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A STUDY OF INTUITIONISTIC FUZZY I-CONVERGENT
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Abstract. After the pioneering work of Zadeh[35], a huge number of research
papers have been appeared on fuzzy theory and its applications as well as fuzzy

analogues of the classical theories. Fuzzy set theory is a powerful hand set for
modelling uncertainty and vagueness in various problems arising in field of
science and engineering. It has a wide range of applications in various fields:
population dynamics[1], chaos control[4], computer programming[5], nonlinear

dynamical system[6], etc. Fuzzy topology is one of the most important and
useful tools and it proves to be very useful for dealing with such situations
where the use of classical theories breaks down.In this paper, we introduce

ideal convergence of double sequences in intuitionistic fuzzy sequences defined
by compact operator and study the fuzzy topology on the said spaces.

1. Introduction and Preliminaries:

The concept of intuitionistic fuzzy normed space[32] and of intuitionistic fuzzy
2-normed space[27] are the latest developments in fuzzy topology. Recently V.
A. Khan and Yasmeen[[7],[9], [10],[11],[12]] studied the intuitionistic fuzzy Zweier
I-convergent sequence spaces defined by paranorm, modulus function and Orlicz
function. And recently Totur, Çanak and Önder [[2],[31], [34]] studied and defined
some summable double sequence of fuzzy numbers.

The notion of statistical convergence is a very useful functional tool for study-
ing the convergence problems of numerical problems/matrices(double sequences)
through the concept of density. The notion of I-convergence, which is a generaliza-
tion of statistical convergence[[3],[19],[20],[21],[22],[23],[24],[25],[26],[28]] was intro-
duced by Kostyrko, Salat and Wilczynski[15] by using the idea of I of subsets of the
set of natural numbers N and further studied in[[30],[8],[13]]. Recently, the notion of
statistical convergence of double sequences x = (xij) has been defined and studied
by Mursaleen and Edely[18], and for fuzzy numbers by Savaş and Mursaleen[33], M.
Mursaleen, H. M. Srivastava and S. K. Sharma[29]. Quite recently, Das et al.[16]
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studied the notion of I and I∗- convergence of double sequences in R.

We recall some notations and basic definitions used in this paper.

Definition 1.1 Let I ⊂ 2N be a non-trivial ideal in N. Then a sequence x = (xk)
is said to be I-convergent to a number L if, for every ϵ > 0, the set

{k ∈ N :| xk − L |≥ ϵ} ∈ I.

Definition 1.2 Let X be a non empty set. Then F ⊂ 2X is said to be a
filter on X if and only if ϕ ̸∈ F , for A,B ∈ F we have A ∩ B ∈ F and for
each A ∈ F and B ⊃ A implies B ∈ F .

Definition 1.3 Let I ⊂ 2N be a non-trivial ideal in N. Then a sequence x = (xk)
is said to be I-Cauchy if, for each ϵ > 0,there exists a number N = N(ϵ) such that
the set {k ∈ N :| xk − xN |≥ ϵ} ∈ I.

Definition 1.4(See [8]) The five-tuple (X,µ, ν, ∗, ⋄) is said to be an intuitionistic
fuzzy normed space(for short, IFNS) if X is a vector space, ∗ is a continuous t-
norm, ⋄ is a continuous t-conorm and µ, ν are fuzzy sets on X × (0,∞) satisfying
the following conditions for every x, y ∈ X and s, t > 0 :

(1) µ(x, t) + ν(x, t) ≤ 1,
(2) µ(x, t) > 0,
(3) µ(x, t) = 1 if and only if x = 0,
(4) µ(αx, t) = µ(x, t

|α| ) for each α ̸= 0,

(5) µ(x, t) ∗ µ(y, s) ≤ µ(x+ y, t+ s),
(6) µ(x, .) : (0,∞) → [0, 1] is continuous,
(7) lim

t→∞
µ(x, t) = 1 and lim

t→0
µ(x, t) = 0,

(8) ν(x, t) < 1,
(9) ν(x, t) = 0 if and only if x = 0,
(10) ν(αx, t) = ν(x, t

|α| ) for each α ̸= 0,

(11) ν(x, t) ⋄ ν(y, s) ≥ ν(x+ y, t+ s),
(12) ν(x, .) : (0,∞) → [0, 1] is continuous,
(13) lim

t→∞
ν(x, t) = 0 and lim

t→0
ν(x, t) = 1.

