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GROUND STATE SOLUTION FOR NONHOMOGENEOUS
ELLIPTIC EQUATIONS INVOLVING CRITICAL
CAFFARELLI-KOHN-NIRENBERG EXPONENT

N. KEDDAR, A. BOUSSETTINE AND A. BENAISSA

Abstract. In this paper, we consider a nonhomogeneous singular elliptic
equation involving a critical Ca¤arelli-Kohn-Nirenberg exponent. By using
the Nehari manifold we establish the existence of a ground state solution.

1. Introduction

This work deals with the existence of a ground state solution to the following
nonhomogeneous problem

(P)

8><>: �div( jruj
p�2

jxjpa ru)� � jujp�2

jxjp(a+1)
u =

jujp��2

jxjp�b
u+ f(x) in 
,

u = 0 on @
;

where 
 is a smooth bounded domain in RN (N � 3) containing 0 in its interior,
1 < p < N; �1 < a < (N � p) =p; a � b < a+1; p� = pN= (N � pa� p+ pb) is the
critical Ca¤arelli-Kohn-Nirenberg exponent; �1 < � < �; � := [(N � pa� p) =p]p
and f is a given measurable function di¤erent than 0.
This problem is related to the following well known Ca¤arelli-Kohn-Nirenberg in-
equality [4]: Z




jujp�

jxjp�b
dx

!1=p�
� Ca;b

�Z



jrujp

jxjpa dx
�1=p

for all u 2 C10 (
) ; (1.1)

for some positive constant Ca;b. For sharp constants and extremal functions asso-
ciated to (1:1), see [5, 8, 11]. If b = a+ 1 in (1:1), then p� = p; Ca;b = 1=� and we
have the following weighted Hardy inequality [4; 6; 10]:Z




jujp

jxjpa+p
dx � 1

�

Z



jrujp

jxjpa dx; for all u 2 C
1
0 (
) : (1.2)
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We shall work with the space W 1;p
� :=W 1;p

� (
) for �1 < � < � endowed with the
norm

kukp� :=
Z



�
jrujp

jxjpa � �
jujp

jxjpa+p
�
dx;

which is equivalent to the norm k:k0.
By the so called Pohozaev�s identity, if 
 is a star-shaped domain in RN , then

the problem (P) has no nontrivial solution for f � 0. When the problem (P) has
no singular term (a = b = � = c = 0), Tarantello [12] proved the existence of two
nontrivial solutions for it with p = 2 and f 2 H�1 �the dual of H1

0

�
such thatZ




fu dx <
4

N � 2

�
N � 2
N + 2

Z



jruj2 dx
�(N+2)=4

:

Elliptic problems with singular terms has been studied by some authors in either
bounded domain or in the whole space RN ; see [1,2,3,7,9] and references therein.
For f � 0 and 
 = RN ; Kang in [9] proved that the problem8><>: �div( jruj

p�2

jxjpa ru)� � jujp�2

jxjp(a+1)
u =

jujp��2

jxjp�b
u in RN ,

u 2W 1;p
�

�
RN
�

has radial ground state solution.
Benmansour et.al. in [2] studied the existence of solutions for the elliptic problem8<: �div( ru

jxj2a
)� � u

jxj2a+2
=
juj2��2

jxj2�b
u+ �

u

jxjc + f(x) in 
,

u = 0 on @
;

where 
 is a smooth bounded domain in RN (N � 3) containing 0 in its interior,
�1 < a < (N � 2) =2; a � b < a+ 1; c < 2a+ 2; and 2� = 2N= (N � 2a� 2 + 2b)
is the critical Ca¤arelli-Kohn-Nirenberg exponent; � and � are two non-negative
parameters and f is a given measurable nonzero function.
In the case when p 6= 2, problem (P) becomes much more complicated. We can not
prove the existence of two solutions by using the same method as in [2]. However,
in this paper, we prove the existence of a ground state solution for all � < � without
the perturbation � jxj�c u:
To state our result, let set for all u 2W 1;p

� and f 2W �
�

�
the dual of W 1;p

�

�
kukp� :=

 Z



jujp�

jxjp�b
dx

! 1
p�

;

If (u) :=

Z



fu dx; S� := inf
kukp�=1

kukp� ;


f =: inf
kukp�=1

(
(p� � p)

�
1

p� � 1
kukp�

� p��1
p��p

� If (u)
)

and
D :=

�
g 2W �

� ; g 6� 0; 
g > 0
	
:
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Note D 6= ?; notice that if f 2 Lp (
) thenZ



jf jp dx < (p� � p)p
�

1

p� � 1

� p(p��1)
p��p

Sp�=(p��p)� ;

which implies that f 2 D:
The purpose of this paper is to investigate the existence of a ground state solution

for the problem (P) by a "smallness" condition on f . The main result is concluded
as the following theorem, which is new for the singular case when p 6= 2:
Theorem 1 Let �1 < a < (N � p) =p; a � b < a+ 1 and �1 < � < ��: Assume
that f 2 D; then (P) has a ground state solution u1.
This paper is organized as follows. In Section 2, we give some preliminaries

about Nehari manifold. Section 3 is devoted to the proof of Theorem 1.

