on the obtained theoretical results, we propose a
fast and accurate one-step algorithm to demonstrate the efficiency of the suggested approach.

Furthermore, in order to perform and deepen the theoretical results, one seeks to obtain the

optimal design of a heat conductor.

1. Introduction

The classical methods of shape optimization have been studied in [22, 19]. In fact, they are
very general method which can handle any type of shape functions and structural models, but
they have two main drawbacks: they are computationally costly (because of remeshing) and they
do not allow any topology changes. Recently, shape optimization techniques have progressed a lot.
In particular, some topological optimization methods have been developed for designing domains
whose topology is a priori unknown. Among them, the topological sensitivity analysis which gives a
new perspective on shape optimization. It consists in studying the asymptotic behavior of a shape
function with respect to the size of a small hole inserted inside the reference domain. Recently, the
topological sensitivity analysis method has become a broad, rich and fascinating research area from
both theoretical and numerical standpoint. It has proved to be extremely used in the treatment of a
lot of applications such as inverse problems, imaging processing, mechanical modeling and damage
evolution modeling. This approach was introduced rigorously by A. Schumacher in the context of
compliance in linear elasticity with Neumann condition on the boundary of the inserted hole [27].
Generally, we can refer the reader to ([4, 6, 26, 2]) for a completely study of topological asymptotic
expansion in order to include arbitrary shaped holes to various Partial Differential Equation;
Laplace, Helmholtz, Stokes, Elasticity, Quasi-Stokes. Particularly, an asymptotic expansion with
a Neumann condition on the boundary of the inserted hole has been already obtained for the
Laplace equation in [9], for the Maxwell equations in [21], for the Helmholtz equations in [2], and
for the Stokes equations in [12, 19]. Indeed, all these contributions were treated in a steady-state
case and associated to elliptic equations. The aim of this chapter is to extend the notion of the
topological sensitivity analysis for the parabolic equation. In this work, we will address two main
questions. The first one concerns the theoretical part. We will derive a topological asymptotic
expansion for the heat conduction problem with respect to the presence of a small insulator with
an adiabatic condition on its boundary. More precisely, we consider a heated design domain H and

a shape function j(H) =
∫ T

0

J(θ,H)dt to be minimized, where θ is the solution to the evolutionary
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heat equation defined on H. For ε ≥ 0, let Hz,ε = H\z + εI, the modified domain obtained by
inserting a small insulator z + εI with z ∈ H and where I ⊂ Rd is a fixed bounded domain
containing the origin. This insulator is obtained by removing or degenerating some conductive
elements. Subsequently, an asymptotic expansion of the shape function is established in the
following form:

j(H\z + εI)− j(H) = f(ε)δj(z) + o(f(ε)),
where ε and z denote the diameter and center of the insulator respectively, f(ε) is an explicit
positive function which is expected to vanish in the limit ε→ 0 and δj is the topological gradient.
Thus, to minimize the shape function j, we have interest to insert an insulator inside the homoge-
neous heat conductor where δj is the smallest value. The basic idea is to say that the leading term
of the topological asymptotic expansion requires the solution of the boundary integral problem
of the stationary exterior Laplace problem and the fundamental solution of the Laplace operator.
Concerning the insulator shape, the obtained theoretical results are available for any bounded
domain I ⊂ Rd containing the origin and having a connected boundary ∂I piecewise of class C1.
However, to get an explicit expression of the boundary integral equation, we will take the case of a
simple geometry: the unit ball. To the best of our knowledge, [13] was the first publication where
this issue was addressed for a time-dependent problem. Yet, the proof presented there was merely
formal and it is studied a restricted class of a shape function. In another context, one should men-
tion the work of [8], which investigates the topological sensitivity analysis of shape function for
time-dependent problems where an inhomogeneity in the coefficients was considered. The second
question concerns the numerical aspect. Based on the obtained theoretical results, we propose
a fast and accurate reconstruction algorithm to demonstrate the efficiency of the suggested ap-
proach. Furthermore, in order to demonstrate the performance of the obtained theoretical results
and asymptotic behavior, one try to find the optimal shape of a heat conductor having one inlet
and one outlet. The final shape is obtained using an iterative procedure building a sequence of
geometries (Hk)k starting with the initial domain H0 = H. Knowing Hk, the new domain Hk+1

is obtained by inserting an insulator Ik in the domain. The placement of the insulator Ik and its
shape are defined by a level curve of the topological gradient gk:

Ik =
{
x ∈ Hk, such that gk(x) ≤ ck

}
,

where the constant ck is chosen in such a way that the shape function j decreases as much as
possible.

The remainder of the article is arranged as follows: Section 2 is devoted to the model setting.
We present the main results in Section 3. We examine the influence of the geometric perturbation
on the direct and adjoint problems solutions. We derive a topological sensitivity analysis for the
unsteady heat equation with respect to the presence of an arbitrary shaped insulator on which
is applied a Neumann boundary condition. Some examples of shape functions are exhibited. In
Section 4, some numerical simulations are presented to point out the efficiency and accuracy of
the suggested one-step numerical precess. Based on the obtained asymptotic behavior, one try
to find out the optimal design of a heat conductor. For the sake of readability, the proofs of all
intermediate estimates are reported in Section 5.

2. Setting of the problem

Let H be a heated design domain fully occupied by conductive materials. We assume that H
is an open and bounded domain of Rd, d = 2, 3, with a smooth boundary Γ. The heat transfer
across the domain is solution to the following boundary value problem

∂θ

∂t
−∆θ = F in H× (0, T ),

θ = 0 on Γ× (0, T ),
θ(·, 0) = 0 in H,

where F ∈ L2(0, T, L2(H)) is a generated heat source.
We denote by Hz,ε = H\Iz,ε the modified domain obtained by inserting a small insulator Iz,ε

inside the conductive materials by removing or degenerating some conductive elements (see Fig.
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1). We suppose that the insulator has the form Iz,ε = z+εI ⊂ H and characterized by its location
z ∈ H, its size ε > 0 and its shape I, where I is a fixed open and bounded subdomain of Rd

containing the origin, whose boundary ∂I is of class C1.

Figure 1. the design domain with the presence of a small insulator Iz,ε.

In this work, we assume that the temperature field satisfies an adiabatic condition on the
insulator boundary ∂Iz,ε. More precisely, in the presence of the insulator, the temperature θε is
defined in the perturbed domain Hz,ε = H\Iz,ε and satisfies the following system:

∂θε

∂t
−∆θε = F in H\Iz,ε × (0, T ),

θε = 0 on Γ× (0, T ),
∇θε.n = 0 on ∂Iz,ε × (0, T ),
θε(·, 0) = 0 in H\Iz,ε.

(1)

Note that in the absence of the insulator (ie ε = 0), we have Hz,ε = H and θ0 is solution to
∂θ0
∂t
−∆θ0 = F in H× (0, T ),

θ0 = 0 on Γ× (0, T ),
θ0(·, 0) = 0 in H.

(2)

Let us introduce the following functional spaces:

Vε = C(0, T, L2(Hz,ε)) ∩ L2(0, T,H1(Hz,ε)),

and
V0

ε = {θ ∈ Vε, θ = 0 on Γ and θ(·, 0) = 0 in Hz,ε}.
From the weak formulation of the problem (1), we deduce that θε ∈ Vε is a solution to

Aε(θε, w) = Lε(w), ∀w ∈ V0
ε ,

where the bilinear form Aε is defined for every u, w ∈ Vε by

Aε(u,w) =
∫ T

0

∫
Hz,ε

∂u

∂t
w dx dt+

∫ T

0

∫
Hz,ε

∇u.∇w dxdt,

Lε is the linear form defined for every w ∈ Vε by

Lε(w) =
∫ T

0

∫
Hz,ε

F w dx dt.

It should be noted that, for any F ∈ L2(0, T, L2(H), the problem (1) has a unique solution
θε,(For more details, one can see [15, 25, 29]).

Consider now a shape function j having the generic form

j(H\Iz,ε) =
∫ T

0

Jε(θε(·, t))dt, (3)
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where θε is the solution to (1) and Jε is a scalar function defined on H1(Hz,ε).