In this case (µ, ν) is called an intuitionistic fuzzy norm.

Definition 1.5 Let (X,µ, ν, ∗, ⋄) be an IFNS. Then a sequence x = (xk) is said
to be convergent to L ∈ X with respect to the intuitionistic fuzzy norm (µ, ν) if,
for every ϵ > 0 and t > 0, there exists k0 ∈ N such that µ(xk − L, t) > 1 − ϵ and
ν(xk − L, t) < ϵ for all k ≥ k0. In this case we write (µ, ν)− limx = L.

Definition 1.6 Let (X,µ, ν, ∗, ⋄) be an IFNS. Then a sequence x = (xk) is said
to be a Cauchy sequence with respect to the intuitionistic fuzzy norm (µ, ν) if,
for every ϵ > 0 and t > 0, there exists k0 ∈ N such that µ(xk − xl, t) < ϵ and
ν(xk − xl, t) < ϵ for all k, l ≥ k0.
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Definition 1.7 Let K be the subset of natural numbers N. Then the asymptotic
density of K, denoted by δ(K), is defined as

δ(K) = lim
n

1

n
|{k ≤ n : k ∈ K}|,

where the vertical bars denotes the cardinality of the enclosed set.
A number sequence x = (xk) is said to be statistically convergent to a number

ℓ if, for each ϵ > 0, the set K(ϵ) = {k ≤ n :| xk − ℓ |> ϵ} has asymptotic density
zero, i.e.

lim
n

1

n
|{k ≤ n :| xk − ℓ |> ϵ}| = 0.

In this case we write st− limx = ℓ.

Definition 1.8 A number sequence x = (xk) is said to be statistically Cauchy
sequence if, for every ϵ > 0, there exists a number N = N(ϵ) such that

lim
n

1

n
|{j ≤ n :| xj − xN |≥ ϵ}| = 0.

The concepts of statistical convergence and statistical Cauchy for double se-
quences in intuitionistic fuzzy normed spaces have been studied by Mursaleen and
Mohiuddine[28].

Definition 1.9 Let I ⊂ 2N be a non trivial ideal and (X,µ, ν, ∗, ⋄) be an IFNS.
A sequence x = (xk) of elements of X is said to be I-convergent to L ∈ X with
respect to the intuitionistic fuzzy norm (µ, ν) if for every ϵ > 0 and t > 0 , the set

{k ∈ N : µ(xk − L, t) ≥ 1− ϵ or ν(xk − L, t) ≤ ϵ} ∈ I.

In this case L is called the I-limit of the sequence (xk) with respect to the intu-
itionistic fuzzy norm (µ, ν) and we write I(µ,ν) − limxk = L.

Definition 1.10(See [14]) Let X and Y be two normed linear spaces and T :
D(T ) → Y be a linear operator, where D ⊂ X. Then, the operator T is said to be
bounded, if there exists a positive real k such that

∥Tx∥ ≤ k∥x∥, for all x ∈ D(T ).

The set of all bounded linear operators B(X,Y )[17] is a normed linear spaces
normed by

∥T∥ = sup
x∈X,∥x∥=1

∥Tx∥

and B(X,Y ) is a Banach space if Y is a Banach space.

Definition 1.11(see [14]) Let X and Y be two normed linear spaces. An operator
T : X → Y is said to be a compact linear operator (or completely continuous linear
operator), if

(1) T is linear,
(2) T maps every bounded sequence (xk) in X on to a sequence (T (xk)) in Y

which has a convergent subsequence.

