HIGHER ORDER NON-DIFFERENTIABLE MULTI-OBJECTIVE SYMMETRIC DUALITY INVOLVING GENERALIZED $K-(\Phi, \rho)$-CONVEX FUNCTIONS

A. K. TRIPATHY

Abstract

In this paper, a new class of generalized $K-(\Phi, \rho)$ convex function is introduced, in which the sub linearity property of F as in literature is relaxed by imposing the convexity assumption on Φ in its third argument with an example. This new class of generalized convex function is more generalized than the (F, α, ρ, d)-convex functions, (C, α, ρ, d)-convex functions and $K-$ (F, α, ρ, d) convex functions studied in literature. Also, a new model of higher order Wolfe type non-differentiable multi-objective symmetric dual programs is presented and the weak, strong and converse duality theorem under higher order $K-(\Phi, \rho)$ convex functions are established. Some special cases which generalizes our results is discussed.

1. Introduction

The duality theory for convex multi-objective optimization problem is useful both theoretically and practically. Unlike the linear programming problems, there is no unique dual formulation for the nonlinear programming. The study of second and higher order duality is significantly developed due to the computational advantages over the first order duality as it provides tighter bounds for the value of the objective function when approximation are used. Higher order duality in nonlinear programming has been studied by many researchers like Suneja et al. [[19, 20]], Gulati and Gupta [[5, 6]], Kim and Lee [[13]] and Gulati and Sani [[7]], Gupta and Jaysal [[8]], Mishra [[15, 16]], Kassem and Hady[[2]], Gupta et al. [[9, 10]], Padhan and Nahak [[17]], Tripathy and Devi [[21]], Agarwal et al. [[1]] and many more. On the other hand, to relax convexity assumptions imposed on the functions in theorems on optimality conditions and duality, various generalized convexity notations have been introduced. A significant generalization of convex function is that of invex function introduced by Hanson [[11]] and Craven [[4]]. After the work of Hanson and Craven, other types of differentiable function have been introduced with the intent of generalizing invex function from different point of view. Hanson and Mond [[20]] introduced the concept of F-convex which is a generalization of

[^0]invex function. Preda [[18]] generalized F-convexity to (F, ρ)-convexity. The (F, ρ) convexity was recently generalized to (Φ, ρ)-invexity by Caristi et al.[[3]] in which Φ is convex in its third argument and replaces the sublinear property of F in the third argument. Liang et al.[[14]] introduced a unified formulation of generalization convexity called (F, α, ρ, d)-convex and Yuan et al. [[22]] introduced the concept of (C, α, ρ, d)-convexity by relaxing the sub linearity of F to convexity of C . Tripathy and Devi[[21]] introduced the concepts of higher order (Φ, ρ)-invex function by relaxing the convexity as well as sub linearity assumption on Φ. Gupta and Jayswal [[8]] introduced K-preinvex/K-pseudo invex functions, where as Agarwal et al. [[1]] defined higher order K-F convex functions. Gupta et al. [[9]] introduced the concept of $K-(F, \alpha, \rho, d)$ convexity.

In this paper, motivated by Yuan et al. [[14]] and Gupta et al. [[9]], we introduced a new class of generalized $K-(\Phi, \rho)$ convex function in which the sub linearity property imposed on F as in Gupta et al. [[9]] is relaxed by imposing the convexity assumption on Φ in its third argument. This new class of generalized convex function is more generalized than the (F, α, ρ, d)-convex functions as in [[14]] , (C, α, ρ, d)-convex functions as in [[22]] and $K-(F, \alpha, \rho, d)$ convex functions as in [[9]]. Also, we have presented a new model of higher order Wolfe type non-differentiable multi-objective symmetric dual programs and established the weak, strong and converse duality theorem under higher order $K-(\Phi, \rho)$ convex functions.

2. Preliminaries and Definitions

Throughout this paper, we denote by R^{n} the n-dimensional Euclidean space and R_{+}^{n} be its non-negative orthant. Let C_{1} and C_{2} be closed convex cones in R^{n} and R^{m} respectively, with nonempty interiors. Let K be a pointed convex cone with nonempty interior in R^{k}. Then for $y, z \in R^{k}$, we denote following convention:

$$
x \leq y \Leftrightarrow y-x \in K ; x \leq y \Leftrightarrow y-x \in K \backslash\{0\} ; x<y \Leftrightarrow y-x \in \operatorname{int} K .
$$

Definition 2.1 A non empty set $C \subset R^{n}$ is called a cone, if for each $x \in C$ and $\lambda \in R, \lambda \geq 0$, we have $\lambda x \in C$. More over if C in convex, then it is called convex cone.

Definition 2.2 The positive polar cone C^{*} of C is defined as

$$
C^{*}=\left\{z \in R^{n} \mid x^{T} z \geq 0, \forall x \in C\right\} .
$$

Consider the multi-objective programming problem:
First we consider the following multi-objective programming problem:
(MP) K-Minimize $f(x)$
Subject to $-g(x) \in Q, x \in S$,
where $f: R^{n} \rightarrow R^{k}, g: R^{n} \rightarrow R^{m}$ and $S \subset R^{n}, K$ and Q are closed convex cone with nonempty interior in R^{k} and R^{m}, respectively.

Let $X=\{x \in S:-g(x) \in Q\}$ be the set of feasible solutions of (MP). Further let K_{0} denote the set $K \backslash\{0\}$.

Since the objectives in multi-objective problems generally conflict with one another, an optimal solution is chosen from the set of efficient/weak efficient solutions.

Definition 2.3 A point $\bar{x} \in X$ is an efficient (Pareto optimal) solution of (MP), if there does not exist $x \in X$ such that $f(\bar{x})-f(x) \in K_{0}$.

Let C_{1} and C_{2} be closed convex cones in R^{n} and R^{m}, respectively. Also, $S_{1} \subseteq R^{n}$ and $S_{2} \subseteq R^{m}$ be open sets such that $C_{1} \times C_{2} \subset S_{1} \times S_{2}$.

Definition 2.4 Let $x, y \in R^{n}$ and $A \in R^{n} \times R^{n}$ be a positive semi-definite matrix, then $x^{T} A y \leq\left(x^{T} A y\right)^{\frac{1}{2}}$. Equality holds if for some $\lambda \geq 0, A x \geq \lambda A y$.

Definition 2.5 A function $\Phi: S \times S \times R^{n+1} \rightarrow R$ is said to be convex in the third argument iff for any fixed $(x, u) \in S \times S$ the inequality

$$
\Phi\left(x, u ; \lambda a_{1}+(1-\lambda) a_{2}\right) \leq \lambda \Phi\left(x, u ; a_{1}\right)+(1-\lambda) \Phi\left(x, u ; a_{2}\right), \forall \lambda \in(0,1)
$$

holds for all $a_{1}, a_{2} \in R^{n+1}$.
Throughout this paper, we assume that $\Phi(x, u ; 0)=0$.
Lemma 2.1(Jensen's Inequality)
Let $f:(a, b) \rightarrow R$ be convex function and let $x_{1}, x_{2}, \ldots, x_{n} \in(a, b)$. Then

$$
f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(x_{i}\right)
$$

for any $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in[0,1]$ satisfying $\sum_{i=1}^{n} \lambda_{i}=1$.
Definition 2.6 Let $S \subseteq R^{n}$ and $g_{i}: S \times R^{n} \rightarrow R, i=1,2, \ldots, k$, is a differentiable function and let $\Phi: S \times S \times R^{n+1} \rightarrow R$ is convex function in its third argument. Then a differentiable function $f=\left(f_{1}, f_{2}, \ldots, f_{k}\right): S \rightarrow R^{k}$ is said to be higher order $K-(\Phi, \rho)$-convex at $u \in S$ with respect to $g=\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ such that for $x \in S, q_{i} \in R^{n}, i=1,2, \ldots, k$,

$$
\left(\begin{array}{cccc}
f_{1}(x)-f_{1}(u)-g_{1}\left(u, q_{1}\right)+q_{1}^{T} \nabla_{q_{1}} g_{1}\left(u, q_{1}\right) & & \\
-\Phi\left(x, u ;\left(\nabla_{x} f_{1}(u)+\nabla_{q_{1}} g_{1}\left(u, q_{1}\right), \rho_{1}\right),\right. & \cdot & ., \\
& & & \\
f_{k}(x)-f_{k}(u)-g_{k}\left(u, q_{k}\right)+q_{k}^{T} \nabla_{q_{k}} g_{k}\left(u, q_{k}\right) & & \\
\quad-\Phi\left(x, u ;\left(\nabla_{x} f_{k}(u)+\nabla_{q_{k}} g_{k}\left(u, q_{k}\right), \rho_{k}\right)\right. & & &
\end{array}\right) \in K .
$$

Definition 2.7 Let $S \subseteq R^{n}$ and $g_{i}: S \times R^{n} \rightarrow R, i=1,2, \ldots, k$, is a differentiable function and let $\Phi: S \times S \times R^{n+1} \rightarrow R$ is convex function in its third argument. Then a differentiable function $f=\left(f_{1}, f_{2}, \ldots, f_{k}\right): S \rightarrow R^{k}$ is said to be higher order $K-(\Phi, \rho)$-pseudo convex at $u \in X$ with respect to $g=\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ such that for $x \in S, q_{i} \in R^{n}, i=1,2, \ldots, k$,

$$
\begin{aligned}
& \left(\begin{array}{llll}
\Phi\left(x, u ;\left(\nabla_{x} f_{1}(u)+\nabla_{q_{1}} g_{1}\left(u, q_{1}\right), \rho_{1}\right),\right. & \cdot & . \\
\Phi\left(x, u ;\left(\nabla_{x} f_{k}(u)+\nabla_{q_{k}} g_{k}\left(u, q_{k}\right), \rho_{k}\right)\right. & &
\end{array}\right) \in K \\
& \Rightarrow\left(\begin{array}{lll}
f_{1}(x)-f_{1}(u)-g_{1}\left(u, q_{1}\right)+q_{1}^{T} \nabla_{q_{1}} g_{1}\left(u, q_{1}\right), & . & . \\
f_{k}(x)-f_{k}(u)-g_{k}\left(u, q_{k}\right)+q_{k}^{T} \nabla_{q_{k}} g_{k}\left(u, q_{k}\right), & &
\end{array}\right) \in K .
\end{aligned}
$$

Remark 2.1

If $K=R_{+}$, then the Definition reduces to that of higher order (Φ, ρ)-invex and higher order (Φ, ρ)-pseudo invex function in Jayswal and Kumari [[12]].