2. Preliminaries

In this section, we give some preliminary results which will be used later.
First, we know by [9] that S� > 0 and is attained when 
 = RN :
Since f 2W �

� then the Euler-Lagrange functional I associated to the problem (P)
is given by:

I (u) =
1

p
kukp� �

1

p�
kukp�p� � If (u) for all u 2W 1;p

� ;

it�s clear that I 2 C1
�
W 1;p
� ; R

�
and satis�es

hI 0 (u) ; vi =
Z



 
jrujp�2

jxjpa rurv � � jujp�2

jxjp(a+1)
uv � juj

p��2

jxjp�b
uv � fv

!
dx

for all u; v 2W 1;p
� .

Hence, weak solutions of (P) are critical points of the functional I:
We denote the Nehari manifold by

N =
�
u 2W 1;p

� n f0g ; hI 0 (u) ; ui = 0
	
:

It is easy to see that u 2 N if and only if

J (u) = kukp� � kuk
p�
p�
� If (u) = 0:

Lemma 1 The function I is coercive and bounded from below in N .
Proof. Let u 2 N , by Holder and Young inequalities we have

I (u) =
1

p
kukp� �

1

p�
kukp�p� � If (u)

� 1

p
kukp� �

1

p�
kukp�p� + kuk

p�
p�
� kukp�

� �
�
p� 1
p

�
kukp� +

�
p� � 1
p�

�
S�p�=p� kukp�� :

Let � = kukp� and

h (�) = �
�
p� 1
p

�
�p +

�
p� � 1
p�

�
S�p�=p� �p� :
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Direct calculations show that h is convex and achieves its minimum at

�0 =

�
p� 1
p� � 1

Sp�=p�

� 1
p��p

;

so

I (u) � h (�0) = �
(p� 1) (p� � p)

p p�

�
p� 1
p� � 1

Sp�=p�

� p
p��p

:

Then I is coercive and bounded from below in N . �
The Nehari manifold N is closely linked to the behavior of the function of the

form �u (t) : t! I(tu); which for t > 0 is de�ned by

�u (t) =
tp

p
kukp� �

tp�

p�
kukp�p� � tIf (u) :

Lemma 2 Let u 2W 1;p
� ; then tu 2 N if and only if �0u (t) = 0:

Proof. We have

�0u (t) = hI 0 (tu) ; ui

=
1

t
hI 0 (tu) ; tui :

Then the conclusion holds. �
The elements in N correspond to stationary points of the maps �u. We note

that

�0u (t) = t
p�1 kukp� � t

p��1 kukp�p� � If (u) ;
and

�00u (t) = (p� 1) tp�2 kuk
p
� � (p� � 1) t

p��2 kukp�p� :
By Lemma 2 we have u 2 N if and only if �0u (1) = 0. Hence

�00u (1) = (p� 1) kuk
p
� � (p� � 1) kuk

p�
p�

Then, it is natural to split N into three subsets corresponding to local minima,
local maxima, and point of in�exion, i.e.,

N+ = fu 2 N : �00u (1) > 0g ;
N� = fu 2 N : �00u (1) < 0g ,

and
N 0 = fu 2 N : �00u (1) = 0g :

First, we prove that �00u (1) 6= 0 for all u 2 Nnf0g :
Lemma 3 Assume that f 2 D: Then N 0 = ?.
Proof. Suppose that N 0 6= ?. For u 2 N 0, we have

(p� 1) kukp� = (p� � 1) kukp�p� ,
(p� 1) If (u) = (p� � p) kukp�p� ,

and
(p� � 1) If (u) = (p� � p) kukp� :

Using the de�nition of S� we get

kukp�p� = (p� 1) kukp� = (p� � 1)

�
�
p� 1
p� � 1

S�

�p�=(p��p)
:
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Thus
kukp�
kukp�p�

=
p� � 1
p� 1 :

Therefore,

0 =
p� � p
p� � 1

kukp� � If (u)

= kukp�p�

"
p� � p
p� � 1

kukp�
kukp�p�

� If (u)kukp�p�

#

� kukp�p�

24(p� � p)" kukp�
(p� � 1) kukp�p�

#(p��1)=(p��p)
� If (u)kukp�p�

35
> 0;

which is impossible. �
De�ne for all u 2W 1;p

� n f0g

tmaxu :=
h
kukp� (p� 1) =(p� � 1) kuk

p�
p�

i 1
p��p

:

Lemma 4 Assume that f 2 D. Then for any u 2W 1;p
� n f0g ; there exists a unique

positive value t+u such that

t+u > t
max
u ; t+u u 2 N� and I

�
t+u u

�
= max

t�tmaxu

I (tu) :

Moreover, if If (u) > 0; then there exists a unique positive value t�u such that

0 < t�u < t
max
u ; t�u u 2 N+ and I

�
t�u u

�
= inf

0�t�tmaxu

I (tu) :

Proof. Set

	u (t) = t
p�1 kukp� � t

p��1 kukp�p�
for u 2W 1;p

� n f0g ; then
�0u (t) = 	u (t)� If (u) :

Easy computations show that 	u is concave and achieves its maximum at tmaxu ,
also

	u(t
max
u ) = (p� � p)

 
kukp�
p� � 1

! p��1
p��p

 
p� 1
kukp�p�

! p�1
p��p

:

Then we can get easily the conclusion of our lemma. �
By the previous lemma we know that N+ and N� are not empty, so we can

de�ne

�+ := inf
u2N+

I (u) and �� := inf
u2N�

I (u) :

Lemma 5 Assume that f 2 D. Then for any u 2 N�; there exist " > 0 and
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a di¤erentiable function � = � (v) ; v 2 W 1;p
� , kvk� < ", such that � (0) = 1;

� (v) (u� v) 2 N� and

�
� 0 (0) ; v

�
=

Z



"
p

 
jrujp�2rurv

jxjpa � � juj
p�2

uv

jxjp(a+1)

!
� p�

jujp��2 uv
jxj2�b

� fv
#
dx

(p� 1) kukp� � (p� � 1) kuk
p�
p�

:

Proof. De�ne ' : R�W 1;p
� �! R such that

'(�; v) = �p�1 ku� vkp� � �
p��1 ku� vkp�p� �

Z



f (u� v) dx:

As u 2 N and N 0 = ?, we have

'(1; 0) = 0;
@'

@�
(1; 0) = (p� 1) kukp� � (p� � 1) kuk

p�
p�
6= 0:

Then by the implicit function Theorem, we get our result. �
Lemma 6 Let f 2 D; then there exist �+0 < 0 and ��0 > 0 such that �+ � �+0 and
�� � ��0 .
Proof. Let v 2W 1;p

� be the unique solution of the following problem8><>: �div( jruj
p�2ru
jxjpa )� � juj

p�2
u

jxjp(a+1)
= f in 
;

u = 0 on @
:

Then, as f 6� 0 we have If (v) = kvkp� > 0 and kvk
p
� = kfk

p
� where k:k� = k:kW�

�
:

Moreover, from Lemma 4, there exists t�v > 0 such that t�v v 2 N+. This implies
that

�+ � I
�
t�v v
�

=
(1� p) (t�v )

p

p
kvkp� +

1� p�
p�

�
t�v
�p� kvkp�p�

� (1� p) (t�v )
p

p
kvkp�

� 1� p
p

�
t�v
�p kfkp� :

Thus �+ � �+0 < 0 where �+0 =
1� p
p

(t�v )
p kfkp� :

On the other hand, there exists t+v > 0 such that t
+
v v 2 N� which yields

�� � I
�
t+v v
�

=
�
t+v
�p kvkp� � p� � 1p� 1

�
t+v
�p� kvkp�p�

�
�
t+v
�p � p� 1

p� � 1
S�

� p�
p��p

:

Therefore, �� � ��0 > 0 where

��0 =
�
t+v
�p � p� 1

p� � 1
S�

� p�
p��p

:
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The proof is complete. �
Lemma 7 Assume that f 2 D: Then, there exists a minimizing sequence (un) such
that

I (un) �! �+ and I 0 (un)! 0 in W �
� :

Proof. It is easy to prove that I is bounded in N+. Then by applying Ekeland�s
variational principle, we show that there exists a minimizing sequence (un) � N+

satisfying

�+ � I (un) � �+ +
1

n
and I (u) � I (un)�

1

n
ku� unk� for all u 2 N

+:

From the preceding lemma we have �+ � �0: So that�
1

p
� 1

p�

�
kunkp� <

�
1

p
� 1

p�

�
1� p
p

�
t�v
�p kfkp� + p� � 1p�

kfkp�1� kunk� ;

and
p�(p� 1)
p (p� � 1)

�
t�v
�p kfkp� � If (un) � kfkp�1� kunk� ;

for n large. This implies that C1 � kunk� � C2 with

C1 =
p�(p� 1)
p (p� � 1)

�
t�v
�p kfk�

and

C2 =
p (p� � 1)

(p� 1) (p� � p)
kfk� :

Now, we show that I 0 (un) ! 0 in W �
� : For that, �x n such that kI 0 (un)k� 6= 0:

Then by Lemma 5 there exist " > 0 and a function �n : B" �! R such that
wn = �n (vn) (un � vn) 2 N+ with

vn = �
I 0 (un)

kI 0 (un)k�
and 0 < � < ":

Let An = kwn � unk� : By the Taylor expansion of I, we obtain

� 1
n
An � I (wn)� I (un)

� hI 0 (un) ; wn � uni+ o (An)

= (�n (vn)� 1) hI 0 (un) ; uni � ��n (vn)
�
I 0 (un) ;

I 0 (un)

kI 0 (un)k�

�
+

o (An) :

Then

�n (vn) kI 0 (un)k� �
�n (vn)� 1

�
hI 0 (un) ; uni+

An
n�

+
o(An)

�
: (2.1)

We have

lim
�!0

�n (vn) = 1; lim
�!0

j�n (vn)� 1j
�

= lim
�!0

j�n (vn)� �n (0)j
�

�


� 0n (0)

� ;
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and

lim
�!0

An
n�

= lim
�!0

1

n�
k(�n (vn)� 1)un � �n (vn) vnk�

� 1

n

�

� 0n (0)

� kunk� + 1� :
Taking � ! 0 in (2:1) and since (un) is a bounded sequence we get

kI 0 (un)k� �
C3
n

�

� 0n (0)

� + 1� ;
for a suitable constant C3 > 0: Now, we must show that



� 0n (0)

� is uniformly
bounded in n:
From the boundedness of (un) we have by Lemma 5


� 0n (0) ; v
�
�

C4 kvk����(p� 1) kunkp� � (p� � 1) kunkp�p� ��� ,
for all v 2 W 1;p

� and some constant C4 > 0: We only need to show that for any
sequence (un) � N+ ���(p� 1) kunkp� � (p� � 1) kunkp�p� ��� > C5;
for some constant C5 > 0:
Assume by contradiction that there exists (un) � N+ such that

lim
n!1

h
(p� 1) kunkp� � (p� � 1) kunk

p�
p�

i
= 0:

Then as kunk� � C1 > 0; we get

kunkp�p�
kunkp�

=
(p� 1)
p� � 1

+ on (1) and (p� 1)If (un) = (p� � p) kunkp�p� + on (1) ;

where on (1)! 0 as n!1: But this is impossible since, as in the proof of Lemma
3 we have

on (1) = (p� 1) kunkp� � (2� � 1) kunk
p�
p�

= (p� � p) kunkp�p� � (p� 1)If (un)

= kunkp�

24(p� � p) kunkp�
(p� � 1) kunkpp�

!(p��1)=(p��p)
� If (un)kunkp�

35
> 0:

At this point we conclude that I 0 (un)! 0 in W �
� :�

3. Proof of Theorem 1

First, we prove that I can achieve a local minimum on N+.
According to the proof of Lemma 7, there exists a minimizing sequence (un) � N+

such that C1 � kunk� � C2. Up to a subsequence if necessary, we have
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un * u1 in W 1;p
�

un * u1 in Lp�
�

; jxj�p�b

�
un ! u1 a.e.in 


for some u1 2W 1;p
� : As �+ < 0 then u1 6� 0.

Now we show that un ! u1 in W 1;p
� : Suppose otherwise, so ku1k� < lim

n!1
kunk� ;

which implies that

�+ � I (u1)

=

�
1

p
� 1

p�

�
ku1kp� �

�
1� 1

p�

�
If (u1)

< lim
n!!1

�
p� � p
p p�

kunkp� �
p� � 1
p�

If (un)

�
= �+:

This is a contradiction, which leads to conclude that un ! u1 in W 1;p
� and I (u1) =

�+:
Moreover, we have u1 2 N+: In fact, if u1 2 N� then by Lemma 4, t+u1 = 1 and
there exists an unique t�u1 > 0 such that t

�
u1u1 2 N

+:
Since

dI (tu1)

dt

����
t=t�u1

= 0;
d2I (tu1)

dt

����
t=t�u1

> 0;

there exists t�u1 < t
0
u1 < t+u1 such that I

�
t�u1u1

�
< I

�
t0u1u1

�
� I

�
t+u1u1

�
= I (u1) ;

which is a contradiction.
Hence u1 2 N+ and

�+ = inf
u2N+

I (u) = inf
u2N

I (u) :

By the Lagrange multiplier rule, there exists � 2 R such that

�0u1 (1) = I
0 (u1) = ��

00
u1 (1) ;

which implies that
0 = hI 0 (u1) ; u1i = � hJ 0 (u1) ; u1i ;

we have hJ 0 (u1) ; u1i 6= 0; so � = 0 and I 0 (u1) = 0: Thus u1 is a ground state
solution of problem (P):
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