The set of all compact linear operators C(X,Y ) is a closed subspace of B(X,Y ) and
C(X,Y ) is Banach space, if Y is a Banach space.
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2. I2-Convergence in an IFNS

Definition 2.1 Let (X,µ, ν, ∗, ⋄) be an IFNS. Then, a double sequence x = (xij)
is said to be statistically convergent to L ∈ X with respect to the intuitionistic
fuzzy norm (µ, ν) if, for every ϵ > 0 and t > 0,

δ({(i, j) ∈ N× N : µ(xij − L, t) ≤ 1− ϵ or ν(xij − L, t) ≥ ϵ}) = 0.

or equivalently

lim
mn

1

mn
|{i ≤ m, j ≤ n, : µ(xij − L, t) ≤ 1− ϵ or ν(xij − L, t) ≥ ϵ}| = 0.

In this case we write st2(µ,ν) − limx = L.

Definition 2.2 Let (X,µ, ν, ∗, ⋄) be an IFNS. Then, a double sequence x = (xij)
is said to be statistically Cauchy with respect to the intuitionistic fuzzy norm (µ, ν)
if, for every ϵ > 0 and t > 0, there exist N = N(ϵ) and M = M(ϵ) such that for all
i, p ≥ N and j, q ≥ M,

δ({(i, j) ∈ N× N : µ(xij − xpq, t) ≤ 1− ϵ or ν(xij − xpq, t) ≥ ϵ}) = 0.

Definition 2.3 Let I2 be a non trivial ideal of N × N and (X,µ, ν, ∗, ⋄) be an
intuitionistic fuzzy normed space. A double sequence x = (xij) of elements of X
is said to be I2 convergent to L ∈ X with respect to the intuitionistic fuzzy norm
(µ, ν) if, for each ϵ > 0 and t > 0,

{(i, j) ∈ N× N : µ(xij − L, t) ≤ 1− ϵ or ν(xij − L, t) ≥ ϵ} ∈ I2.

In this case we write I
(µ,ν)
2 − limx = L.

In this article we introduce the following sequence spaces:

2S
I
(µ,ν)(T ) = {(xij) ∈ 2ℓ∞ : {(i, j) ∈ N× N : µ(T (xij)− L, t) ≤ 1− ϵ or ν(T (xij)− L, t) ≥ ϵ} ∈ I2};

2S
I
0(µ,ν)(T ) = {(xij) ∈ 2ℓ∞ : {(i, j) ∈ N× N : µ(T (xij), t) ≤ 1− ϵ or ν(T (xij), t) ≥ ϵ} ∈ I2}.

We also define an open ball with centre x and radius r with respect to t as follows:

2Bx(r, t)(T ) = {(yij) ∈ 2ℓ∞ : {(i, j) ∈ N× N : µ(T (xij)− T (yij), t) ≤ 1− ϵ
or ν(T (xij)− T (yij), t) ≥ ϵ} ∈ I2}.

3. Main results

Theorem 3.1 2S
I
(µ,ν)(T ) and 2S

I
0(µ,ν)(T ) are linear spaces.

Proof. We shall prove the result for 2S
I
(µ,ν)(T ). The proof for the other space will

follow similarly. Let x = (xij), y = (yij) ∈ 2S
I
(µ,ν)(T ) and α, β be scalars. Then for

a given ϵ > 0, we have

A1 =
{
(i, j) ∈ N× N : µ

(
T (xij)− L1,

t
2|α|

)
≤ 1− ϵ or ν

(
T (xij)− L1,

t
2|α|

)
≥ ϵ

}
∈ I2;

A2 =
{
(i, j) ∈ N× N : µ

(
T (yij)− L2,

t
2|β|

)
≤ 1− ϵ or ν

(
T (yij)− L2,

t
2|β|

)
≥ ϵ

}
∈ I2.
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Ac
1 =

{
(i, j) ∈ N× N : µ

(
T (xij)− L1,

t
2|α|

)
> 1− ϵ or ν

(
T (xij)− L1,

t
2|α|

)
< ϵ

}
∈ F(I2);

Ac
2 =

{
(i, j) ∈ N× N : µ

(
T (yij)− L2,

t
2|β|

)
> 1− ϵ or ν

(
T (yij)− L2,

t
2|β|

)
< ϵ

}
∈ F(I2).

Define the set A3 = A1 ∪A2, so that A3 ∈ I2. It follows that A
c
3 is a non-empty

set in F(I2). We shall show that for each (xij), (yij) ∈ 2S
I
(µ,ν)(T ).