Example 2.1

Let $K=\{(x, y): x \leq 0, y \leq 0\}$ and $f=\left(f_{1}, f_{2}\right): R \rightarrow R^{2}$ defined as $f_{1}(x)=$ $x \sin x$ and $f_{2}=x^{2}+8 \cos x$. Let $g=\left(g_{1}, g_{2}\right): R \times R \rightarrow R^{2}$ defined as $g_{1}(x, q)=$ $-q\left(x^{2}+2\right)$ and $g_{2}(x, q)=q(x+1)$.
Let $\Phi: R \times R \times R^{2} \rightarrow$ defined by $\Phi(x, u ;(a, \rho))=\left(\rho^{2}+1\right)|a|\left(x^{2}+u^{2}\right)$ and $F: R \times R \times R \rightarrow R$ defined by $F=\frac{|a|}{4}\left(x^{2}+u^{2}\right)$.
It is clear that Φ is convex but not sub-linear in third argument, but F is sub-linear as well as convex in third argument.
Now, at $u=0, \forall x \in R, q \in R$ and $\rho \in R$,
$f_{1}(x)-f_{1}(u)-g_{1}(u, q)+q^{T} \nabla_{q} g_{1}(u, q)-\Phi\left(x, u ;\left(\nabla f_{1}(u)+\nabla_{q} g_{1}(u, q), \rho_{1}\right)\right)$
$=x \sin x-2\left(\rho^{2}+1\right) x^{2} \leq 0$
and
$f_{2}(x)-f_{2}(u)-g_{2}(u, q)+q^{T} \nabla_{q} g_{2}(u, q)-\Phi\left(x, u ;\left(\nabla f_{2}(u)+\nabla_{q} g_{2}(u, q), \rho_{2}\right)\right)$
$=8 \cos x-8-\rho^{2} x^{2} \leq 0$.
So
$\binom{f_{1}(x)-f_{1}(u)-g_{1}(u, q)+q^{T} \nabla_{q} g_{1}(u, q)-\Phi\left(x, u ;\left(\nabla_{x} f_{1}(u)+\nabla_{q} g_{1}(u, q), \rho_{1}\right)\right.}{,f_{2}(x)-f_{2}(u)-g_{2}(u, q)+q^{T} \nabla_{q} g_{2}(u, q)-\Phi\left(x, u ;\left(\nabla_{x} f_{2}(u)+\nabla_{q} g_{2}(u, q), \rho_{2}\right)\right.} \in K$.
Hence, f is higher order $K-(\Phi, \rho)$-convex function with respect to $g(x, q)$ at $u=0$. But for $x \in\left(0, \frac{\pi}{2}\right]$ and $u=0$,
$f_{1}(x)-f_{1}(u)-g_{1}(u, q)+q^{T} \nabla_{q} g_{1}(u, q)-F\left(x, u ;\left(\nabla f_{1}(u)+\nabla_{q} g_{1}(u, q)\right)\right)$
$=x \sin x-\frac{1}{2} x^{2} \geq 0$
and for all $x \geq 4.1$ and $u=0$,

$$
\begin{aligned}
& f_{2}(x)-f_{2}(u)-g_{2}(u, q)+q^{T} \nabla_{q} g_{2}(u, q)-F\left(x, u ;\left(\nabla f_{2}(u)+\nabla_{q} g_{2}(u, q)\right)\right) \\
& =\frac{3}{4} x^{2}+8 \cos x-8 \geq 0 .
\end{aligned}
$$

Hence f is not higher order $K-F$-convex function with respect to $g(x, q)$ at $u=0$ as in Agarwal et al.[[1]].

Again, if we take $\rho \geq \frac{1}{2}$ and $d^{2}(x, u)=x^{2}+u^{2}$, then $x \in\left(0, \frac{\pi}{2}\right]$ and $u=0$,
$f_{1}(x)-f_{1}(u)-g_{1}(u, q)+q^{T} \nabla_{q} g_{1}(u, q)-F\left(x, u ; \alpha(x, u)\left(\nabla f_{1}(u)+\nabla_{q} g_{1}(u, q)\right)+\right.$ $\rho d^{2}(x, u)$
$=x \sin x+\left(\rho-\frac{1}{2}\right) x^{2} \geq 0$.
Also, for all $x \geq 4.1, \rho \geq 0, d^{2}(x, u)=x^{2}+u^{2}$ and $u=0$,

$$
\begin{aligned}
& f_{2}(x)-f_{2}(u)-g_{2}(u, q)+q^{T} \nabla_{q} g_{2}(u, q)-F\left(x, u ; \alpha(x, u)\left(\nabla f_{2}(u)+\nabla_{q} g_{2}(u, q)\right)+\right. \\
& \rho d^{2}(x, u) \\
& =\left(\rho+\frac{3}{4}\right) x^{2}+8 \cos x-8 \geq 0
\end{aligned}
$$

Hence f is not higher order $K-(F, \alpha, \rho, d)$-convex function with respect to $g(x, q)$ at $u=0$ for all x as in Gupta et al.[[9]].

Definition 2.8 Let $S_{1} \subseteq R^{n}$ and $S_{2} \subseteq R^{m}$. Let $g_{i}: S_{1} \times S_{2} \times R^{n} \rightarrow R, i=$ $1,2, \ldots, k$, is a differentiable function and let $\Phi_{1}: S_{1} \times S_{1} \times R^{n+1} \rightarrow R$ is convex function in its third argument. Then a differentiable function $f=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$: $S_{1} \times S_{2} \rightarrow R^{k}$ is said to be higher order $K-\left(\Phi_{1}, \rho\right)$-convex in the first variable $u \in S_{1}$ at fixed $y \in S_{2}$ with respect to $g=\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ such that for $x \in S_{1}, q_{i} \in$ $R^{n}, i=1,2, \ldots, k$,

$$
\left(\begin{array}{cccc}
f_{1}(x, y)-f_{1}(u, y)-g_{1}\left(u, y, q_{1}\right)+q_{1}^{T} \nabla_{q_{1}} g_{1}\left(u, y, q_{1}\right) & & \\
-\Phi_{1}\left(x, u ;\left(\nabla_{x} f_{1}(u, y)+\nabla_{q_{1}} g_{1}\left(u, y, q_{1}\right), \rho_{1}\right),\right. & \cdot & \cdot, \\
f_{k}(x, y)-f_{k}(u, y)-g_{k}\left(u, y, q_{k}\right)+q_{k}^{T} \nabla_{q_{k}} g_{k}\left(u, y, q_{k}\right) & & \\
-\Phi_{1}\left(x, u ;\left(\nabla_{x} f_{k}(u, y)+\nabla_{q_{k}} g_{k}\left(u, y, q_{k}\right), \rho_{k}\right)\right. & &
\end{array}\right) \in K
$$

Definition 2.9 Let $S_{1} \subseteq R^{n}$ and $S_{2} \subseteq R^{m}$. Let $g_{i}: S_{1} \times S_{2} \times R^{n} \rightarrow R, i=$ $1,2, \ldots, k$, is a differentiable function and let $\Phi_{1}: S_{1} \times S_{1} \times R^{n+1} \rightarrow R$ is convex function in its third argument. Then a differentiable function $f=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$: $S_{1} \times S_{2} \rightarrow R^{k}$ is said to be higher order $K-\left(\Phi_{1}, \rho\right)$-pseudo convex in first variable $u \in S_{1}$ at fixed $y \in S_{2}$ with respect to $g=\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ such that for $x \in S_{1}, q_{i} \in$ $R^{n}, i=1,2, \ldots, k$,

$$
\left.\begin{array}{rl}
\left(\begin{array}{l}
\Phi_{1}\left(x, u ;\left(\nabla_{x} f_{1}(u, y)+\nabla_{q_{1}} g_{1}\left(u, y, q_{1}\right), \rho_{1}\right),\right. \\
\\
\Phi_{1}\left(x, u ;\left(\nabla_{x} f_{k}(u, y)+\nabla_{q_{k}} g_{k}\left(u, y, q_{k}\right), \rho_{k}\right)\right.
\end{array}\right. & . . \\
\Rightarrow
\end{array}\right) \in K .
$$

Remark 2.2

Similarly higher order $K-\left(\Phi_{2}, \sigma\right)$-convex and higher order $K-\left(\Phi_{2}, \sigma\right)$-pseudo convex in second variable $v \in S_{2}$ at fixed $x \in S_{1}$ can be defined.

Remark 2.3

If Φ is replaced by $F: S_{1} \times S_{1} \times R^{n} \rightarrow R$ a sub-linear function in its third argument, then Definition 2.8 and Definition 2.9 reduces to that of higher order $K-F$-convex and higher order $K-F$-pseudo convex function in Agarwal et al.[[1]].