In this paper, we address two mains questions. The first one concerns the theoretical aspect. We
will derive a topological sensitivity analysis for the heat transfer problem. This question has been
already discussed for many problems such as elasticity [18], Laplace [9], Maxwell [21], Helmholtz
[2], and Stokes [12, 19]. All these contribution concern the steady state case and associated to
equations of elliptic type. In this paper, we extend this notion for the parabolic equation and
we derive a topological asymptotic expansion for the heat transfer problem valid for all shape
functions j having the generic form (3) and satisfying the following assumption:
Assumption (A)

i) ∀ε ≥ 0, ∀θ ∈ H1(Hz,ε), Jε(θ) ∈ L1(0, T ).
ii) The function Jε is differentiable with respect to θ, its derivative being denoted by DJε(θ)

satisfies
‖DJε(θε)−DJ0(θ0)‖L2(0,T,L2(Hz,ε)) = o(εd/2). (4)

iii) There exist a real number δJ , and a scalar function f : R+ → R+ tending to zero with ε
such that∫ T

0

(Jε(θε(·, t))− J0(θ0(·, t)))dt =
∫ T

0

DJε(θε)(θε − θ0)dt+ f(ε)δJ + o(f(ε)). (5)

The second one concern the numerical aspect. Based on the theoretical results obtained in the
first part, we propose a fast and accurate reconstruction algorithm.

To this end, we introduce the adjoint state associated to the minimization of Jε, solution to

Aε(q, pε) = −
∫ T

0

DJε(θε(·, t))(q)dt, ∀q ∈ VT
ε , (6)

where the functional space VT
ε is defined by:

VT
ε = {q ∈ Vε, such that q = 0 on Γ and q(·, T ) = 0}.

Under the assumption (A), one can easily check that the variation of j reads as follows:

j(H\Iz,ε)− j(H) =
∫ T

0

(
Jε(θε(·, t))− J0(θ0(·, t))

)
dt,

=
∫ T

0

DJε(θε)(θε − θ0)dt+ f(ε)δJ(z) + o(f(ε)).

Using (6), the last shape function variation can be rewritten as:

j(H\Iz,ε)− j(H) = Aε(θ0 − θε, pε) + f(ε)δJ(z) + o(f(ε)), (7)

In order to obtain the leading term of the variation j(H\Iz,ε) − j(H), we start by studying the
influence of the geometric perturbation on the direct and adjoint problems solutions.

3. Main results

3.1. Influence of the geometry perturbation. We examine here the influence of the geometric
perturbation on the direct and adjoint problems solutions. We derive an asymptotic formula
outlining the temperature and adjoint variation with respect to the perturbation size ε. These
estimates play a fundamental role in the derivation of our topological asymptotic expansion. In
order to derive the leading term of the direct and adjoint variation, we introduce the field vector
ψ = t(ψ1, ψ2, .., ψd) where the components ψi are solutions to the following exterior problem −∆ψi = 0 in Rd\I,

∇ψi.n = −ei.n on ∂I,
ψi → 0 at ∞,

(8)

where {ei}{1≤i≤d} is the canonical basis in Rd.
Based on the simple layer potential representation [16], the function ψi can be expressed as
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ψi(y) =
∫

∂I
U(y − x)ηi(x)ds(x), ∀y ∈ Rd\I, 1 ≤ i ≤ d,

where ηi ∈ H−1/2(∂I) is the unique solution to the boundary integral equation

−ηi(y)
2

+
∫

∂I

∂U

∂n
(y − x)ηi(x)ds(x) = −ei.n, ∀y ∈ ∂I. (9)

Here U is the fundamental solution to the Laplace operator.

3.1.1. Estimate of the temperature variation. We study the asymptotic behavior of the tempera-
ture variation and their gradient which play a key role in the derivation of the topological asymp-
totic expansion. The following proposition 3.1 describes the behavior of the perturbed temperature
θε caused by the presence of a small insulator Iz,ε.

Proposition 3.1. The perturbed temperature θε satisfies the following estimates:

‖θε − θ0 −Θε‖L∞(0,T,L2(H\Iz,ε)) + ‖θε − θ0 −Θε‖L2(0,T,H1(H\Iz,ε)) = o(εd/2),

where Θε is a the leading term of the temperature variation θε − θ0, defined by
Θε(x, t) = εψ(x−z

ε ).∇θ0(z, t), (x, t) ∈ Rd\I × (0, T ).

The obtained estimates of the temperature variation θ0− θε are given by the following Lemma.

Lemma 3.2. The temperature variation θε − θ0 satisfies the following estimates:
‖θε − θ0‖L2(0,T,H1(Hz,ε)) = O(εd/2),

‖θε − θ0‖L2(0,T,L2(Hz,ε)) = o(εd/2),

‖θε − θ0‖L∞(0,T,L2(Hz,ε)) = o(εd/2),

‖∇(θε − θ0)‖L2(0,T,L2(H\B(z,R)))
= o(εd/2),

where R is a positive real number such that B(z,R) ⊂ H and Iz,ε ⊂ B(z,R).

3.1.2. Estimate of the perturbed adjoint state. In the following proposition, we present an estimate
of the perturbed adjoint state pε. This estimate is an indispensable tool for determining our
topological asymptotic expansion.

Proposition 3.3. The perturbed adjoint state pε satisfies the following estimate:
‖pε − p0 − Pε‖L∞(0,T,L2(H\Iz,ε)) + ‖pε − p0 − Pε‖L2(0,T,H1(H\Iz,ε)) = o(εd/2),

where Pε is a the leading term of the adjoint variation pε − p0, defined by
Pε(x, t) = εψ(x−z

ε ).∇p0(z, t), (x, t) ∈ Rd\I × (0, T ).

We are now ready to compute the sensitivity variation of the shape function j.

3.2. Sensitivity variation. In this section, we will derive a topological asymptotic expansion
valid for all shape function verifying the assumption (A). In (7), the term δJ depends on the
expression of the function Jε. This term will be discussed in Subsection 3.3 for some particular
shape function example. In this section, we will examine the sensitivity analysis of the term
Aε(θ0 − θε, pε) with respect to ε.

Using the weak formulation of (29) and splitting pε into pε = p0 + (pε − p0), the term Aε(θ0 −
θε, pε) in (7) can be decomposed as

Aε(θ0 − θε, pε) =
∫ T

0

∫
∂Iz,ε

∇θ0.n p0 ds(x) dt+
∫ T

0

∫
∂Iz,ε

∇θ0.n(pε − p0) ds(x) dt. (10)

Next, we will examine each term in (10) separately. The following lemma gives an estimate for
the first integral in (10).
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Lemma 3.4. We have the estimate∫ T

0

∫
∂Iz,ε

∇θ0.n p0 ds dt = εd|I|
[ ∫ T

0

F (z, t)p0(z, t)dt−
∫ T

0

∂θ0
∂t

(z, t)p0(z, t)dt

−
∫ T

0

∇θ0(z, t).∇p0(z, t)dt
]

+ o(εd).

The following lemma present the asymptotic behavior for the second integral in (10).

Lemma 3.5. We have the estimate∫ T

0

∫
∂Iz,ε

∇θ0.n (pε − p0) ds dt = −εd

∫ T

0

[
∇θ0(z, t).

( ∫
∂I
η(y)yds(y)

)
∇p0(z, t)

]
dt

+ εd|I|
∫ T

0

∇θ0(z, t).∇p0(z, t)dt+ o(εd).

We are now ready to present the main theoretical result of this work. An asymptotic expan-
sion is derived for the unsteady heat equation with respect to the presence of a small geometric
perturbation Iz,ε inside the conductive materials H. To this end, we introduce the polarization
matrixM, defined by

Mi,j =
∫

∂I
ηi(y)yjds(y), 1 ≤ i, j ≤ d, (11)

where yj is the jth coordinate of the point y ∈ Rd and the density ηi is solution to (9).