Ac
3 ⊂ {(i, j) ∈ N× N : µ((αT (xij) + βT (yij)− (αL1 + βL2), t) > 1− ϵ
or ν((αT (xij) + βT (yij))− (αL1 + βL2), t) < ϵ}.
Let (m,n) ∈ Ac

3. In this case

µ
(
T (xmn)− L1,

t

2 | α |

)
> 1− ϵ or ν

(
T (xmn)− L1,

t

2 | α |

)
< ϵ

and

µ
(
T (ymn)− L2,

t

2 | β |

)
> 1− ϵ or ν

(
T (ymn)− L2,

t

2 | β |

)
< ϵ.

We have

µ
(
(αT (xmn) + βT (ymn))− (αL1 + βL2), t

)
≥ µ

(
αT (xmn)− αL1,

t

2

)
∗ µ

(
βT (xmn)− βL2,

t

2

)
= µ

(
T (xmn)− L1,

t

2 | α |

)
∗ µ

(
T (xmn)− L2,

t

2 | β |

)
> (1− ϵ) ∗ (1− ϵ) = 1− ϵ.

and

ν
(
(αT (xmn) + βT (ymn))− (αL1 + βL2), t

)
≤ ν

(
αT (xmn)− αL1,

t

2

)
⋄ ν

(
βT (xmn)− βL2,

t

2

)
= µ

(
T (xmn)− L1,

t

2 | α |

)
⋄ µ

(
T (xmn)− L2,

t

2 | β |

)
< ϵ ⋄ ϵ = ϵ.

This implies that
Ac

3 ⊂ {(i, j) ∈ N× N : µ((αT (xij) + βT (yij))− (αL1 + βL2), t) > 1− ϵ
or ν((αT (xij) + βT (yij))− (αL1 + βL2), t) < ϵ}. Hence 2S

I
(µ,ν)(T ) is a linear

space.

Theorem 3.2 Every open ball 2Bx(r, t)(T ) is an open set in 2S
I
(µ,ν)(T ).

Proof. Let 2Bx(r, t)(T ) be an open ball with centre x and radius r with respect
to t. That is

2Bx(r, t)(T ) = {y = (yij) ∈ 2ℓ∞ : {(i, j) ∈ N× N : µ(T (xij)− T (yij), t) ≤ 1− r
or ν(T (xij)− T (xij), t) ≥ r} ∈ I2}.
Let y ∈ 2B

c
x(r, t)(T ). Then µ(T (xij) − T (yij), t) > 1 − r and ν(T (xij) −

T (yij), t) < r. Since µ(T (xij)− T (yij), t) > 1− r, there exists t0 ∈ (0, t) such that
µ(T (xij)−T (yij), t0) > 1−r and ν(T (xij)−T (yij), t0) < r. Putting r0 = µ(T (xij)−
T (yij), t0), we have r0 > 1−r, there exists s ∈ (0, 1) such that r0 > 1−s > 1−r. For
r0 > 1−s, we have r1, r2 ∈ (0, 1) such that r0 ∗r1 > 1−s and (1−r0)⋄ (1−r0) ≤ s.
Putting r3 = max{r1, r2}. Consider the ball 2B

c
y(1− r3, t− t0)(T ). We prove that
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2B
c
y(1 − r3, t − t0)(T ) ⊂ 2B

c
x(r, t)(T ). Let z = (zij) ∈ 2B

c
y(1 − r3, t − t0)(T ), then

µ(T (yij)− T (zij), t− t0) > r3 and ν(T (yij)− T (zij), t− t0) < 1− r3. Therefore

µ(T (xij)− T (zij), t) ≥ µ(T (xij)− T (yij), t0) ∗ µ(T (yij)− T (zij), t− t0)

≥ (r0 ∗ r3) ≥ (r0 ∗ r1) ≥ (1− s) ≥ (1− r)

and

ν(T (xij)− T (zij), t) ≤ ν(T (xij)− T (yij), t0) ⋄ ν(T (yij)− T (zij), t− t0)

≤ (1− r0) ⋄ (1− r3) ≤ (1− r0) ⋄ (1− r2) ≤ s ≤ r.