3. Wolfe type higher order multi-objective symmetric duality

Now, we consider the following pair of non-differentiable multi-objective higher order symmetric dual programs:

- Primal(WHMP):

$L(x, y, \lambda, w, p)=$ K-Minimize $\left(\begin{array}{c}f_{1}(x, y)+\left(x^{T} B_{1} x\right)^{\frac{1}{2}}-y^{T} D_{1} w_{1} \\ +\Sigma_{i=1}^{k} \lambda_{i} h_{i}\left(x, y, p_{i}\right)-\Sigma_{i=1}^{k} \lambda_{i}\left[p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right] \\ -y^{T} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{y} f_{i}(x, y)-D_{i} w_{i}+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right], \\ \ldots, \\ f_{k}(x, y)+\left(x^{T} B_{k} x\right)^{\frac{1}{2}}-y^{T} D_{k} w_{k} \\ +\Sigma_{i=1}^{k} \lambda_{i} h_{i}\left(x, y, p_{i}\right)-\Sigma_{i=1}^{k} \lambda_{i}\left[p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right] \\ -y^{T} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{y} f_{i}(x, y)-D_{i} w_{i}+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right]\end{array}\right)$

Subject to

$$
\begin{array}{r}
-\sum_{i=1}^{k} \lambda_{i}\left[\nabla_{y} f_{i}(x, y)-D_{i} w_{i}+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right] \in C_{2}^{*} \\
w_{i}^{T} D_{i} w_{i} \leq 1, i=1,2, \ldots, k \\
x \in C_{1}, w_{i} \in R^{m}, i=1,2, \ldots, k \\
\lambda=\left(\lambda_{1}, \lambda_{1}, \ldots, \lambda_{k}\right) \in i n t K^{*}, \sum_{i=1}^{k} \lambda_{i}=1 \tag{3.4}
\end{array}
$$

- Dual(WHMD):

$M(u, v, \lambda, z, q)=$ K-Maxmize

$$
\left(\begin{array}{c}
f_{1}(u, v)-\left(v^{T} D_{1} v\right)^{\frac{1}{2}}+u^{T} B_{1} z_{1} \\
+\Sigma_{i=1}^{k} \lambda_{i} g_{i}\left(u, v, q_{i}\right)-\Sigma_{i=1}^{k} \lambda_{i}\left[q_{i}^{T} \nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right] \\
-u^{T} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{u} f_{i}(u, v)+B_{i} z_{i}+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right] \\
\ldots \\
f_{k}(u, v)-\left(v^{T} D_{k} v\right)^{\frac{1}{2}}+u^{T} B_{k} z_{k} \\
+\Sigma_{i=1}^{k} \lambda_{i} g_{i}\left(u, v, q_{i}\right)-\Sigma_{i=1}^{k} \lambda_{i}\left[q_{i}^{T} \nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right] \\
-u^{T} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{u} f_{i}(u, v)+B_{i} z_{i}+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right]
\end{array}\right)
$$

Subject to

$$
\begin{array}{r}
\sum_{i=1}^{k} \lambda_{i}\left[\nabla_{u} f_{i}(u, v)+B_{i} z_{i}+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right] \in C_{1}^{*} \\
z_{i}^{T} B_{i} z_{i} \leq 1, i=1,2, \ldots, k \\
v \in C_{2}, z_{i} \in R^{n}, i=1,2, \ldots, k \\
\lambda=\left(\lambda_{1}, \lambda_{1}, \ldots, \lambda_{k}\right) \in \operatorname{int} K^{*}, \sum_{i=1}^{k} \lambda_{i}=1 \tag{3.8}
\end{array}
$$

where (i) $f_{i}: S_{1} \times S_{2} \rightarrow R, h_{i}: S_{1} \times S_{2} \times R^{m} \rightarrow R^{k}$ and $g_{i}: S_{1} \times S_{2} \times R^{n} \rightarrow$ $R^{k}, i=1,2, \ldots, k$; are continuously differentiable functions,
(ii) C_{1} and C_{2} are closed convex cones in R^{n} and R^{m} with nonempty interior respectively,
(iii) C_{1}^{*} and C_{2}^{*} are polar cones of C_{1} and C_{2} respectively,
(iv) B_{i} and $D_{i}, i=1,2, \ldots, k$, are positive semi-definite symmetric matrix of order $n \times n$ and $m \times m$ respectively.

Theorem 3.1 (Weak Duality) Let (x, y, λ, w, p) and (u, v, λ, z, q) be the feasible solution for Primal (WHMP) and Dual (WHMD) respectively. If
(i) $f_{i}(., v)+(.)^{T} B_{i} z_{i}$ is higher order $K-(\Phi, \rho)$-convex at u with respect to $g_{i}\left(u, v, q_{i}\right), i=$ $1,2, \ldots, k$,
(ii) $-\left[f_{i}(x,)-.(.)^{T} D_{i} w_{i}\right]$ is higher order $K-(\Phi, \rho)$-convex at v with respect to $-h_{i}\left(x, y, p_{i}\right), i=1,2, \ldots, k$,
(iii) $\Phi_{1}(x, u ;(a, \rho))+u^{T} a \geq 0, \forall a \in C_{1}^{*}$ and
(iv) $\Phi_{2}(v, y ;(b, \rho))+y^{T} b \geq 0, \forall b \in C_{2}^{*}$,
where $\Phi_{1}: S_{1} \times S_{1} \times R^{n+1} \rightarrow R$ and $\Phi_{2}: S_{1} \times S_{1} \times R^{m+1} \rightarrow R$ are convex function in their third argument and $g_{i}: S_{1} \times S_{2} \times R^{n} \rightarrow R$, and $h_{i}: S_{1} \times S_{2} \times R^{m} \rightarrow R$, $i=1,2, \ldots, k$, are a differentiable function. Then $M(u, v, \lambda, z, q)-L(x, y, \lambda, w, p) \notin K \backslash\{0\}$.

Proof:Suppose that contradiction holds. That is
$M(u, v, \lambda, z, q)-L(x, y, \lambda, w, p) \in K \backslash\{0\}$

$$
\Rightarrow\left(\begin{array}{c}
f_{1}(u, v)-f_{1}(x, y)-\left(v^{T} D_{1} v\right)^{\frac{1}{2}}-\left(x^{T} B_{1} x\right)^{\frac{1}{2}}+u^{T} B_{1} z_{1}+y^{T} D_{1} w_{1} \\
+\Sigma_{i=1}^{k} \lambda_{i} g_{i}\left(u, v, q_{i}\right)-\Sigma_{i=1}^{k} \lambda_{i} q_{i}^{T} \nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)-u^{T} \Sigma_{i=1}^{k} \lambda_{i}\left[\nabla_{u} f_{i}(u, v)\right. \\
\left.+B_{i} z_{i}+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right]-\Sigma_{i=1}^{k} \lambda_{i}\left[h_{i}\left(x, y, p_{i}\right)-p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right] \\
+y^{T} \Sigma_{i=1}^{k} \lambda_{i}\left[\nabla_{y} f_{i}(x, y)-D_{i} w_{i}+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right], \\
\cdots, \\
f_{k}(u, v)-f_{k}(x, y)-\left(v^{T} D_{k} v\right)^{\frac{1}{2}}-\left(x^{T} B_{k} x\right)^{\frac{1}{2}}+u^{T} B_{k} z_{k}+y^{T} D_{k} w_{k} \\
+\sum_{i=1}^{k} \lambda_{i} g_{i}\left(u, v, q_{i}\right)-\Sigma_{i=1}^{k} \lambda_{i} q_{i}^{T} \nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)-u^{T} \Sigma_{i=1}^{k} \lambda_{i}\left[\nabla_{u} f_{i}(u, v)\right. \\
\left.+B_{i} z_{i}+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right]-\Sigma_{i=1}^{k} \lambda_{i}\left[h_{i}\left(x, y, p_{i}\right)-p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right] \\
+y^{T} \Sigma_{i=1}^{k} \lambda_{i}\left[\nabla_{y} f_{i}(x, y)-D_{i} w_{i}+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right]
\end{array}\right) \in K \backslash\{0\} .
$$

Since $\lambda \in \operatorname{int} K^{*}$, we get

$$
\sum_{i=1}^{k} \lambda_{i}\left[\begin{array}{c}
f_{i}(u, v)-f_{i}(x, y)-\left(v^{T} D_{i} v\right)^{\frac{1}{2}}-\left(x^{T} B_{i} x\right)^{\frac{1}{2}}+u^{T} B_{i} z_{i}+y^{T} D_{i} w_{i} \tag{3.9}\\
+\Sigma_{i=1}^{k} \lambda_{i} g_{i}\left(u, v, q_{i}\right)-\Sigma_{i=1}^{k} \lambda_{i} q_{i}^{T} \nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)-u^{T} \Sigma_{i=1}^{k} \lambda_{i}\left[\nabla_{u} f_{i}(u, v)\right. \\
\left.+B_{i} z_{i}+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right]-\Sigma_{i=1}^{k} \lambda_{i} h_{i}\left(x, y, p_{i}\right)+\Sigma_{i=1}^{k} \lambda_{i} p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right) \\
+y^{T} \Sigma_{i=1}^{k} \lambda_{i}\left[\nabla_{y} f_{i}(x, y)-D_{i} w_{i}+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right]
\end{array}\right]>0 .
$$

Now using (3.2) and (3.6) in Schwartz inequality, we obtain

$$
\begin{equation*}
x^{T} B_{i} z_{i} \leq\left(x^{T} B_{i} x\right)^{\frac{1}{2}}, v^{T} D_{i} w_{i} \leq\left(v^{T} D_{i} v\right)^{\frac{1}{2}}, i=1,2, \ldots, k \tag{3.10}
\end{equation*}
$$

So, (3.9) in lieu of (3.10) becomes

$$
\sum_{i=1}^{k} \lambda_{i}\left[\begin{array}{c}
f_{i}(u, v)-f_{i}(x, y)-v^{T} D_{i} w_{i}-x^{T} B_{i} z_{i}+g_{i}\left(u, v, q_{i}\right) \tag{3.11}\\
-q_{i}^{T} \nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)-u^{T}\left[\nabla_{u} f_{i}(u, v)+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right] \\
-h_{i}\left(x, y, p_{i}\right)+p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)+y^{T}\left[\nabla_{y} f_{i}(x, y)+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right]
\end{array}\right]>0
$$