Theorem 3.6. Let z ∈ H and j be a shape function on the form j(H\Iz,ε) =
∫ T

0

Jε(θε(., t))dt.

If the scalar function Jε satisfies the assumption (A), then j admits the following asymptotic
expansion

j(H\Iz,ε)− j(H) = εd
[
|I|

∫ T

0

F (z, t)p0(z, t)dt−
∫ T

0

∇θ0(z, t).M∇p0(z, t)dt

− |I|
∫ T

0

∂θ0
∂t

(z, t)p0(z, t)dt+ δJ(z)
]

+ o(εd). (12)

In the particular case where I is the unit disc B(0, 1), we can explicitly determine the density
ηi. It is given by

ηi(y) = −2ei · y ∀y ∈ ∂I.
From (11), one can deduce that the polarization matrix is given by

M = 2πI2

where I2 denotes the 2× 2 identity matrix.
The following corollary shows the asymptotic behavior of the shape function j in the circle

shaped case.

Corollary 3.7. (Circle shaped case) If I is the unit disc, under the same assumptions of Theorem
3.6, the shape function j has the following asymptotic expansion

j(H\Iz,ε)− j(H) = ε2δj(z) + o(ε2),

where the topological gradient δj(z) is given by:

δj(z) = π

∫ T

0

F (z, t)p0(z, t)dt− 2π
∫ T

0

∇θ0(z, t).∇p0(z, t)dt

− π
∫ T

0

∂θ0
∂t

(z, t)p0(z, t)dt+ δJ(z).
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3.3. Shape function examples. We present here some examples of shape functions having the
following form

j(H\Iz,ε) =
∫ T

0

Jε(θε(., t))dt,

and satisfying assumption (A) and we compute their variation δJ .

Proposition 3.8. Consider the function

Jε(θ) =
∫
H\Iz,ε

|∇θ|2dx.

Then, Jε satisfies assumption (A) with

DJε(θε(·, t))(w) = 2
∫
H\Iz,ε

∇θε(·, t).∇w(·, t)dx, ∀w ∈ H1(H\Iz,ε),

δJ(z) = −
∫ T

0

∇θ0(z, t).M∇θ0(z, t)dt, ∀z ∈ H.

Proposition 3.9. Consider the function

Jε(θ) =
∫

Γ

|θ − θd|2dx,

where θd ∈ L2(0, T,H1/2(Γ)) is a given state. Then, the function Jε satisfies assumption (A) with

DJε(θε(·, t))(w) = 2
∫

Γ

(θε(·, t)− θd(·, t))w(·, t)dx, ∀w ∈ H1(Γ),

δJ(z) = 0, ∀z ∈ H.

4. Numerical studies

The goal of this section is to point out, by several numerical results, the effectiveness of the main
obtained theoretical result obtained in Theorem 3.6. For the sake of simplicity, we restrict ourselves
to two-dimensional case. The numerical simulations are run under the software environment
Freefem++ [30]. It is a free software based on the finite element method.

4.1. Numerical validation. We aims in this part to study the asymptotic behavior of the func-
tion ∆z(ε) defined by ∆z(ε) = j(H\Iz,ε)− j(H)− ε2δj(z) with respect to ε. We expect to prove
numerically that the function ∆z(ε) satisfies the theoretical estimate ∆z(ε) = o(ε2).

Next, we present some numerical results for arbitrary insulator Ii
zi,ε = zi + εB(0, 1) i = 1, .., 4

inside the conductive materials H (We denote here that the initial domain H = B(0, 1)). Their
location zi = (xi, yi) are described in Table 1.

Denoting by βi the parameter describing the behavior of ∆zi(ε) with respect to ε, i.e. |∆zi(ε)| =
O(|ε2|βi). Then, one can remark that βi can be characterized as the slope of the line approximating
the variation ε→ log(|∆zi

(ε)|) with regard to log(|ε2|βi). Starting from this remark, we plot the
behavior of the function log(|∆zi

(ε)|), i = 1, .., 4 in relation to log(ε2) in Figure 2.
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a) Variation of log(|∆z1(ε)|) with
respect to log(ε2).

b) Variation of log(|∆z2(ε)|) with
respect to log(ε2).

c) Variation of log(|∆z3(ε)|) with
respect to log(ε2).

d) Variation of log(|∆z4(ε)|) with
respect to log(ε2).

Figure 2. Variation of log(∆zi(ε)) with respect to log(ε2) for different value of
the mesh N = 50, 80, 100, 125.

The obtained slopes βi, i = 1, .., 4 of the curve log(|∆zi(ε)|) with respect to log(ε2) are summa-
rized in Table 1. From Table 1, one can observe that the obtained slopes βi validates the obtained
theoretical results: ∆zi

(ε) = o(ε2), i = 1, .., 4.

Insulator Ii
zi,ε Emplacement zi = (xi, yi) Obtained slopes βi

I1
z1,ε z1 = (0.3, 0.8) β1 = 1.31
I2

z2,ε z2 = (1, 0.5) β2 = 1.11
I3

z3,ε z3 = (0.5, 0.2) β3 = 1.33
I4

z4,ε z4 = (1.8, 0.7) β4 = 1.52

Table 1. Location of insulator Izi,ε and obtained slopes βi, i = 1, .., 4.

4.2. Algorithm and identification results. We begin in this subsection by describing a sim-
ple and accurate numerical identification algorithm. Our numerical procedure is based on the
asymptotic expansion established in Theorem 3.6. The main steps of our numerical procedure
”One-iteration algorithm” are the following:

• Solve the direct problem (2) in H.
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• Solve the associated adjoint problem (6) in H.
• Compute the topological gradient δj(x), ∀x ∈ H.
• Determine the location and shape of the insulator Iz,ε.

The topological gradient gives information on the opportunity to create a small hole (insulator).
In fact, the idea is that to insert a small insulator where the topological sensitivity is most negative.

Some illustrative numerical simulations are presented to demonstrate the efficiency of the pro-
posed algorithm. We start by presenting some numerical results concerning the detection of regular
insulator in Figures 3 and 4 with different locations and sizes. We consider the case of a small
circular shape in Figure 3. In Figure 4, we test our one-step numerical process for the case of
an elliptical shape. In one iteration, the location of the regular insulator in the homogeneous
conductor is clearly pointed by the negative peak of the topological sensitivity, however, the ob-
servation of the isovalues gives a rough idea of its shape. To further emphasize the efficiency of
our one-iteration detection procedure, we consider the case of a small insulator having a complex
geometry. Figure 5 depicts the isovalues of the topological gradient. The result is quite efficient.

Figure 3. Isovalues of the topological gradient with various locations and sizes
of a circular insulator Iz,ε.
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Figure 4. Isovalues of the topological gradient with various locations and sizes
of an elliptical insulator Iz,ε.

Figure 5. Isovalues of the topological gradient showing the location of irregular
insulator Iz,ε.

4.3. Design of a thermal conductor. In order to confirm the efficiency of the obtained theo-
retical results, one try to find the optimal design of a thermal conductor H = (0, 1)× (0, 1), having
a hole BR in it center whose radius is R = 0.2 and one intlet Γ1 and one outlet Γ2. Figure 6
shows the disposition of Γ1 and Γ2, and the hole BR. This test was treated by Novotny et al. in
a steady-state case [24].
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Figure 6. A theoretical model of a thermal conductor.

The inlet Γ1 and the outlet Γ2 are defined by
Γ1 = {(x, y) ∈ (0, 1)× (0, 1), x = 0, y ∈ (0.3, 0.7)},
Γ2 = {(x, y) ∈ (0, 1)× (0, 1), x = 1, y ∈ (0.3, 0.7)}.

The aim is to determine the optimal shape C∗ ⊂ H of a thermal conductor domain minimizing
the design function

j(H\Iz,ε) =
∫ T

0

∫
H\Iz,ε

|∇θε|2dxdt+meas(H\Iz,ε), (13)

where θε is solution to (1).

The optimization problem consists in determining the optimal domain solution to

min
C∈Ead

j(C), such that |C| ≤ Vdesired,

where Ead is a set of admissible domains defined by:
Ead = {C ⊂ H such that Γ1 ⊂ ∂H ∩ ∂C and Γ2 ⊂ ∂H ∩ ∂C}.