Thus z ∈ 2B
c
x(r, t)(T ) and hence

2B
c
y(1− r3, t− t0)(T ) ⊂ 2B

c
x(r, t)(T ).

Remark 3.3 2S
I
(µ,ν)(T ) is an IFNS.

Define 2τ
I
(µ,ν)(T ) = {A ⊂ 2S

I
(µ,ν)(T ) : for each x ∈ A there exists t > 0

and r ∈ (0, 1) such that 2Bx(r, t)(T ) ⊂ A}.
Then 2τ

I
(µ,ν)(T ) is a topology on 2S

I
(µ,ν)(T ).

Theorem 3.4 The topology 2τ
I
(µ,ν)(T ) on 2S

I
0(µ,ν)(T ) is first countable.

Proof. {2Bx(
1
n ,

1
n )(T ) : n = 1, 2, 3, ...............} is a local base at x, the topology

2τ
I
(µ,ν)(T ) on 2S

I
0(µ,ν)(T ) is first countable.

Theorem 3.5 2S
I
(µ,ν)(T ) and 2S

I
0(µ,ν)(T ) are Hausdorff spaces.

Proof. We prove the result for 2S
I
(µ,ν)(T ). Similarly the proof follows for 2S

I
0(µ,ν)(T ).

Let x, y ∈ 2S
I
(µ,ν)(T ) such that x ̸= y. Then 0 < µ(T (x) − T (y), t) < 1 and

0 < ν(T (x)−T (y), t) < 1. Putting r1 = µ(T (x)−T (y), t), r2 = ν(T (x)−T (y), t) and
r = max{r1, 1− r2}. For each r0 ∈ (r, 1) there exists r3 and r4 such that r3∗r4 ≥ r0
and (1− r3) ⋄ (1− r4) ≤ (1− r0). Putting r5 max{r3, 1− r4} and consider the open
balls 2Bx(1−r5,

t
2 ) and 2By(1−r5,

t
2 ). Then clearly 2B

c
x(1−r5,

t
2 )∩2B

c
y(1−r5,

t
2 ) =

ϕ. For if there exists z ∈ 2B
c
x(1− r5,

t
2 ) ∩ 2B

c
y(1− r5,

t
2 ), then

r1 = µ(T (x)−T (y), t) ≥ µ(T (x)−T (z),
t

2
)∗µ(T (z)−T (y),

t

2
) ≥ r5∗r5 ≥ r3∗r3 ≥ r0 > r1

and r2 = ν(T (x)− T (y), t) ≤ ν(T (x)− T (z), t
2 ) ⋄ ν(T (z)− T (y), t

2 )
≤ (1− r5) ⋄ (1− r5) ≤ (1− r4) ⋄ (1− r4) ≤ (1− r0) < r2

which is a contradiction. Hence 2S
I
(µ,ν)(T ) is Hausdorff.

Theorem 3.6 2S
I
(µ,ν)(T ) is an IFNS and 2τ

I
(µ,ν)(T ) is a topology on 2S

I
(µ,ν)(T ).

Then a sequence (xij) ∈ 2S
I
(µ,ν)(T ), xij → x if and only if µ(T (xij)− T (x), t) → 1

and ν(T (xij)− T (x), t) → 0 as k → ∞.

Proof. Fix t0 > 0. Suppose xij → x. Then for r ∈ (0, 1), there exists (m0, n0) ∈
N× N such that (xij) ∈ 2Bx(r, t)(T ) for all (i, j) ≥ (m0, n0),

2Bx(r, t)(T ) = {(i, j) ∈ N× N : µ(T (xij)− T (x), t) ≤ 1− r or ν(T (xij)− T (x), t) ≥ r} ∈ I2,
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such that 2B
c
x(r, t)(T ) ∈ F(I2). Then 1 − µ(T (xij) − T (x), t) < r and ν(T (xij) −

T (x), t) < r. Hence µ(T (xij) − T (x), t) → 1 and ν(T (xij) − T (x), t) → 0 as
i → ∞, j → ∞.