From hypothesis (i), we have $f_{i}(., v)+(.)^{T} B_{i} z_{i}$ is higher order $K-(\Phi, \rho)$-convex at u with respect to $g_{i}\left(u, v, q_{i}\right), i=1,2, \ldots, k$.
So, we get

$$
\left(\begin{array}{c}
f_{1}(x, v)+x^{T} B_{1} z_{1}-f_{1}(u, v)-u^{T} B_{1} z_{1}-g_{1}\left(u, v, q_{1}\right)+q_{1}^{T} \nabla_{q_{1}} g_{1}\left(u, v, q_{1}\right) \tag{3.12}\\
-\Phi_{1}\left(x, u ;\left(\nabla_{u} f_{1}(u, v)+B_{1} z_{1}+\nabla_{q_{1}} g_{1}\left(u, v, q_{1}\right), \rho_{1}\right)\right), \ldots, \\
f_{k}(x, v)+x^{T} B_{k} z_{k}-f_{k}(u, v)-u^{T} B_{k} z_{k}-g_{k}\left(u, v, q_{k}\right)+q_{k}^{T} \nabla_{q_{k}} g_{k}\left(u, v, q_{k}\right) \\
-\Phi_{1}\left(x, u ;\left(\nabla_{u} f_{k}(u, v)+B_{k} z_{k}+\nabla_{q_{k}} g_{k}\left(u, v, q_{k}\right), \rho_{k}\right)\right)
\end{array}\right) \in K
$$

As $\lambda \in \operatorname{int} K^{*}$, from (3.12) we get

$$
\begin{aligned}
\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)+\right. & \left.x^{T} B_{i} z_{i}-f_{i}(u, v)-u^{T} B_{i} z_{i}-g_{i}\left(u, v, q_{i}\right)+q_{i}^{T} \nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right] \\
& -\sum_{i=1}^{k} \lambda_{i} \Phi_{1}\left(x, u ;\left(\nabla_{u} f_{i}(u, v)+B_{i} z_{i}+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right), \rho_{i}\right)\right) \geq 0
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow \sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)+x^{T} B_{i} z_{i}-f_{i}(u, v)-u^{T} B_{i} z_{i}-g_{i}\left(u, v, q_{i}\right)+q_{i}^{T} \nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right] \\
\geq \sum_{i=1}^{k} \lambda_{i} \Phi_{1}\left(x, u ;\left(\nabla_{u} f_{i}(u, v)+B_{i} z_{i}+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right), \rho_{i}\right)\right) \tag{3.13}
\end{array}
$$

Using Jension's inequality (lemma 2.1) in (3.13), we get

$$
\begin{array}{r}
\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)+x^{T} B_{i} z_{i}-f_{i}(u, v)-u^{T} B_{i} z_{i}-g_{i}\left(u, v, q_{i}\right)+q_{i}^{T} \nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right] \\
\geq \Phi_{1}\left(x, u ; \sum_{i=1}^{k} \lambda_{i}\left(\nabla_{u} f_{i}(u, v)+B_{i} z_{i}+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right), \rho_{i}\right)\right) \tag{3.14}
\end{array}
$$

From hypothesis (iii) of theorem 3.1, constraint (3.5) and inequality (3.14), we obtain

$$
\begin{array}{r}
\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)+x^{T} B_{i} z_{i}-f_{i}(u, v)-u^{T} B_{i} z_{i}-g_{i}\left(u, v, q_{i}\right)+q_{i}^{T} \nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right] \\
\geq-u^{T} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{u} f_{i}(u, v)+B_{i} z_{i}+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right]\right. \\
\Rightarrow \sum_{i=1}^{k} \lambda_{i}\left[\begin{array}{c}
f_{i}(x, v)+x^{T} B_{i} z_{i}-f_{i}(u, v)-g_{i}\left(u, v, q_{i}\right) \\
+q_{i}^{T} \nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)+u^{T}\left(\nabla_{u} f_{i}(u, v)+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right)
\end{array}\right] \geq 0 \tag{3.15}
\end{array}
$$

Again from hypothesis (ii), we have $-\left[f_{i}(x,)-.(.)^{T} D_{i} w_{i}\right]$ is higher order $K-$ $\left(\Phi_{2}, \rho\right)$-convex at y with respect to $-h_{i}\left(x, y, p_{i}\right), i=1,2, \ldots, k$.
So, we get

$$
\left(\begin{array}{c}
-f_{1}(x, v)+v^{T} D_{1} w_{1}+f_{1}(x, y)-y^{T} D_{1} w_{1}+h_{1}\left(x, y, p_{1}\right)-p_{1}^{T} \nabla_{p_{1}} h_{1}\left(x, y, p_{1}\right) \tag{3.16}\\
-\Phi_{2}\left(v, y ;\left(-\left[\nabla_{y} f_{1}(x, y)-D_{1} w_{1}+\nabla_{p_{1}} h_{1}\left(x, y, p_{1}\right)\right], \rho_{1}\right)\right), \ldots, \\
-f_{k}(x, v)+v^{T} D_{k} w_{k}+f_{k}(x, y)-y^{T} D_{k} w_{k}+h_{k}\left(x, y, p_{k}\right)-p_{k}^{T} \nabla_{p_{k}} h_{k}\left(x, y, p_{k}\right) \\
-\Phi_{2}\left(v, y ;\left(-\left[\nabla_{y} f_{k}(x, y)-D_{k} w_{k}+\nabla_{p_{k}} h_{k}\left(x, y, p_{k}\right)\right], \rho_{k}\right)\right)
\end{array}\right) \in K
$$

As $\lambda \in \operatorname{int} K^{*}$, from (3.16) we get

$$
\begin{array}{r}
-\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)-v^{T} D_{i} w_{i}-f_{i}(x, y)+y^{T} D_{i} w_{i}-h_{i}\left(x, y, p_{i}\right)+p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right] \\
- \\
-\sum_{i=1}^{k} \lambda_{i} \Phi_{2}\left(v, y ;\left(-\left[\nabla_{y} f_{i}(x, y)-D_{i} w_{i}+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right], \rho_{i}\right)\right) \geq 0
\end{array}
$$

$$
\begin{array}{r}
\Rightarrow-\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)-v^{T} D_{i} w_{i}-f_{i}(x, y)+y^{T} D_{i} w_{i}-h_{i}\left(x, y, p_{i}\right)+p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right] \\
\geq \sum_{i=1}^{k} \lambda_{i} \Phi_{2}\left(v, y ;\left(-\left[\nabla_{y} f_{i}(x, y)-D_{i} w_{i}+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right], \rho_{i}\right)\right) . \tag{3.17}
\end{array}
$$

Using Jension's inequality (lemma 2.1) in (3.17), we get

$$
\begin{array}{r}
-\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)-v^{T} D_{i} w_{i}-f_{i}(x, y)+y^{T} D_{i} w_{i}-h_{i}\left(x, y, p_{i}\right)+p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right] \\
\geq \Phi_{2}\left(v, y ;\left(-\sum_{i=1}^{k} \lambda_{i}\left(\left[\nabla_{y} f_{i}(x, y)-D_{i} w_{i}+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right], \rho_{i}\right)\right)\right) . \tag{3.18}
\end{array}
$$

From hypothesis (iii) of theorem 3.1, constraint (3.1) and inequality (3.18), we obtain

$$
\begin{array}{r}
-\sum_{i=1}^{k} \lambda_{i}\left[f_{i}(x, v)-v^{T} D_{i} w_{i}-f_{i}(x, y)+y^{T} D_{i} w_{i}-h_{i}\left(x, y, p_{i}\right)+p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right] \\
\geq-y^{T}\left[-\sum_{i=1}^{k} \lambda_{i}\left(\nabla_{y} f_{i}(x, y)-D_{i} w_{i}+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right.\right. \\
\Rightarrow \sum_{i=1}^{k} \lambda_{i}\left[\begin{array}{c}
-f_{i}(x, v)+v^{T} D_{i} w_{i}+f_{i}(x, y)+h_{i}\left(x, y, p_{i}\right) \\
-p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)-y^{T}\left(\nabla_{y} f_{i}(x, y)+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right)
\end{array}\right] \geq 0 \tag{3.19}
\end{array}
$$

Adding (3.15) and (3.19), we obtained

$$
\begin{align*}
& \sum_{i=1}^{k} \lambda_{i}\left[\begin{array}{c}
-f_{i}(u, v)+f_{i}(x, y)+v^{T} D_{i} w_{i}+x^{T} B_{i} z_{i}-g_{i}\left(u, v, q_{i}\right) \\
+q_{i}^{T} \nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)+u^{T}\left[\nabla_{u} f_{i}(u, v)+\nabla_{q_{i}} g_{i}\left(u, v, q_{i}\right)\right] \\
+h_{i}\left(x, y, p_{i}\right)-p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)-y^{T}\left[\nabla_{y} f_{i}(x, y)+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right]
\end{array}\right] \geq 0 \\
& \Rightarrow \sum_{i=1}^{k} \lambda_{i}\left[\begin{array}{c}
f_{i}(u, v)-f_{i}(x, y)-v^{T} D_{i} w_{i}-x^{T} B_{i} z_{i}+g_{i}\left(u, v, q_{i}\right) \\
-q_{i}\left(x, y, p_{i}\right)+p_{i}^{T} \nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)+y^{T}\left[\nabla_{y} f_{i}(x, y)+\nabla_{p_{i}} h_{i}\left(x, y, p_{i}\right)\right]
\end{array}\right] \leq 0 . \tag{3.20}
\end{align*}
$$

This is a contradiction to (3.11). Hence we proved.
Remark 3.1 If we replace (i) and (ii) of Theorem 3.1 by
(a) $f_{i}(., v)+(.)^{T} B_{i} z_{i}$ is higher order $K-(\Phi, \rho)$-pseudo convex at u with respect to $g_{i}\left(u, v, q_{i}\right), i=1,2, \ldots, k$,
(b) $-\left[f_{i}(x,)-.(.)^{T} D_{i} w_{i}\right]$ is higher order $K-(\Phi, \rho)$-pseudo convex at u with respect to $-h_{i}\left(x, y, p_{i}\right), i=1,2, \ldots, k$, then the same conclusion of Theorem 3.1 also holds.