For the boundary conditions, one has that ∇θ.n = 0 on ΓN , θ = 100 on Γ1 and θ = 0 on Γ2

respectively. In the hole created via topological gradient, an adiabatic boundary condition is
imposed, that is ∇θ.n = 0 on ∂Iz,ε.

The variation of 13 is given by:

j(H\Iz,ε)− j(H) =
∫ T

0

∫
H\Iz,ε

|∇θε|2dxdt+meas(H\Iz,ε)−
∫ T

0

∫
H
|∇θ0|2dxdt−meas(H)

=
∫ T

0

∫
H\Iz,ε

|∇θε|2dxdt−
∫ T

0

∫
H
|∇θε|2dxdt−meas(Iz,ε),

under proposition 3.8, one can deduce that the topological gradient δj of 13 reads as follows:

δj(z) = π

∫ T

0

F (z, t)p0(z, t)dt− 2π
∫ T

0

∇θ0(z, t).∇p0(z, t)dt

− π
∫ T

0

∂θ0
∂t

(z, t)p0(z, t)dt− 2π
∫ T

0

|∇θ0(z, t)|2dt− π.

As stated in the works [1, 24], the function δj can be used similarly to descend direction in a
topology optimization process. The optimal design is obtained iteratively. We apply an iterative
process to build sequence of geometries (Ck)k≥0 with C0 = H. At the kth iteration the topological
gradient δj is computed in Ck and the new geometry Ck+1 = Ck\Ik is obtained by inserting a
small insulator Ik in the design domain Ck. The insulator Ik is defined by a level set curve of δj:

Ik = {x ∈ Ck such that δj(x) ≤ ck < 0},
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where ck is chosen in such a way that the shape function decreases as much as possible. Numer-
ically, the constant ck depends on the most negative value of the topological gradient δj. We
denote also that the adopted stop criterion is over the final volume to be obtained.

Our implementation is based on the following algorithm presented in the context of topological
asymptotic in [1, 14].

The algorithm:

• Initialization: choose C0 = H and set k = 0.
• Repeat until |Ck| ≤ V desired :

- Solve the unsteady heat equation in Ck,
- Solve the associated adjoint problem in Ck,
- Compute the topological gradient δjk(x), ∀x ∈ Ck,
- Determine the insulator Ik,
- Set Ck+1 = Ck\Ik,
- k ← k + 1.

This numerical process consists in inserting at each iteration an insulator, which their thermal
conductivity is very small, where the topological gradient is the smallest value. We illustrate the
temperature distribution and the geometries obtained during the optimization process in Figure 8.
The final design corresponding to Vdesired = 0.7|H|, is obtained after 17 iterations. This academic
example shows that topological gradient can be used to determine where the insulator Iz,ε must
be placed, in order to direct the heat flux from Γ1 (hotter region) to Γ2 (colder region). Figure 7
describes the variation of the shape function during the optimization process.

Figure 7. Variation of the shape function during optimization process.
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Figure 8. Obtained shape for different iterations k = 0, k = 5, k = 11 and k = 17.
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5. Mathematical analysis

The main objective of this section is to present the proofs of Theorem 3.6, Lemmas 3.2, 3.4 and
3.5 and Propositions 3.1, 3.3, 3.8 and 3.9.

5.1. Regularity assumptions and preliminary estimates. In order to enable this study, we
make some additional regularity assumptions on the direct and adjoint solutions.

There exists two neighborhood I1 and I2 of z such that

DJ0(θ0) ∈ L2(0, T ;H2(I1)) ∩H1(0, T ;L2(I1)). (14)

F ∈ L2(0, T ;H2(I2)) ∩H1(0, T ;L2(I2)) (15)

If (14) and (15) hold, then we have

p0 ∈ L2(0, T ;H3(Ĩ)) ∩H2(0, T ;L2(Ĩ)),
θ0 ∈ L2(0, T ;H3(Ĩ)) ∩H2(0, T ;L2(Ĩ)).

for all subdomain Ĩ containing z and Ĩ ⊂ I1, Ĩ ⊂ I2.
Next, we give some preliminary results which are essential for our analysis. We first recall some

estimates describing the behavior of the state ψε, solution to (16).

Lemma 5.1. [7] The state ψε defined by

ψε(x) = εψ(
x− z
ε

) ∀x ∈ Rd, (16)

admits the following estimates

‖ψε‖L2(H\Iz,ε) = o(ε
d
2 ),

‖∇ψε‖L2(H\Iz,ε) = O(ε
d
2 ),

‖∇ψε‖L2(H\B(z,R))
= O(εd),

where R is a positive real number such that B(z,R) ⊂ H and Iz,ε ⊂ B(z,R). In the sequel, C
represents any constant, independent of ε, that may change from place to place.

Let us now study the asymptotic behavior of the perturbed temperature caused by the presence
of a small geometric perturbation Iz,ε inside the conductive material H.

5.2. Proof of Proposition 3.1. From (1), (2) and using the fact that Θε(·, 0) = 0, we deduce
that the temperature variation ϑε = θε − θ0 −Θε satisfies the following system:

∂ϑε

∂t
−∆ϑε =

∂Θε

∂t
in Hz,ε × (0, T ),

ϑε = −Θε on Γ× (0, T ),
∇ϑε.n = −∇θ0.n+∇θ0(z, t).n on ∂Iz,ε × (0, T ),
ϑε(·, 0) = 0 in Hz,ε.

(17)

In order to demonstrate the estimate of the perturbed temperature, we begin by splitting ϑε into

ϑε = ϑ1,ε + ϑ2,ε,

where ϑ1,ε and ϑ2,ε are respectively solutions to the following systems:
∂ϑ1,ε

∂t
−∆ϑ1,ε =

∂Θε

∂t
in Hz,ε × (0, T ),

ϑ1,ε = 0 on Γ× (0, T ),
∇ϑ1,ε.n = −∇θ0.n+∇θ0(z, t).n on ∂Iz,ε × (0, T ),
ϑ1,ε(·, 0) = 0 in Hz,ε.

(18)
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and 
∂ϑ2,ε

∂t
−∆ϑ2,ε = 0 in Hz,ε × (0, T ),

ϑ2,ε = −Θε on Γ× (0, T ),
∇ϑ2,ε.n = 0 on ∂Iz,ε × (0, T ),
ϑ2,ε(·, 0) = 0 in Hz,ε.

(19)

From the weak formulation of (18), we get for all t0 ∈ (0, T )

1
2

∫
Hz,ε

|ϑ1,ε(·, t0)|2dx+
∫ t0

0

∫
Hz,ε

|∇ϑ1,ε|2dxdt ≤
[ ∫ T

0

∫
∂Iz,ε

(∇θ0(z, t).n−∇θ0.n)ϑ1,εdsdt

+
∫ T

0

∫
Hz,ε

∂Θε

∂t
ϑ1,εdxdt

]
.

Using Cauchy-Schwarz and Poincaré inequalities, we obtain

1
2

∫
Hz,ε

|ϑ1,ε(·, t0)|2dx+
∫ t0

0

∫
Hz,ε

|∇ϑ1,ε|2dxdt ≤
[ ∫ T

0

∫
∂Iz,ε

(∇θ0(z, t).n−∇θ0.n)ϑ1,εdsdt

+
∥∥∥∥∂Θε

∂t

∥∥∥∥
L2(0,T,L2(Hz,ε))

‖ϑ1,ε‖L2(0,T,H1(Hz,ε))

]
,

Furthermore, using Poincaré inequality and taking the supremum for all t0 ∈ (0, T ), we get

‖ϑ1,ε‖L∞(0,T,L2(Hz,ε)) + ‖ϑ1,ε‖L2(0,T,H1(Hz,ε)) ≤
[ ∫ T

0

∫
∂Iz,ε

(∇θ0(z, t).n−∇θ0.n)ϑ1,εdsdt

+
∥∥∥∥∂Θε

∂t

∥∥∥∥
L2(0,T,L2(Hz,ε))

‖ϑ1,ε‖L2(0,T,H1(Hz,ε))

]
.