Conversely, if for each t > 0, µ(T (xij)−T (x), t) → 1 and ν(T (xij)−T (x), t) → 0
as i → ∞, j → ∞, then for r ∈ (0, 1), there exists (m0, n0) ∈ N × N such that
1 − µ(T (xij) − T (x), t) < r and ν(T (xij) − T (x), t) < r, for all i ≥ m0, j ≥ n0.
It follows that µ(T (xij) − T (x), t) > 1 − r and ν(T (xij) − T (x), t) < r for all
i ≥ m0, j ≥ n0. Thus (xij) ∈ 2B

c
x(r, t)(T ) for all i ≥ m0, j ≥ n0 and hence xij → x.

Theorem 3.7 A sequence x = (xij) ∈ 2S
I
(µ,ν)(T ) is I2-convergent if and only if

for every ϵ > 0 and t > 0 there exists numbers M = M(x, ϵ, t) and N = N(x, ϵ, t)
such that

{(M,N) ∈ N× N : µ(T (xMN )− L,
t

2
) > 1− ϵ or ν(T (xMN )− L,

t

2
) < ϵ} ∈ F(I2).

Proof. Suppose that I
(µ,ν)
2 − limx = L and let ϵ > 0 and t > 0. For a given

ϵ > 0, choose s > 0 such that (1− ϵ) ∗ (1− ϵ) > 1− s and ϵ ⋄ ϵ < s. Then for each
x ∈ 2S

I
(µ,ν)(T ),

A = {(i, j) ∈ N× N : µ(T (xij)− L,
t

2
) ≤ 1− ϵ or ν(T (xij)− L,

t

2
) ≥ ϵ} ∈ I2,

which implies that

Ac = {(i, j) ∈ N× N : µ(T (xij)− L,
t

2
) > 1− ϵ or ν(T (xij)− L,

t

2
) < ϵ} ∈ F(I2).

Conversely let us choose (M,N) ∈ A. Then

µ(T (xMN )− L,
t

2
) > 1− ϵ or ν(T (xMN )− L,

t

2
) < ϵ.

Now we want to show that there exists a number M = M(x, ϵ), N = N(x, ϵ, t)
such that

{(M,N) ∈ N× N : µ(T (xij)− T (xMN ), t) ≤ 1− s or ν(T (xij)− T (xMN ), t) ≥ s} ∈ I2.

For this, define for each x ∈ 2S
I
(µ,ν)(T )

B = {(i, j) ∈ N× N : µ(T (xij)− T (xMN ), t) ≤ 1− s or ν(T (xij)− T (xMN ), t) ≥ s} ∈ I2.

Now we have to show that B ⊂ A. Suppose that BA. Then there exists (m,n) ∈ B
and n /∈ A. Therefore we have

µ(T (xmn)− T (xMN ), t) ≤ 1− s or µ(T (xmn)− L,
t

2
) > 1− ϵ.

In particular µ(T (xMN )− L, t
2 ) > 1− ϵ. Therefore we have

1−s ≥ µ(T (xmn)−T (xMN ), t) ≥ µ(T (xmn)−L,
t

2
)∗µ(T (xMN )−L,

t

2
) ≥ (1−ϵ)∗(1−ϵ) > 1−s,

which is not possible. On the other hand

ν(T (xmn)− T (xMN ), t) ≥ s or ν(T (xmn)− L,
t

2
) < ϵ

In particular ν(T (xMN )− L, t
2 ) < ϵ. Therefore we have

s ≤ ν(T (xmn)− T (xMN ), t) ≤ ν(T (xmn)− L,
t

2
) ⋄ ν(T (xMN )− L,

t

2
) ≤ ϵ ⋄ ϵ < s,
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which is not possible. Hence B ⊂ A. A ∈ I2 implies B ∈ I2.

4. Conclusion:

In the present paper we have studied the concept of ideal convergence of double
sequence spaces in intuitionistic fuzzy sequence spaces defined by compact operator
and studied the fuzzy topology on the said spaces.
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[33] E. Savaş, M. Mursaleen, On statistical convergent double sequences of fuzzy numbers, Inform.
Sci. 162(2004), 183-192.
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