In order to prove the strong duality theorem, we shall make use of the following lemma established by Suneja et al. [[20]]. It gives Fritz John type necessary optimality conditions for a weakly efficient solution of (WHMP).

Lemma 3.1

If x^{*} is a weakly efficient solution of (MP), then there exist $\alpha^{*} \in K^{*}, \beta^{*} \in Q^{*}$, not both zero, such that $(x-\bar{x})^{T}\left[\alpha^{* T} \nabla f(\bar{x})+\beta^{* T} \nabla g(\bar{x})\right] \geq 0, \forall x \in C$ and $\beta^{* T} g(\bar{x})=0$.

Theorem 3.2 (Strong Duality) Let $f: S_{1} \times S_{2} \rightarrow R^{k}$ be a twice differentiable function and let $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p})$ be a weak efficient solution of primal (WHMP). Suppose that
(i) the matrix $\nabla_{p_{i} p_{i}} h_{i}\left(\bar{x}, \bar{y}, \overline{p_{i}}\right), i=1,2, \ldots, k$, is positive definite or negative definite,
(ii) the set of vectors $\left\{\nabla_{y} f_{1}(\bar{x}, \bar{y})-D_{1} w_{1}, \ldots, \nabla_{y} f_{k}(\bar{x}, \bar{y})-D_{k} w_{k}\right\}$ are linearly independent,
(iii)the vectors $\left.\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y}\left(h_{i}\left(\bar{x}, \bar{y}, \overline{p_{i}}\right)\right)-\nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \overline{p_{i}}\right)\right)+\nabla_{y y} f_{i}(\bar{x}, \bar{y}) \overline{p_{i}}\right] \notin$
$\operatorname{span}\left\{\nabla_{y} f_{1}(\bar{x}, \bar{y})-D_{1} w_{1}, \ldots, \nabla_{y} f_{k}(\bar{x}, \bar{y})-D_{k} w_{k}\right\}$,
(iv)for some $\bar{\lambda} \in \operatorname{int} K^{*}$ and $\overline{p_{i}} \in R^{n}, \overline{p_{i}} \neq 0(i=1,2, \ldots, k)$ implies that $\nabla_{y}\left(\bar{\lambda}^{T} h(\bar{x}, \bar{y}, \bar{p})-\nabla_{p}\left(\bar{\lambda}^{T} h(\bar{x}, \bar{y}, \bar{p})+\nabla_{y y}\left(\bar{\lambda}^{T} f(\bar{x}, \bar{y}) \bar{p} \neq 0\right.\right.\right.$,
$(\mathbf{v}) h_{i}(\bar{x}, \bar{y}, 0)=0, g_{i}(\bar{x}, \bar{y}, 0)=0, \nabla_{p_{i}} h_{i}(\bar{x}, \bar{y}, 0)=0, \nabla_{y} h_{i}(\bar{x}, \bar{y}, 0)=0$, and $\nabla_{x} h_{i}(\bar{x}, \bar{y}, 0)=\nabla_{q_{i}} g_{i}(\bar{x}, \bar{y}, 0), i=1,2, \ldots, k ;$
(vi) K is a closed convex pointed cone with $R_{+}^{k} \subseteq K$.

Then (a) $\bar{p}_{i}=0, \forall i$ and (b)there exist $\bar{z}_{i} \in R^{n}$ such that $(\bar{x}, \bar{y}, \bar{z}, \bar{\lambda}, \bar{q}=0)$ is feasible solution for dual (WHMD) and two objective values are equal. Also, if the hypothesis of theorem 3.1 are satisfied for all feasible solution of primal (WHMP) and dual (WHMD), then $(\bar{x}, \bar{y}, \bar{z}, \bar{\lambda}, \bar{q}=0)$ is an efficient solution of dual (WHMD). Proof:Since $(\bar{x}, \bar{y}, \bar{w}, \bar{\lambda}, \bar{p})$ is weakly efficient solution of (WHMP), by lemma 3.1, there exist $\bar{\alpha} \in K^{*}, \sum_{i=1}^{k} \bar{\alpha}_{i}=\mu, \bar{\beta} \in C_{2}, \bar{\gamma} \in R_{+}, \bar{\delta} \in R_{+}, \bar{z} \in R^{n}$ such that

$$
(x-\bar{x})^{T}\left\{\begin{array}{c}
\sum_{i=1}^{k} \bar{\alpha}_{i}\left[\nabla_{x} f_{i}(\bar{x}, \bar{y})+B_{i} \bar{z}_{i}\right]+\left[\sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{x y} f_{i}(\bar{x}, \bar{y})\right)\right][\bar{\beta}-\mu \bar{y}] \tag{3.21}\\
+\sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{x} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right) \mu+\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{p_{i} x} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\left(\bar{\beta}-\mu\left(\bar{y}+\bar{p}_{i}\right)\right)\right]
\end{array}\right\} \geq 0
$$

$$
(y-\bar{y})^{T}\left\{\begin{array}{c}
\sum_{i=1}^{k}\left(\left[\bar{\alpha}_{i}-\mu \lambda_{i}\right]\left[\nabla_{y} f_{i}(\bar{x}, \bar{y})-D_{i} \bar{w}_{i}\right]\right) \tag{3.22}\\
+\left[\sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{y y} f_{i}(\bar{x}, \bar{y})\right)\right][\bar{\beta}-\mu \bar{y}] \\
\left.+\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right)-\nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right] \mu \\
+\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{p_{i} y} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\left(\bar{\beta}-\mu\left(\bar{y}+\bar{p}_{i}\right)\right)\right]
\end{array}\right\} \geq 0, \forall y \in R^{m}
$$

$$
(\lambda-\bar{\lambda})^{T}\left\{\begin{array}{c}
{\left[\nabla_{y} f_{1}(\bar{x}, \bar{y})-D_{1} \bar{w}_{1}\right][\bar{\beta}-\mu \bar{y}]+\left(\nabla_{p_{1}} h_{1}\left(\bar{x}, \bar{y}, \bar{p}_{1}\right)\right)\left[\bar{\beta}-\mu\left(\bar{y}+\bar{p}_{1}\right)\right]} \\
+h_{1}\left(\bar{x}, \bar{y}, \bar{p}_{1}\right) \mu+\delta, \ldots,\left[\nabla_{y} f_{k}(\bar{x}, \bar{y})-D_{k} \bar{w}_{k}\right][\bar{\beta}-\mu \bar{y}] \tag{3.23}\\
+\left(\nabla_{p_{k}} h_{k}\left(\bar{x}, \bar{y}, \bar{p}_{k}\right)\right)\left[\bar{\beta}-\mu\left(\bar{y}+\delta+\bar{p}_{k}\right)\right]+h_{k}\left(\bar{x}, \bar{y}, \bar{p}_{k}\right) \mu+\delta
\end{array}\right\} \geq 0,
$$

$$
\begin{array}{r}
\left.t h \nabla_{p_{i} p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\left(\bar{\beta}-\mu\left(\bar{y}+\bar{p}_{i}\right)\right)\right]=0, i=1,2, \ldots, k, \\
\bar{\beta}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y} f_{i}(\bar{x}, \bar{y})-D_{i} \bar{w}_{i}+\nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right]=0, \\
\left(D_{i} \bar{\beta}+\bar{\gamma} D_{i} \bar{w}_{i}\right)=0, i=1,2, \ldots, k, \tag{3.26}
\end{array}
$$

$$
\begin{array}{r}
\bar{\gamma}\left(\bar{w}_{i}^{T} D_{i} \bar{w}_{i}-1\right), i=1,2, \ldots, k, \\
\bar{\delta}\left(\sum_{i=1}^{k} \bar{\lambda}_{i}-1\right)=0, \\
\bar{x} B_{i} \bar{z}_{i}=\left(\bar{x} B_{i} \bar{x}\right)^{\frac{1}{2}}, i=1,2, \ldots, k \\
\bar{z}_{i} B_{i} \bar{z}_{i} \leq 1, \\
(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}) \neq 0 . \tag{3.31}
\end{array}
$$

From hypothesis i and equation (4), we observed that

$$
\begin{equation*}
\bar{\beta}=\mu\left(\bar{y}+\bar{p}_{i}\right), i=1,2, \ldots, k \tag{3.32}
\end{equation*}
$$

Also inequality (3.22) and (3.23) imply, respectively

$$
\left\{\begin{array}{c}
\sum_{i=1}^{k}\left(\left[\bar{\alpha}_{i}-\mu \lambda_{i}\right]\left[\nabla_{y} f_{i}(\bar{x}, \bar{y})-D_{i} \bar{w}_{i}\right]\right) \tag{3.33}\\
+\left[\sum_{i=1}^{k} \bar{\lambda}_{i}\left(\nabla_{y y} f_{i}(\bar{x}, \bar{y})\right)\right][\bar{\beta}-\mu \bar{y}] \\
\left.+\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{p}\right)\right)-\nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right] \mu \\
+\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{p_{i} y} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\left(\bar{\beta}-\mu\left(\bar{y}+\bar{p}_{i}\right)\right)\right]
\end{array}\right\}=0,
$$

and for each i

$$
\begin{array}{r}
\left.\nabla_{y} f_{i}(\bar{x}, \bar{y})-D_{i} \bar{w}_{i}\right][\bar{\beta}-\mu \bar{y}]+\left(\nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right)\left[\bar{\beta}-\mu\left(\bar{y}+\bar{p}_{i}\right)\right] \\
+h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right) \mu+\delta=0 . \tag{3.34}
\end{array}
$$