Next, we will derive an estimate of each term of the right side of the above inequality separately:

• Estimate of the term
∥∥∥∥∂Θε

∂t

∥∥∥∥
L2(0,T,L2(Hz,ε))

:

We recall that

Θε(x, t) = ψε(x).∇θ0(z, t), ∀(x, t) ∈ Rd × (0, T ),

then, we have∥∥∥∥∂Θε

∂t

∥∥∥∥2

L2(0,T,L2(Hz,ε))

=
∫ T

0

∣∣∣∂∇θ0(z, t)
∂t

∣∣∣2‖ψε‖2L2(Hz,ε)dt

≤ C‖ψε‖2L2(Hz,ε)‖∇θ0(z, ·)‖
2
H1(0,T ).

Using the fact that ∇θ0(z, ·) ∈ H1(0, T ) and Lemma 5.1, we obtain∥∥∥∥∂Θε

∂t

∥∥∥∥
L2(0,T,L2(Hz,ε))

≤ Cε d
2 +1. (20)

• Estimate of the term
∫ T

0

∫
∂Iz,ε

(∇θ0(z, t).n−∇θ0.n)ϑ1,εds dt:

Using Cauchy-Schwarz inequality and Trace theorem, we obtain∫ T

0

∫
∂Iz,ε

(∇θ0(z, t).n−∇θ0.n)ϑ1,εdsdt ≤ C
∫ T

0

‖θ0(z, t)− θ0‖H1(Iz,ε)‖ϑ1,ε‖H1(Hz,ε)dt,

then, based on the Cauchy-Schwarz inequality and the Taylor’s Theorem in a neighborhood of the
point z, we have∫ T

0

∫
∂Iz,ε

(∇θ0(z, t).n−∇θ0.n)ϑ1,εdsdt ≤ Cε‖∇θ0(ξy, t)y‖L2(0,T,H1(Iz,ε))‖ϑ1,ε‖L2(0,T,H1(Hz,ε)),
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Moreover, from the change of variable x = z + εy and the fact that ∇θ0 is regular near z, we get∫ T

0

∫
∂Iz,ε

(∇θ0(z, t).n−∇θ0.n)ϑ1,εdsdt ≤ Cε
d
2 +1‖ϑ1,ε‖L2(0,T,H1(Hz,ε)). (21)

Gathering the previous results (20) and (21), we have

‖ϑ1,ε‖2L∞(0,T,L2(Hz,ε)) + ‖ϑ1,ε‖2L2(0,T,H1(Hz,ε)) ≤ C ε
d
2 +1‖ϑ1,ε‖L2(0,T,H1(Hz,ε)). (22)

From Young’s inequality, we deduce

‖ϑ1,ε‖L∞(0,T,L2(Hz,ε))‖ϑ1,ε‖L2(0,T,H1(Hz,ε)) ≤
1
2
‖ϑ1,ε‖2L∞(0,T,L2(Hz,ε)) +

1
2
‖ϑ1,ε‖2L2(0,T,H1(Hz,ε))

≤ C ε
d
2 +1‖ϑ1,ε‖L2(0,T,H1(Hz,ε)),

hence
‖ϑ1,ε‖L∞(0,T,L2(Hz,ε)) ≤ Cε

d
2 +1.

From (22), we have

‖ϑ1,ε‖L2(0,T,H1(Hz,ε)) ≤ Cε
d
2 +1.

Thus, we get
‖ϑ1,ε‖L2(0,T,H1(Hz,ε)) + ‖ϑ1,ε‖L∞(0,T,L2(Hz,ε)) = o(ε

d
2 ). (23)

In order to estimate ϑ2,ε, we consider a smooth function e : Hz,ε → R such that e = 0 in
Hz,ε ∪ ∂Iz,ε, and e = 1 on Γ. Then we set

Θ̃ε(x, t) = Θε(x, t)e(x), (24)

ϑ̃2,ε(x, t) = ϑ2,ε(x, t) + Θ̃ε(x, t). (25)

In fact, from equations (24) and (25), we deduce that the state ϑ̃2,ε satisfies the following system:
∂ϑ̃2,ε

∂t
−∆ϑ̃2,ε = −∂Θ̃ε

∂t
−∆Θ̃ε in Hz,ε × (0, T ),

ϑ̃2,ε = 0 on Γ× (0, T ),
∇ϑ̃2,ε.n = 0 on ∂Iz,ε × (0, T ),
ϑ̃2,ε(·, 0) = 0 in Hz,ε.

(26)

Using the weak formulation, we obtain that

‖ϑ̃2,ε‖L∞(0,T,L2(Hz,ε)) + ‖ϑ̃2,ε‖L2(0,T,H1(Hz,ε)) ≤ C
[ ∥∥∥∥∥∂Θ̃ε

∂t

∥∥∥∥∥
L2(0,T,L2(Hz,ε))

+
∥∥∥Θ̃ε

∥∥∥
L2(0,T,H1(Hz,ε))

]
.

Taking into account (25), we get

‖ϑ2,ε‖L∞(0,T,L2(Hz,ε)) + ‖ϑ2,ε‖L2(0,T,H1(Hz,ε)) ≤
(
‖ϑ̃2,ε‖L∞(0,T,L2(Hz,ε)) + ‖ϑ̃2,ε‖L2(0,T,H1(Hz,ε))

+ ‖Θ̃ε‖L∞(0,T,L2(Hz,ε)) + ‖Θ̃ε‖L2(0,T,H1(Hz,ε))

)
≤ C

( ∥∥∥Θ̃ε

∥∥∥
H1(0,T,L2(Hz,ε))

+
∥∥∥Θ̃ε

∥∥∥
L2(0,T,H1(Hz,ε))

)
≤ C‖∇θ0(z, ·)‖H1(0,T )‖ψε‖H1(H\B(z,R))

.

It results from Lemma 5.1 that

‖ϑ2,ε‖L∞(0,T,L2(Hz,ε)) + ‖ϑ2,ε‖L2(0,T,H1(Hz,ε)) = o(ε
d
2 ). (27)

Therefore, combining (23) and (27), we obtain the desired estimate

‖ϑε‖L∞(0,T,L2(Hz,ε)) + ‖ϑε‖L2(0,T,H1(Hz,ε)) = o(ε
d
2 ). (28)

�
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5.3. Proof of Lemma 3.2. It follows from (1) and (2) that Tε = θε−θ0 is solution to the following
system: 

∂Tε

∂t
−∆Tε = 0 in Hz,ε × (0, T ),

Tε = 0 on Γ× (0, T ),
∇Tε.n = −∇θ0.n on ∂Iz,ε × (0, T ),
Tε(·, 0) = 0 in Hz,ε.

(29)

From the weak formulation of the previous system, we obtain for all t0 ∈ (0, T )

1
2

∫
Hz,ε

|Tε(·, t0)|2dx+
∫ t0

0

∫
Hz,ε

|∇Tε(·, t)|2dxdt ≤
∫ T

0

∫
∂Iz,ε

∇θ0.n Tε ds dt.

It then follows from Cauchy-Schwarz inequality and Trace theorem that

1
2

∫
Hz,ε

|Tε(·, t0)|2dx+
∫ t0

0

∫
Hz,ε

|∇Tε(·, t)|2dxdt ≤
∫ T

0

‖θ0(·, t)‖H1(Iz,ε) ‖Tε(·, t)‖H1(Hz,ε) dt. (30)

One can easily see from (30) that∫ t0

0

∫
Hz,ε

|∇Tε(·, t)|2dxdt ≤
∫ T

0

‖θ0(·, t)‖H1(Iz,ε) ‖Tε(·, t)‖H1(Hz,ε) dt.