Now we claim that $\bar{\alpha} \neq 0$. To do so, suppose $\bar{\alpha}=0 \Rightarrow \bar{\alpha}_{i}=0, \forall i$.
So $\mu=\sum_{i=1}^{k} \bar{\alpha}_{i}=0$. Then (3.32) gives $\bar{\beta}=0$, which along with equation (3.34), yields $\bar{\delta}=0$.
From (3.26) and (3.27), we have
$\bar{\gamma}=\bar{\gamma}\left(\bar{w}_{i}^{T} D_{i} \bar{w}_{i}\right)=\bar{w}_{i}^{T}\left(\bar{\gamma} D_{i} \bar{w}_{i}\right)=\bar{w}_{i}^{T} D_{i} \bar{\beta}=0$.
Thus $(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta})=0$, which contradicts inequality (3.31).
Hence $\bar{\alpha} \neq 0$.
Since $\bar{\alpha} \in K^{*}$ and $R_{+}^{k} \subseteq K$ implies $K^{*} \subseteq R_{+}^{k}$, we therefor get $\bar{\alpha} \geq 0$ or

$$
\begin{equation*}
\mu=\sum_{i=1}^{k} \bar{\alpha}_{i}>0 \tag{3.35}
\end{equation*}
$$

Now, using (3.32) and (3.35) in equation (3.33), we get

$$
\begin{array}{r}
\left.\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right)-\nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)+\left(\nabla_{y y} f_{i}(\bar{x}, \bar{y})\right) \bar{p}_{i}\right] \\
=\frac{1}{\mu} \sum_{i=1}^{k}\left(\left[\bar{\alpha}_{i}-\mu \lambda_{i}\right]\left[\nabla_{y} f_{i}(\bar{x}, \bar{y})-D_{i} \bar{w}_{i}\right]\right) \tag{3.36}
\end{array}
$$

Suppose that for each $i, \bar{p}_{i} \neq 0$, then hypothesis (iv) imply that
$\left.\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right)-\nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)+\left(\nabla_{y y} f_{i}(\bar{x}, \bar{y})\right) \bar{p}_{i}\right] \neq 0$, which in view of equation (3.36) contradicts hypothesis (iii).
Therefore

$$
\begin{equation*}
\bar{p}_{i}=0, \forall i \tag{3.37}
\end{equation*}
$$

So equation (3.36) and (3.37), yields

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\left[\bar{\alpha}_{i}-\mu \lambda_{i}\right]\left[\nabla_{y} f_{i}(\bar{x}, \bar{y})-D_{i} \bar{w}_{i}\right]\right)=0 \tag{3.38}
\end{equation*}
$$

Since the set of vectors $\left\{\nabla_{y} f_{1}(\bar{x}, \bar{y})-D_{1} \bar{w}_{1}, \ldots, \nabla_{y} f_{k}(\bar{x}, \bar{y})-D_{k} \bar{w}_{k}\right\}$ are linearly independent (by hypothesis (ii)), equation (3.38) yields

$$
\begin{equation*}
\bar{\alpha}_{i}=\mu \bar{\lambda}_{i}, i=1,2, \ldots, k . \tag{3.39}
\end{equation*}
$$

Again, using (3.37) in (3.32), we get

$$
\begin{equation*}
\bar{\beta}=\mu \bar{y} \tag{3.40}
\end{equation*}
$$

Using (3.35), (3.37), (3.39) and (3.40) in (3.21), we get

$$
\begin{equation*}
(x-\bar{x})^{T}\left[\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{x} f_{i}(\bar{x}, \bar{y})+B_{i} \bar{z}_{i}+\nabla_{x} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right]\right] \geq 0, \forall x \in C_{1} \tag{3.41}
\end{equation*}
$$

Let $x \in C_{1}$. Then $x+\bar{x} \in C_{1}$. So (3.41) implies

$$
x^{T}\left[\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{x} f_{i}(\bar{x}, \bar{y})+B_{i} \bar{z}_{i}+\nabla_{x} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right]\right] \geq 0, \forall x \in C_{1} .
$$

Therefore

$$
\begin{equation*}
x^{T}\left[\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{x} f_{i}(\bar{x}, \bar{y})+B_{i} \bar{z}_{i}+\nabla_{x} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right]\right] \geq 0, \forall x \in C_{1} \tag{3.42}
\end{equation*}
$$

Also, from (3.35), (3.40) and $\bar{\beta} \in C_{2}$, we obtained

$$
\begin{equation*}
\bar{y} \in C_{2} . \tag{3.43}
\end{equation*}
$$

Also, from (3.35) and (3.39), we get

$$
\begin{equation*}
\sum_{i=1}^{k} \bar{\lambda}_{i}=1, \text { and } \lambda>0 \tag{3.44}
\end{equation*}
$$

Hence from (3.30), (3.42), (3.43) and (3.44), we obtained that $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{q}=0)$ satisfies the dual constraint (3.5)-(3.8) i.e. it is a feasible solution of the dual (WHMD).

Now, putting $x=0$ and $x=2 \bar{x}$, simultaneously in (3.41), we get

$$
\bar{x}^{T}\left[\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{x} f_{i}(\bar{x}, \bar{y})+B_{i} \bar{z}_{i}+\nabla_{x} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right]\right] \leq 0
$$

and

$$
\bar{x}^{T}\left[\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{x} f_{i}(\bar{x}, \bar{y})+B_{i} \bar{z}_{i}+\nabla_{x} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right]\right] \geq 0
$$

which implies

$$
\begin{equation*}
\bar{x}^{T}\left[\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{x} f_{i}(\bar{x}, \bar{y})+B_{i} \bar{z}_{i}+\nabla_{x} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right]\right]=0 . \tag{3.45}
\end{equation*}
$$

Again using (3.35) and (3.40) in (3.25), we get

$$
\begin{equation*}
\bar{y}^{T}\left[\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y} f_{i}(\bar{x}, \bar{y})-D_{i} \bar{w}_{i}+\nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}\right)\right]\right]=0 \tag{3.46}
\end{equation*}
$$

From (3.26),(3.35) and (3.40), we get

$$
\begin{equation*}
D_{i} \bar{y}=\frac{\bar{\gamma}}{\mu} D_{i} \overline{w_{i}} . \tag{3.47}
\end{equation*}
$$

Or

$$
\begin{equation*}
D_{i} \bar{y}=a D_{i} \overline{w_{i}}, \text { for } a=\frac{\bar{\gamma}}{\mu}>0 \tag{3.48}
\end{equation*}
$$

Under this condition, the Schwartz inequality holds as equality. Therefore

$$
\begin{equation*}
\bar{y} D_{i} \bar{w}_{i}=\left(\bar{y}^{T} D_{i} \bar{y}\right)^{\frac{1}{2}}\left(\bar{w}_{i}^{T} D_{i} \bar{w}_{i}\right)^{\frac{1}{2}} . \tag{3.49}
\end{equation*}
$$

In case, $\bar{\gamma}>0$, from (3.27), we get $\bar{w}_{i}^{T} D_{i} \bar{w}_{i}=1$ for each i. So, (3.49) implies

$$
\bar{y} D_{i} \bar{w}_{i}=\left(\bar{y}^{T} D_{i} \bar{y}\right)^{\frac{1}{2}} .
$$

In case, $\bar{\gamma}>0$, from (3.47), we get $D_{i} \bar{y}=0$ and so $\bar{y}^{T} D_{i} \bar{w}_{i}=0=\left(\bar{y}^{T} D_{i} \bar{y}\right)^{\frac{1}{2}}$. Thus in either case,

$$
\begin{equation*}
\bar{y} D_{i} \bar{w}_{i}=\left(\bar{y}^{T} D_{i} \bar{y}\right)^{\frac{1}{2}} . \tag{3.50}
\end{equation*}
$$

So, from (3.29), (3.37), (3.45), (3.50) and hypothesis (v), we conclude that for every $i \in\{1,2, \ldots, k\}$,
$f_{i}(\bar{x}, \bar{y})+\left(\bar{x}^{T} B_{i} \bar{x}\right)^{\frac{1}{2}}-\bar{y}^{T} D_{i} \bar{w}_{i}+\sum_{i=1}^{k} \bar{\lambda}_{i} h_{i}(\bar{x}, \bar{y}, 0)-\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{p_{i}} h_{i}(\bar{x}, \bar{y}, 0)\right]$
$-\bar{y}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y} f_{i}(\bar{x}, \bar{y})-D_{i} \bar{w}_{i}+\nabla_{p_{i}} h_{i}(\bar{x}, \bar{y}, 0)\right]$
$=f_{i}(\bar{x}, \bar{y})+\bar{x}^{T} B_{i} \bar{z}_{i}-\left(\bar{y}^{T} D_{i} \bar{y}\right)^{\frac{1}{2}}$
$=f_{i}(\bar{x}, \bar{y})+\bar{x}^{T} B_{i} \bar{z}_{i}-\left(\bar{y}^{T} D_{i} \bar{y}\right)^{\frac{1}{2}}+\sum_{i=1}^{k} \bar{\lambda}_{i} g_{i}(\bar{x}, \bar{y}, 0)-\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{q_{i}} g_{i}(\bar{x}, \bar{y}, 0)\right]$
$-\bar{y}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y} f_{i}(\bar{x}, \bar{y})-D_{i} \bar{w}_{i}+\nabla_{q_{i}} g_{i}(\bar{x}, \bar{y}, 0)\right]$.
That is

$$
\begin{equation*}
L(\bar{x}, \bar{y}, \bar{\lambda}, \bar{w}, \bar{p}=0)=M(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{q}=0) \tag{3.51}
\end{equation*}
$$