Using Cauchy-Schwarz inequality, the change of variable x = z+ εy, and the regularity of θ0 near
z, we get ∫ T

0

∫
Hz,ε

|∇Tε(·, t)|2dxdt ≤ Cε
d
2 ‖Tε‖L2(0,T,H1(Hz,ε)) . (31)

Based on Poincaré’s inequality, we obtain

‖Tε‖2L2(0,T,H1(Hz,ε)) ≤ Cε
d
2 ‖Tε‖L2(0,T,H1(Hz,ε)),

hence
‖Tε‖L2(0,T,H1(Hz,ε)) = O(ε

d
2 ). (32)

It results from (30) that

1
2

∫
Hz,ε

|Tε(·, t0)|2dx ≤ Cε
d
2 ‖Tε‖L2(0,T,H1(Hz,ε)) , (33)

Taking the supremum for all t0 ∈ (0, T ) and using (32), we obtain

‖Tε‖L∞(0,T,L2(Hz,ε)) = o(ε
d
2 ).

Integrating (33) between 0 and T , we get∫ T

0

∫
Hz,ε

|Tε(·, t)|2dxdt ≤ Cε
d
2 ‖Tε‖L2(0,T,H1(Hz,ε)) , (34)

From (32), we obtain immediately that

‖Tε‖L2(0,T,L2(Hz,ε)) = o(ε
d
2 ). (35)

For the last estimate, we recall that
Tε = Θε + ϑε,

then we have

‖∇Tε‖L2(0,T,L2(H\B(z,R)))
= ‖∇ϑε +∇Θε‖L2(0,T,L2(H\B(z,R)))

≤ ‖∇ϑε‖L2(0,T,L2(H\B(z,R)))
+ ‖∇Θε‖L2(0,T,L2(H\B(z,R)))

≤ ‖ϑε‖L2(0,T,H1(Hz,ε)) + ‖∇θ0(z, ·)‖L2(0,T )‖∇ψε‖L2(H\B(z,R))
.

Moreover, based on Proposition 3.1 and Lemma 5.1, we deduce the following estimate

‖∇Tε‖L2(0,T,L2(H\B(z,R)))
= o(ε

d
2 ).

�
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In this section, we will discuss the asymptotic behavior of the perturbed adjoint state with respect
to the presence of a small insulator Iz,ε inside the heated domain H.

5.4. Proof of Proposition 3.3. One can easily see from (6) that the adjoint variation zε = pε−p0

satisfies the following system:
−∂zε

∂t
−∆zε = DJ0(θ0)−DJε(θε) in H\Iz,ε × (0, T ),

zε = 0 on Γ× (0, T ),
∇zε.n = −∇p0.n on ∂Iz,ε × (0, T ),
zε(·, T ) = 0 in H\Iz,ε.

(36)

Then, denoting by Pε = pε − p0 − Pε and using the fact that Pε(·, T ) = 0, then we deduce that
Pε is solution to the following system:

−∂Pε

∂t
−∆Pε = DJ0(θ0)−DJε(θε) +

∂Pε

∂t
in Hz,ε × (0, T ),

Pε = −Pε on Γ× (0, T ),
∇Pε.n = −∇p0.n+∇p0(z, t).n on ∂Iz,ε × (0, T ),
Pε(·, T ) = 0 in Hz,ε.

(37)

In order to separate difficulties, we split Pε into
Pε = P1,ε + P2,ε,

where P1,ε and P2,ε satisfy respectively the following systems:
−∂P1,ε

∂t
−∆P1,ε = DJ0(θ0)−DJε(θε) +

∂Pε

∂t
in Hz,ε × (0, T ),

P1,ε = 0 on Γ× (0, T ),
∇P1,ε.n = −∇p0.n+∇p0(z, t).n on ∂Iz,ε × (0, T ),
P1,ε(·, T ) = 0 in Hz,ε.

(38)

and 
−∂P2,ε

∂t
−∆P2,ε = 0 in Hz,ε × (0, T ),

P2,ε = −Pε on Γ× (0, T ),
∇P2,ε.n = 0 on ∂Iz,ε × (0, T ),
P2,ε(·, T ) = 0 in Hz,ε.

(39)

From the weak formulation of (38) and applying Cauchy-Schwarz inequality, we get for all t0 ∈
(0, T )

1
2

∫
Hz,ε

|P1,ε(·, t0)|2dx+
∫ T

t0

∫
Hz,ε

|∇P1,ε|2dxdt ≤
[ ∫ T

0

∫
∂Iz,ε

(∇p0(z, t).n−∇p0.n)P1,εdsdt

+
(
‖DJ0(θ0)−DJε(θε)‖L2(0,T,L2(Hz,ε)) +

∥∥∥∥∂Pε

∂t

∥∥∥∥
L2(0,T,L2(Hz,ε))

)
‖∇P1,ε‖L2(0,T,L2(Hz,ε))

]
.

Taking the supremum for all t0 ∈ (0, T ) and applying Poincaré inequality, we obtain

‖P1,ε‖L∞(0,T,L2(Hz,ε)) + ‖P1,ε‖L2(0,T,H1(Hz,ε)) ≤
[ ∫ T

0

∫
∂Iz,ε

(∇p0(z, t).n−∇p0.n)P1,εdsdt

+
(
‖DJ0(θ0)−DJε(θε)‖L2(0,T,L2(Hz,ε)) +

∥∥∥∥∂Pε

∂t

∥∥∥∥
L2(0,T,L2(Hz,ε))

)
‖P1,ε‖L2(0,T,H1(Hz,ε))

]
.

Next, we shall estimate each term of the right side of the above inequality: Firstly, from assumption
(A), we have

‖DJ0(θ0)−DJε(θε)‖L2(0,T,L2(Hz,ε)) = o(ε
d
2 ). (40)

Secondly, we will provide an estimate of the term
∥∥∥∥∂Pε

∂t

∥∥∥∥
L2(0,T,L2(Hz,ε))

:

We denote by
Pε(x, t) = ψε(x) · ∇p0(z, t), ∀(x, t) ∈ Rd × (0, T ),
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therefore, we get ∥∥∥∥∂Pε

∂t

∥∥∥∥
L2(0,T,L2(Hz,ε))

≤ ‖ψε‖L2(Hz,ε)‖∇p0(z, ·)‖H1(0,T ).

Due to Lemma 5.1 and the fact that ∇p0(z, ·) ∈ H1(0, T ), we obtain∥∥∥∥∂Pε

∂t

∥∥∥∥
L2(0,T,L2(Hz,ε))

≤ Cε d
2 +1. (41)

Now, we will estimate the term
∫ T

0

∫
∂Iz,ε

(∇p0(z, t).n−∇p0.n)P1,εdsdt:

It results from Cauchy-schwarz inequality, Trace theorem, the change of variable x = z + εy, and
the fact that ∇p0 is regular near z that∫ T

0

∫
∂Iz,ε

(∇p0(z, t).n−∇p0.n)P1,εdsdt ≤ Cε
d
2 +1‖P1,ε‖L2(0,T,H1(Hz,ε)) (42)

Collecting results (40), (41) and (42) produces

‖P1,ε‖2L∞(0,T,L2(Hz,ε)) + ‖P1,ε‖2L2(0,T,H1(Hz,ε)) ≤ C ε
d
2 +1‖P1,ε‖L2(0,T,H1(Hz,ε)). (43)

Thanks to Young’s inequality, we obtain

‖P1,ε‖L2(0,T,H1(Hz,ε)) + ‖P1,ε‖L∞(0,T,L2(Hz,ε)) = o(ε
d
2 ). (44)

Following the analysis already used to estimate ϑ2,ε, we get

‖P2,ε‖L2(0,T,H1(Hz,ε)) + ‖P2,ε‖L∞(0,T,L2(Hz,ε)) = o(ε
d
2 ). (45)

Hence, from equations (44) and (45), one finds the desired estimate

‖Pε‖L2(0,T,H1(Hz,ε)) + ‖Pε‖L∞(0,T,L2(Hz,ε)) = o(ε
d
2 ). (46)

�

We search now to compute the asymptotic behavior of the first integral in (10).

5.5. Proof of Lemma 3.4. From (2), we have
∂θ0
∂t

(x, t)−∆θ0(x, t) = F (x, t), (x, t) ∈ Iz,ε × (0, T ).