So, the two objective values are equal.
Now, we claim that $(\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{q}=0)$ is an efficient solution of dual(WHMD). If this would not be the case, then there would exist a feasible solution $(\bar{u}, \bar{v}, \bar{\lambda}, \bar{z}, \bar{q}=0)$.
such that

$$
\left(\begin{array}{c}
\left(f_{1}(\bar{u}, \bar{v})-\left(\bar{v}^{T} D_{1} \bar{v}\right)^{\frac{1}{2}}+\bar{u}^{T} B_{1} \bar{z}_{1}+\sum_{i=1}^{k} \overline{\lambda_{i}}\left[g_{i}\left(\bar{u}, \bar{v}, \bar{q}_{i}=0\right)\right]\right. \tag{3.52}\\
-\sum_{i=1}^{k} \overline{\lambda_{i}}\left[\bar{q}_{i}^{T} \nabla_{\bar{q}_{i}} g_{i}\left(\bar{u}, \bar{v}, \bar{q}_{i}=0\right)\right] \\
\left.-\bar{u}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{u} f_{i}(\bar{u}, \bar{v})+B_{i} \bar{z}_{i}+\nabla_{q_{i}} g_{i}\left(\bar{u}, \bar{v}, \bar{q}_{i}=0\right)\right]\right) \\
-\left(f_{1}(\bar{x}, \bar{y})-\left(\bar{y}^{T} D_{1} \bar{y}\right)^{\frac{1}{2}}+\bar{x}^{T} B_{1} \overline{z_{1}}\right. \\
-\sum_{i=1}^{k} \bar{\lambda}_{i}\left[g_{i}\left(\bar{x}, \bar{y}, \bar{q}_{i}=0\right)+\bar{q}_{i}^{T} \nabla_{q_{i}} g_{i}\left(\bar{x}, \bar{y}, \bar{q}_{i}=0\right)\right] \\
\left.+\bar{x}^{T} \sum_{i=1}^{k} \frac{\bar{\lambda}_{i}}{}\left[\nabla_{x} f_{i}(\bar{x}, \bar{y})+B_{i} \bar{z}_{i}+\nabla_{q_{i}} g_{i}\left(\bar{x}, \bar{y}, \bar{q}_{i}=0\right)\right]\right), \\
\ldots, \\
\left(f_{k}(\bar{u}, \bar{v})-\left(\bar{v}^{T} D_{k} \bar{v}\right)^{\frac{1}{2}}+\bar{u}^{T} B_{k} \bar{z}_{k}+\sum_{i=1}^{k} \overline{\lambda_{i}}\left[g_{i}\left(\bar{u}, \bar{v}, \bar{q}_{i}=0\right)\right]\right. \\
-\sum_{i=1}^{k} \overline{\lambda_{i}}\left[\bar{q}_{i}^{T} \nabla_{\bar{q}_{i}} g_{i}\left(\bar{u}, \bar{v}, \bar{q}_{i}=0\right)\right] \\
\left.-\bar{u}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{u} f_{i}(\bar{u}, \bar{v})+B_{i} \bar{z}_{i}+\nabla_{q_{i}} g_{i}\left(\bar{u}, \bar{v}, \bar{q}_{i}=0\right)\right]\right) \\
-\left(f_{k}(\bar{x}, \bar{y})-\left(\bar{y}^{T} D_{k} \bar{y}\right)^{\frac{1}{2}}+\bar{x}^{T} B_{k} \bar{z} k\right. \\
-\sum_{i=1}^{k} \bar{\lambda}_{i}\left[g_{i}\left(\bar{x}, \bar{y}, \bar{q}_{i}=0\right)+\bar{q}_{i}^{T} \nabla_{q_{i}} g_{i}\left(\bar{x}, \bar{y}, \bar{q}_{i}=0\right)\right] \\
\left.+\bar{x}^{T} \sum_{i=1}^{k} \lambda_{i}\left[\nabla_{x} f_{i}(\bar{x}, \bar{y})+B_{i} \bar{z}_{i}+\nabla_{q_{i}} g_{i}\left(\bar{x}, \bar{y}, \bar{q}_{i}=0\right)\right]\right)
\end{array}\right) \in K \backslash\{0\} .(
$$

From hypothesis (v) and (3.45), we obtained

$$
\begin{equation*}
\bar{x}^{T}\left[\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{x} f_{i}(\bar{x}, \bar{y})+B_{i} \bar{z}_{i}+\nabla_{q_{i}} g_{i}\left(\bar{x}, \bar{y}, \bar{q}_{i}\right)\right]\right]=0 . \tag{3.53}
\end{equation*}
$$

So, using (3.29),(3.46),(3.50) and (3.53), we can write for each $i \in\{1,2, \ldots, k\}$

$$
\begin{array}{r}
f_{i}(\bar{x}, \bar{y})-\left(\bar{y}^{T} D_{i} \bar{y}\right)^{\frac{1}{2}}+\bar{x}^{T} B_{i} \bar{z}_{k}-\sum_{i=1}^{k} \bar{\lambda}_{i}\left[g_{i}\left(\bar{x}, \bar{y}, \bar{q}_{i}=0\right)+\bar{q}_{i}^{T} \nabla_{q_{i}} g_{i}\left(\bar{x}, \bar{y}, \bar{q}_{i}=0\right)\right] \\
+\bar{x}^{T} \sum_{i=1}^{k} \overline{\lambda_{i}}\left[\nabla_{x} f_{i}(\bar{x}, \bar{y})+B_{i} \bar{z}_{i}+\nabla_{q_{i}} g_{i}\left(\bar{x}, \bar{y}, \bar{q}_{i}=0\right)\right] \\
=f_{i}(\bar{x}, \bar{y})+\left(\bar{x}^{T} B_{i} \bar{x}\right)^{\frac{1}{2}}-\bar{y}^{T} D_{i} \bar{w}_{i}-\sum_{i=1}^{k} \bar{\lambda}_{i}\left[h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}=0\right)+\bar{p}_{i}^{T} \nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}=0\right)\right] \\
+\bar{y}^{T} \sum_{i=1}^{k} \overline{\lambda_{i}}\left[\nabla_{y} f_{i}(\bar{x}, \bar{y})-D_{i} \bar{w}_{i}+\nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}=0\right)\right] . \tag{3.54}
\end{array}
$$

Hence using (3.54) in (3.52), we get

$$
\left(\begin{array}{c}
\left(f_{1}(\bar{u}, \bar{v})-\left(\bar{v}^{T} D_{1} \bar{v}\right)^{\frac{1}{2}}+\bar{u}^{T} B_{1} \bar{z}_{1}+\sum_{i=1}^{k} \overline{\lambda_{i}}\left[g_{i}\left(\bar{u}, \bar{v}, \bar{q}_{i}=0\right)\right]\right. \\
-\sum_{i=1}^{k} \overline{\lambda_{i}}\left[\bar{q}_{i}^{T} \nabla_{\bar{q}_{i}} g_{i}\left(\bar{u}, \bar{v}, \bar{q}_{i}=0\right)\right] \\
\left.-\bar{u}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{u} f_{i}(\bar{u}, \bar{v})+B_{i} \bar{z}_{i}+\nabla_{q_{i}} g_{i}\left(\bar{u}, \bar{v}, \bar{q}_{i}=0\right)\right]\right) \\
-\left(f_{1}(\bar{x}, \bar{y})+\left(\bar{x}^{T} B_{1} \bar{x}\right)^{\frac{1}{2}}-\bar{y}^{T} D_{1} \bar{w}_{1}\right. \\
-\sum_{i=1}^{k} \bar{\lambda}_{i}\left[h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}=0\right)+\bar{p}_{i}^{T} \nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}=0\right)\right] \\
\left.+\bar{y}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y} f_{i}(\bar{x}, \bar{y})-D_{i} \bar{w}_{i}+\nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}=0\right)\right]\right), \\
\ldots, \\
\left(f_{k}(\bar{u}, \bar{v})-\left(\bar{v}^{T} D_{k} \bar{v}\right)^{\frac{1}{2}}+\bar{u}^{T} B_{k} \bar{z}_{k}+\sum_{i=1}^{k} \overline{\lambda_{i}}\left[g_{i}\left(\bar{u}, \bar{v}, \bar{q}_{i}=0\right)\right]\right. \\
-\sum_{i=1}^{k} \overline{\lambda_{i}}\left[\bar{q}_{i}^{T} \nabla_{\bar{q}_{i}} g_{i}\left(\bar{u}, \bar{v}, \bar{q}_{i}=0\right)\right] \\
\left.-\bar{u}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{u} f_{i}(\bar{u}, \bar{v})+B_{i} \bar{z}_{i}+\nabla_{q_{i}} g_{i}\left(\bar{u}, \bar{v}, \bar{q}_{i}=0\right)\right]\right) \\
-\left(f_{k}(\bar{x}, \bar{y})+\left(\bar{x}^{T} B_{k} \bar{x}\right)^{\frac{1}{2}}-\bar{y}^{T} D_{k} \bar{w}\right. \\
-\sum_{i=1}^{k} \frac{\bar{\lambda}_{i}}{}\left[h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}=0\right)+\bar{p}_{i}^{T} \nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}=0\right)\right] \\
\left.+\bar{y}^{T} \sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{y} f_{i}(\bar{x}, \bar{y})-D_{i} \bar{w}_{i}+\nabla_{p_{i}} h_{i}\left(\bar{x}, \bar{y}, \bar{p}_{i}=0\right)\right]\right)
\end{array}\right) \in K \backslash\{0\},
$$

which contradicts the weak duality theorem. Hence $\bar{x}, \bar{y}, \bar{\lambda}, \bar{z}, \bar{q}=0$) is an efficient solution of dual (WHMD)

Theorem 3.3 (Converse Duality) Let $f: S_{1} \times S_{2} \rightarrow R^{k}$ be a twice differentiable function and let $(\bar{u}, \bar{v}, \bar{\lambda}, \bar{z}, \bar{q})$ be a weak efficient solution of primal (WHMP). Suppose that
(i) the matrix $\nabla_{q_{i} q_{i}} g_{i}\left(\bar{u}, \bar{v}, \overline{q_{i}}\right), i=1,2, \ldots, k$, is positive definite or negative definite,
(ii) the set of vectors $\left\{\nabla_{x} f_{1}(\bar{u}, \bar{v})-B_{1} z_{1}, \ldots, \nabla_{x} f_{k}(\bar{u}, \bar{v})-B_{k} z_{k}\right\}$ are linearly independent,
(iii)the vectors $\left.\sum_{i=1}^{k} \bar{\lambda}_{i}\left[\nabla_{x}\left(g_{i}\left(\bar{u}, \bar{v}, \overline{q_{i}}\right)\right)-\nabla_{q_{i}} g_{i}\left(\bar{u}, \bar{v}, \overline{q_{i}}\right)\right)+\nabla_{x x} f_{i}(\bar{u}, \bar{v}) \overline{q_{i}}\right] \notin$
$\operatorname{span}\left\{\nabla_{x} f_{1}(\bar{u}, \bar{v})-B_{1} z_{1}, \ldots, \nabla_{x} f_{k}(\bar{u}, \bar{v})-B_{k} z_{k}\right\}$,
(iv)for some $\bar{\lambda} \in \operatorname{int} K^{*}$ and $\overline{q_{i}} \in R^{n}, \overline{q_{i}} \neq 0(i=1,2, \ldots, k)$ implies that $\nabla_{x}\left(\bar{\lambda}^{T} g(\bar{u}, \bar{v}, \bar{q})-\nabla_{q}\left(\bar{\lambda}^{T} g(\bar{u}, \bar{v}, \bar{q})+\nabla_{x x}\left(\bar{\lambda}^{T} f(\bar{u}, \bar{v}) \bar{q} \neq 0\right.\right.\right.$,
(v) $g_{i}(\bar{u}, \bar{v}, 0)=0, h_{i}(\bar{u}, \bar{v}, 0)=0, \nabla_{q_{i}} g_{i}(\bar{u}, \bar{v}, 0)=0, \nabla_{x} g_{i}(\bar{u}, \bar{v}, 0)=0$, and $\nabla_{p_{i}} h_{i}(\bar{u}, \bar{v}, 0)=\nabla_{y} g_{i}(\bar{u}, \bar{v}, 0), i=1,2, \ldots, k ;$
(vi) K is a closed convex pointed cone with $R_{+}^{k} \subseteq K$.

Then (a) $\bar{q}_{i}=0, \forall i$ and (b)there exist $\bar{w}_{i} \in R^{m}$ such that $(\bar{u}, \bar{v}, \bar{w}, \bar{\lambda}, \bar{p}=0)$ is feasible solution for dual (WHMD) and two objective values are equal. Also, if the hypothesis of theorem 3.1 are satisfied for all feasible solution of primal (WHMP) and dual(WHMD), then $(\bar{u}, \bar{v}, \bar{w}, \bar{\lambda}, \bar{p}=0)$ is an efficient solution of dual (WHMP).

4. Special Cases

In this section, we consider some special cases of our problems as follows:
(i) If B_{i} and $D_{i}, i=1,2, \ldots, k$ are null matrices, then (WHMP) and dual(WHMD) are reduced to the problem (WP) and (WD) considered by Gupta et al. [[9]]
(ii) If we take $\left(x^{T} B_{i} x\right)^{\frac{1}{2}}=s\left(x \mid D_{i}\right)$ and $\left(v^{T} D_{i} v\right)^{\frac{1}{2}}=s\left(v \mid E_{i}\right)$ with $D_{i}=\left\{B_{i} x\right.$: $\left.x^{T} B_{i} x \leq 1\right\}$ and $E_{i}=\left\{D_{i} v: v^{T} D_{i} v \leq 1\right\}$ and $h_{i}\left(x, y, p_{i}\right)=g_{i}\left(x, y, q_{i}\right)=0, i=$ $1,2, \ldots, k$, then our problem (WHMP) and dual(WHMD)are reduced a pair of Wolfe type nond-ifferentiable symmetric dual problem studied by Kim and Lee [[13]].
(iii) If $k=1$ with B and D are null matrices, then our problem (WHMP) and dual(WHMD) are reduced to the problem studied by Gulati and Gupta [[5]].

5. Conclusion

In this paper, a new class of generalized $K-(\Phi, \rho)$ convex function is introduced, in which the sub linearity property of F as in literature is relaxed by imposing the convexity assumption on Φ in its third argument with example. This new class of generalized convex function is more generalized than the (F, α, ρ, d)-convex functions, (C, α, ρ, d)-convex functions and $K-(F, \alpha, \rho, d)$ convex functions. Also, a new model of higher order Wolfe type non-differentiable multi-objective symmetric dual programs is formulated and the weak, strong and converse duality theorem under higher order $K-(\Phi, \rho)$ convex functions are established. Based on this concept, higher order minmax mixed integer programming and higher order fractional programming over cone can be established.

Acknowledgments The author is thankful to the referees for their valuable suggestions for the improvement of the paper.

References

[1] R. P. Agarwal, I. Ahmad, A. Jayswal,: Higher order symmetric duality in non-differentiable multi-objective programming problems involving generalized cone convex functions. Mathematical and Computer Modeling, 52,1644-1650, 2010.
[2] M. Kassem, Abd EI-Hady : Higher-order symmetric duality in vector optimization problem involving generalized cone-invex functions. Applied Mathematics and Computations, 209,405409,2009.
[3] G. Carsiti, M. Ferrara, A. Stefanescu : Mathematical programming with (Φ, ρ)-invexity, In: I.V. Konnov, D. I. Luc, A. Rubinov (eds) Generalized Convexity and Related Topics, Lecture Notes in Economics and Mathematical System, 583,167-176, 2006.
[4] B. D. Craven: Invex function and constrained local minima. Bulletin of Australia Mathematical Society, 24, 357-366, 1981.
[5] T. R. Gulati, S. K. Gupta : Higher-order non-differentiable symmetric duality with generalized F-convexity, Journal of Mathematical Analysis and Application, 329, 229-237,2007.
[6] T. R. Gulati, S. K. Gupta: Higher-order symmetric duality with cone constraints, Applied Mathematics Letters, 22, 776-781,2009.
[7] T. R. Gulati, H. Sani.: Higher order ($F, \alpha, \beta, \rho, d)$-convexity and its applications in fractional programming. European J. Pure Appl. Math., 4, 3, 266-275, 2011.
[8] S. K. Gupta, A. Jayswal : Multi-objective higher-order symmetric duality involving generalized cone-invex functions, Computers and Mathematics with Applications, 60, 31873192,2010.
[9] S. K. Gupta, N. Kailey, M. K. Sharma : Higher order (F, α, ρ, d)-convexity and symmetric duality in multi-objective programming, Computers and Mathematics with Applications, 60,2373-2381,2010.
[10] S. K. Gupta, N. Kailey, S. Kumar: Duality for non-differentiable multi-objective higher order symmetric programs over cones involving generalized (F, α, ρ, d)-convexity, Journal of Inequality and Applications, 2012,298-312, 2012.
[11] M. A. Hanson : On sufficiency of Kuhn-Tucker conditions, J. Math. Anal. Appl., 80,545550,1981.
[12] A. Jayswal,K. Kumari : Higher order duality for multiobjective programming problem involving (Φ, ρ)-invex functions, J. Egyptian Math. Soc., 23,12-19, 2015.
[13] D. S. Kim, Y. J. Lee: Non-differentiable higher order duality in multi-objective programming involving cones, Nonlinear Anal. 71, e2474-e2480,2009.
[14] Z. A. Liang, H. X. Huang, P. M. Pardalos: Optimality conditions and duality for a class of nonlinear fractional programming problems, Journal of Optimization Theory and Applications, 110, 611-619,2001.
[15] S. K. Mishra,: Higher order generalized invexity and duality in mathematical programming, J. Math. Anal. Appl., 247, 173-182,2000.
[16] S. K. Mishra : Non-differentiable higher-order symmetric duality in mathematical programming with generalized invexity, European Journal of Operational Research, 167, 28-34,2005.
[17] S. K. Padhan, C. Nahak: Higher-order symmetric duality in multi-objective programming problems under higher-order invexity, Applied Mathematics and Computation, 218,17051712,2011.
[18] V. Preda: On efficiency and duality for multi-objective programs, Journal of Mathematical Analysis and Applications, 166,2,365-377,1992.
[19] S. K. Suneja, M. K. Srivastava, M. Bhatia: Higher order duality in multi-objective fractional programming with support functions. J. Math. Anal. Appl., 347, 8-17,2008.
[20] S. K. Suneja, S. Aggarwal, S. Davar: Multi-objective symmetric duality involving cones, European Journal of Operational Research, 141,471-479,2002.
[21] A. K. Tripathy, G. Devi: Wolfe type higher order multiple objective non-differentiable symmetric dual programming with generalized invex functions, Journal of Mathematical Modelling and Algorithms in Operations Research, 13,4,557-577,2014.
[22] D. Yuan,P. M. Pardalos, X. Liu, A. Chinchuluun: Non-differentiable mini-max fractional programming problem with (C, α, ρ, d)-convexity. Journal of Optimization Theory and Applications, 129,1,185-199,2006.

Department of Mathematics, Sri Sri Bayababa College, Mahakalapara, Kendrapara754224, Odisha, India

E-mail address: arun.tripathy15@gmail.com

[^0]: 2010 Mathematics Subject Classification. 90C29, 90C30, 90C32.
 Key words and phrases. Generalized $K-(\Phi, \rho)$ convex function, multi-objective symmetric dual programs, Cone constraints, Efficient solution, square root term.

 Submitted June 28, 2018. Revised July 15. 2018.