Besides, using Green’s formula and taking into account the normal orientation, we get∫ T

0

∫
∂Iz,ε

∇θ0.n p0 ds dt =
∫ T

0

∫
Iz,ε

F p0 dx dt−
∫ T

0

∫
Iz,ε

∂θ0
∂t

p0 dx dt−
∫ T

0

∫
Iz,ε

∇θ0.∇p0 dx dt.

(47)
Using Taylor’s theorem and the change of variable x = z + εy, the first integral in (47) may be
written as∫ T

0

∫
Iz,ε

F p0 dx dt = εd|I|
∫ T

0

F (z, t)p0(z, t)dt

+ εd

∫ T

0

∫
I

[
F (z + εy, t)p0(z + εy, t)− F (z, t)p0(z, t)

]
dydt.

The regularity of F and p0 near z allows to write

εd

∫ T

0

∫
I

[
F (z + εy, t)p0(z + εy, t)− F (z, t)p0(z, t)

]
dydt = o(εd),

hence ∫ T

0

∫
Iz,ε

F p0 dx dt = εd|I|
∫ T

0

F (z, t)p0(z, t)dt+ o(εd). (48)
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With the help of Taylor’s theorem and the change of variable x = z + εy, the second integral in
(47) can be written as∫ T

0

∫
Iz,ε

∂θ0
∂t

p0 dx dt = εd|I|
∫ T

0

∂θ0
∂t

(z, t)p0(z, t)dt

+ εd

∫ T

0

∫
I

[∂θ0
∂t

(z + εy, t)p0(z + εy, t)− ∂θ0
∂t

(z, t)p0(z, t)
]
dydt.

Due to the smoothness of
∂θ0
∂t

and p0 near z, we have

εd

∫ T

0

∫
I

[∂θ0
∂t

(z + εy, t)p0(z + εy, t)− ∂θ0
∂t

(z, t)p0(z, t)
]
dydt = o(εd).

Consequently, ∫ T

0

∫
Iz,ε

∂θ0
∂t

p0 dx dt = εd|I|
∫ T

0

∂θ0
∂t

(z, t)p0(z, t)dt+ o(εd). (49)

To estimate the third integral in (47), we again use Taylor’s theorem and the change of variable
x = z + εy, then we have∫ T

0

∫
Iz,ε

∇θ0.∇p0 dx dt = εd|I|
∫ T

0

∇θ0(z, t).∇p0(z, t)dt

+ εd

∫ T

0

∫
I

[
∇θ0(z + εy, t).∇p0(z + εy, t)−∇θ0(z, t).∇p0(z, t)

]
dydt.

The regularity of ∇θ0 and ∇p0 near z results in∫ T

0

∫
Iz,ε

∇θ0.∇p0 dx dt = εd|I|
∫ T

0

∇θ0(z, t).∇p0(z, t)dt+ o(εd). (50)

Gathering (48), (49) and (50) leads to the desired expansion∫ T

0

∫
∂Iz,ε

∇θ0.np0dsdt = εd|I|
[ ∫ T

0

F (z, t)p0(z, t)dt−
∫ T

0

∂θ0
∂t

(z, t)p0(z, t)dt

−
∫ T

0

∇θ0(z, t).∇p0(z, t)dt
]

+ o(εd).

�

Let us now turn to compute the asymptotic behavior of the second integral in (10).

5.6. Proof of Lemma 3.5. We have∫ T

0

∫
∂Iz,ε

∇θ0.n (pε − p0) ds dt =
∫ T

0

∫
∂Iz,ε

∇θ0(x, t).n Pε(x, t) ds(x)dt+R1(ε),

=
∫ T

0

∫
∂Iz,ε

∇θ0(z, t).n Pε(x, t) ds(x)dt+R1(ε) +R2(ε).

with

R1(ε) =
∫ T

0

∫
∂Iz,ε

∇θ0.n(pε − p0 − Pε) ds dt.

R2(ε) =
∫ T

0

∫
∂Iz,ε

∇(θ0(x, t)− θ0(z, t)).n Pε ds dt.
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From the definition of Pε and the change of variable x = z + εy, we get∫ T

0

∫
∂Iz,ε

∇θ0(z, t).n Pε(x, t)ds(x)dt = εd

∫ T

0

∫
∂I
∇θ0(z, t).n ψ(y)∇p0(z, t)ds(y)dt

= εd

∫ T

0

∫
∂I
∇θ0(z, t).nQ(y)∇p0(z, t)ds(y)dt,

where Qi is an extension of ψi on I, solution to{
−∆yQ

j = 0 in I,
Qi = ψi on ∂I.

Moreover, Green’s formula and the regularity of θ0 provide∫ T

0

∫
∂I
∇θ0(z, t).nQ(y)∇p0(z, t)ds(y)dt =

∫ T

0

∫
I
∇θ0(z, t).∇y(Q(y)∇p0(z, t))ds(y)dt,

=
∫ T

0

∫
∂I
∇θ0(z, t)y∇y(Q(y)∇p0(z, t)).n ds(y) dt.

Then, we have∫ T

0

∫
∂I
∇θ0(z, t)y∇y(Q(y)∇xp0(z, t)).nds(y) dt =

d∑
i,j=1

∫ T

0

∫
∂I

∂θ0
∂xj

(z, t)yj∇yQ
i(y).n

∂p0

∂xi
(z, t)dsdt

=
d∑

i,j=1

∫ T

0

∂θ0
∂xj

(z, t)
∂p0

∂xi
(z, t)

∫
∂I
∇yQ

i(y).n yjdsdt.

It follows from the jump relation on ∂I that [7]

ηi(y) = −ei.n−∇yQ
i(y).n, ∀y ∈ ∂I.

Therefore, we obtain

∫ T

0

∫
∂I
∇θ0(z, t)y∇y(Q(y)∇p0(z, t)).nds(y) dt

=
d∑

i,j=1

∫ T

0

∂θ0
∂xj

(z, t)
∂p0

∂xi
(z, t)

∫
∂I

(−ηi(y)− ei.n)yjdsdt

= −
d∑

i,j=1

∫ T

0

∂θ0
∂xj

(z, t)
∂p0

∂xi
(z, t)

∫
∂I
ηi(y)yjdsdt−

d∑
i,j=1

∫ T

0

∂θ0
∂xj

(z, t)
∂p0

∂xi
(z, t)

∫
∂I
ei.n yjdsdt

(51)

An integration by parts and taking into account the normal orientation provides∫
∂I
ei.n yjds(y) = −|I|Ii,j , (52)

where Ii,j are the entires of identity matrix.

Gathering results (51) and (52), we obtain∫ T

0

∫
∂I
∇θ0(z, t)y∇y(Q(y)∇p0(z, t)).nds(y) dt = −

∫ T

0

∇θ0(z, t)
( ∫

∂I
η(y)yds

)
∇p0(z, t)dt

+ |I|
∫ T

0

∇θ0(z, t).∇p0(z, t)dt.
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Then, ∫ T

0

∫
∂Iz,ε

∇θ0.n (pε − p0) ds dt = −εd

∫ T

0

∇θ0(z, t)
( ∫

∂I
η(y)yds

)
∇p0(z, t)dt

+ εd|I|
∫ T

0

∇θ0(z, t).∇p0(z, t)dt+R1(ε) +R2(ε).

Next, we will successively prove that Ri(ε) = o(εd), i = 1, 2.
• Estimate of R1(ε):
Due to Trace theorem, we have

|R1(ε)| ≤ C
∫ T

0

‖∇θ0.n(·, t)‖H−1/2(∂Iz,ε) ‖pε − p0 − Pε(·, t)‖L2(0,T,H1/2(∂Iz,ε)) dt

≤ C ‖∇θ0.n(·, t)‖L2(0,T,H1(Iz,ε)) ‖pε − p0 − Pε(·, t)‖L2(0,T,H1(Hz,ε)) .

Changing variable x = z + εy and using Proposition 3.3

R1(ε) ≤ Cε
d
2 o(ε

d
2 ),

then we deduce

R1(ε) = o(εd). (53)

• Estimate of R2(ε):
Due to Trace theorem, we obtain

|R2(ε)| ≤ C ‖(θ0(z + εy, t)− θ0(z, t)‖L2(0,T,H1(Iz,ε)) ‖Pε‖L2(0,T,H1(Hz,ε)) .

Changing variable x = z + εy, using the definition of Pε

|R2(ε)| ≤ Cεd/2 ‖θ0(z + εy, t)− θ0(z, t)‖L2(0,T,H1(I)) ‖∇p0(z, ·)‖L2(0,T ) ‖ψε‖H1(H\B(z,R))
.

Using Lemma 5.1 and the fact that ∇p0(z, ·) ∈ L2(0, T ) leads to

R2(ε) = o(εd). (54)

Then, according to (53) and (54), we have∫ T

0

∫
∂Iz,ε

∇θ0.n (pε − p0) ds dt = −εd

∫ T

0

∇θ0(z, t)
( ∫

∂I
η(y)yds

)
∇p0(z, t)dt

+ εd|I|
∫ T

0

∇θ0(z, t).∇p0(z, t)dt+ o(εd).

�

Let us now turn to proof the main theoretical result given by Theorem 3.6.

5.7. Proof of Theorem 3.6. Now, it is possible to complete the evaluation of the asymptotic
behavior of the shape function j. Combining the results of Lemmas 3.4 and 3.5 and a few simpli-
fications, we obtain the following asymptotic expansion

j(H\Iz,ε)− j(H) = εd|I|
[ ∫ T

0

F (z, t)p0(z, t)dt−
∫ T

0

∂θ0
∂t

(z, t)p0(z, t)dt
]

− εd

∫ T

0

[
∇θ0(z, t).

( ∫
∂I
η(y)yds(y)

)
∇p0(z, t)

]
dt+ εdδJ + o(εd).

This ends the proof of the theorem.

�
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5.8. Proof of Proposition 3.8. The function Jε is differentiable and we have

DJε(θε(·, t))(w) = 2
∫
Hz,ε

∇θε(·, t).∇wdx, w ∈ H1(Hz,ε).

From the definition of j, we have

j(Hz,ε)− j(H) =
∫ T

0

∫
Hz,ε

|∇θε|2dxdt−
∫ T

0

∫
H
|∇θ0|2dxdt

= 2
∫ T

0

∫
Hz,ε

∇θε(∇θε −∇θ0)dxdt+
∫ T

0

∫
Hz,ε

|∇θε −∇θ0|2dxdt

−
∫ T

0

∫
Iz,ε

|∇θ0|2dxdt

=
∫ T

0

DJε(θε)(θε − θ0)dt+
∫ T

0

∫
Hz,ε

|∇θε −∇θ0|2dxdt

−
∫ T

0

∫
Iz,ε

|∇θ0|2dxdt.

Using Taylor’s theorem and the change of variable x = z+ εy, and the regularity of ∇θ0, we have
that ∫ T

0

∫
Iz,ε

|∇θ0|2dxdt = εd|I|
∫ T

0

|∇θ0(z, t)|2dt+ o(εd).

Based on the weak formulation of (29), we obtain for all t0 ∈ (0, T )∫ T

0

∫
Hz,ε

∇(θε−θ0).∇(θε−θ0) dx dt = −1
2

∫
Hz,ε

|(θε−θ0)(·, t0)|2dx+
∫ T

0

∫
∂Iz,ε

∇θ0.n(θ0−θε)dsdt.

It follows from Lemma 3.2 that

− 1
2

∫
Hz,ε

|(θε − θ0)(·, t0)|2dx = o(εd). (55)

Moreover, by an adaptation of the same technique in Lemma 3.5 and using θε−θ0 instead pε−p0,
we get ∫ T

0

∫
∂Iz,ε

∇θ0.n(θε − θ0)dsdt = −εd

∫ T

0

∇θ0(z, t)
( ∫

∂I
η(y)yds(y)

)
∇θ0(z, t)dt

+ εd|I|
∫ T

0

|∇θ0(z, t)|2dt+ o(εd). (56)

Gathering the previous results, then the asymptotic expansion is given by

j(Hz,ε)− j(H) =
∫ T

0

DJε(θε))(θε − θ0)dt+ εdδJ(z) + o(εd),

with

δJ(z) = −
∫ T

0

∇θ0(z, t)
( ∫

∂I
η(y)yds(y)

)
∇θ0(z, t)dt.

Finally, for any w ∈ L2(0, T, L2(Hz,ε))∫ T

0

(DJε(θε)−DJ0(θ0))wdt = 2
∫ T

0

∫
Hz,ε

∇θε.∇w dxdt− 2
∫ T

0

∫
H
∇θ0.∇w dxdt

= 2
∫ T

0

∫
Hz,ε

∇(θε − θ0).∇w dxdt− 2
∫ T

0

∫
Iz,ε

∇θ0.∇w dxdt.
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Using Cauchy-Schwarz inequality, one can deduce that∫ T

0

∫
Hz,ε

∇(θε − θ0).∇w dxdt ≤ ‖∇(θε − θ0)‖L2(0,T,L2(Hz,ε))‖∇w‖L2(0,T,L2(Hz,ε))

≤
(
‖∇(θε − θ0 −Θε)‖L2(0,T,L2(Hz,ε)) + ‖Θε‖L2(0,T,L2(Hz,ε))

)
‖∇w‖L2(0,T,L2(Hz,ε)).

We recall that
Θε(x, t) = ψε(x) · ∇θ(z, t) (x, t) ∈ Rd × (0, T ).

Based on Proposition 3.1 and Lemma 5.1, and using the fact ∇θ(z, ·) ∈ L2(0, T ), we obtain∫ T

0

∫
Hz,ε

∇(θε − θ0).∇w dxdt ≤ ε
d
2 +1‖∇w‖L2(0,T,L2(Hz,ε)).

Using the change of variable x = z + εy and thanks to the regularity of ∇θ0 in Iz,ε, one obtains∫ T

0

∫
Iz,ε

∇θ0.∇w dxdt ≤ Cεd.

Then, under the previous results, we obtain

‖DJε(θε)−DJ0(θ0)‖L2(0,T,L2(Hz,ε)) = o(ε
d
2 )

which achieves the proof of proposition (3.8).
�

5.9. Proof of Proposition 3.9. The function Jε is differentiable and we have

DJε(θε(., t))(w) = 2
∫

Γ

(θε(·, t)− θd(·, t))wdx, w ∈ H1(Hz,ε).

From the definition of j, we have

j(Hz,ε)− j(H) =
∫ T

0

∫
Γ

|θε − θd|2 dx dt−
∫ T

0

∫
Γ

|θ0 − θd|2 dx dt

=
∫ T

0

DJε(θε)(θε − θ0)dt+
∫ T

0

∫
Γ

|θε − θ0|2 dx dt.

Due to Trace theorem and Lemma 3.2, we get∫ T

0

∫
Γ

|θε − θ0|2 dx dt ≤ C‖(θε − θ0)‖2L2(0,T,L2(H\B(z,R)))
= o(εd).

Then, we obtain the desired expansion

j(Hz,ε)− j(H) =
∫ T

0

DJε(θε)(θε − θ0)dt+ o(εd),

where
δJ(z) = 0.

Finally, for any w ∈ L2(0, T, L2(Hz,ε))∫ T

0

(DJε(θε)−DJ0(θ0))(θε − θ0)(·, t)w(·, t)dt = 2
∫ T

0

∫
Γ

(θε − θ0)w dxdt

Using Trace theorem, we obtain

|
∫ T

0

∫
Γ

(θε − θ0)w dxdt| ≤ C‖(θε − θ0)‖L2(0,T,L2(H\B(z,R)))
‖w‖L2(0,T,L2(Hz,ε)),

and based on Lemma 3.2, we get

|
∫ T

0

∫
Γ

(θε − θ0)w dxdt| ≤ Cε
d
2 +1‖ = w‖L2(0,T,L2(Hz,ε)),

from which we deduce the desired result.
�
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