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GROUND STATE SOLUTION FOR NONHOMOGENEOUS
ELLIPTIC EQUATIONS INVOLVING CRITICAL
CAFFARELLI-KOHN-NIRENBERG EXPONENT

N. KEDDAR, A. BOUSSETTINE AND A. BENAISSA

ABSTRACT. In this paper, we consider a nonhomogeneous singular elliptic
equation involving a critical Caffarelli-Kohn-Nirenberg exponent. By using
the Nehari manifold we establish the existence of a ground state solution.

1. INTRODUCTION

This work deals with the existence of a ground state solution to the following
nonhomogeneous problem

|Vul"~? Jul””” Jul™ 2

Vu .
WVU) u‘m|p(a+1)u = " -3 u+ f(z) in Q,

u=20 on 0f),

—div(

(P)

where ) is a smooth bounded domain in RY (N > 3) containing 0 in its interior,
l1<p<N,—o<a<(N-p)/p,a<b<a+l,p.=pN/(N —pa—p+ pb)isthe
critical Caffarelli-Kohn-Nirenberg exponent, —oco < u < 1, 71 := [(N — pa — p) /p]”
and f is a given measurable function different than 0.

This problem is related to the following well known Caffarelli-Kohn-Nirenberg in-
equality [4]:

1/p« 1/
Pa p p
([50) o [50) " wneecrm

for some positive constant Cjp. For sharp constants and extremal functions asso-
ciated to (1.1), see [5, 8, 11]. If b=a+ 1 in (1.1), then p. = p, Cop = 1/I and we
have the following weighted Hardy inequality [4, 6, 10]:

P 1 p
/ | ||7;fa+pda: <= ||ZZL de, for all u € C5° (Q). (1.2)
Q |x Q
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We shall work with the space W, := WP () for —oo < p < [z endowed with the

norm
[Vul” |uf”
|u||p::/< S~ da
o Ja NP Tt )

which is equivalent to the norm |.||,.

By the so called Pohozaev’s identity, if Q is a star-shaped domain in RY, then
the problem (P) has no nontrivial solution for f = 0. When the problem (P) has
no singular term (a = b = y = ¢ = 0), Tarantello [I2] proved the existence of two
nontrivial solutions for it with p=2 and fe& H! (the dual of H&) such that

(N+2)/4
4 [N-2 )

Elliptic problems with singular terms has been studied by some authors in either
bounded domain or in the whole space RV, see [1,2,3,7,9] and references therein.
For f =0 and Q = RY, Kang in [9] proved that the problem

ul””?

=
2P

Px—2

VP
P

we W (RN)

—div( Vu) uin RV,

«b
:EP

has radial ground state solution.
Benmansour et.al. in [2] studied the existence of solutions for the elliptic problem

Vu U |u)? u QO
|$|2a) THLEE T utAe + f(z) in Q,

u=0 on 0f),

—div(

where ) is a smooth bounded domain in RY (N > 3) containing 0 in its interior,
—x0<a<(N=2)/2,a<b<a+1,c<2a+2, and 2, = 2N/ (N — 2a — 2 + 2b)
is the critical Caffarelli-Kohn-Nirenberg exponent, A\ and p are two non-negative
parameters and f is a given measurable nonzero function.

In the case when p # 2, problem (P) becomes much more complicated. We can not
prove the existence of two solutions by using the same method as in [2]. However,
in this paper, we prove the existence of a ground state solution for all 1 < @ without
the perturbation \|z|™“u.

To state our result, let set for all u € W;}’p and f € W (the dual of Wﬁ’p)

1
/ i d "
= T
* +«b 9
p Q p

|z
Iy (u) ::/qu dr, S, = inf Jlul},

flwll,, =1

pa—1
1 Px—P
=: inf . — p -1
3=, n {@ » | i) fwﬁ

Px

[[u

and
D:={geW;, g¢0;79>0}.
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Note D # @; notice that if f € LP (Q2) then
p(px—1)

1 Px—P
«/(Px—Dp)
} Sﬁ (p p),

pe—1

/Q\flpdaj <(p« —p)° [

which implies that f € D.

The purpose of this paper is to investigate the existence of a ground state solution
for the problem (P) by a "smallness" condition on f. The main result is concluded
as the following theorem, which is new for the singular case when p # 2.
Theorem 1 Let —co<a < (N —p)/p,a<b<a+1and —co < p < fr. Assume
that f € D, then (P) has a ground state solution u;.

This paper is organized as follows. In Section 2, we give some preliminaries
about Nehari manifold. Section 3 is devoted to the proof of Theorem 1.

2. PRELIMINARIES

In this section, we give some preliminary results which will be used later.
First, we know by [9] that S, > 0 and is attained when Q = RY.
Since f € Wi then the Euler-Lagrange functional I associated to the problem (P)
is given by:

1 1
T(w) =S lluly = - llully; — 1y (u) forallu e WP,

it’s clear that I € C! (Wj’p, R) and satisfies

Jul””? Jul™

(I' (u) ,v) = / WVUV’U — uv — w — fu | dx
> - o ‘x|pa 'LL|x‘p(a+1) |w‘p*b

for all u,v € Wl}’p.
Hence, weak solutions of (P) are critical points of the functional I.
We denote the Nehari manifold by

N = {ueW,P\{0}, (I'(u),u) =0}.
It is easy to see that u € N if and only if

J (u) = [l = [l

Px _
Py —If (u) =0.

Lemma 1 The function I is coercive and bounded from below in N.
Proof. Let u € AV, by Holder and Young inequalities we have

1 1
@ = 2l -l — 1y @)
1 p 1 D D p
> Dl — -l + ol
p—1 P Pe =1\ c—pospy, 1
> = ()l (B ) s

Let p = |[ul[} and

hp) = — (1’1)1) E (1’91) Sor /g,

D
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Direct calculations show that A is convex and achieves its minimum at

P—1 ..
Po = {p* — 135 /p]

Px—P

SO

P P« pe—17F
Then I is coercive and bounded from below in A. O
The Nehari manifold A is closely linked to the behavior of the function of the
form @, (¢) : t — I(tw), which for ¢ > 0 is defined by
o o p P be _ 4
u(t) = o [[ull,, — ’ [ull,, =ty (u).

*

I(u) > h(py) = — L= 1P =P) [p—l Sp*/p}w.

Lemma 2 Let u € W,?, then tu € N if and only if @/, (t) = 0.
Proof. We have

o, (1) (I' (tu) , u)

% (I' (tu) , tu) .

Then the conclusion holds. [
The elements in N correspond to stationary points of the maps ®,. We note
that

@, (8) = 7 lullf, — 7 ullyr = Tf (w),
and
" _ -2 V4 «—2 P
@, (1) = (0= D" ully, = (pe = D)7~ lull7 -
By Lemma 2 we have u € NV if and only if ®/, (1) = 0. Hence
@y (1) = (p— 1) ull;; = (p — 1) ||u
Then, it is natural to split N into three subsets corresponding to local minima,

local maxima, and point of inflexion, i.e.,

Nt ={ueN:®" (1) >0},
N-={ueN:9"(1) <0},

Dx
P«

and
N ={ueN:d"(1)=0}.
First, we prove that ®// (1) # 0 for all w € N\ {0}.
Lemma 3 Assume that f € D. Then N = &.
Proof. Suppose that NV # @. For u € N°, we have
P _ P
(=D lull, = @«—=1)[lull,:,
(p=1DIf(u) = (p«—p)llu

D
D b
and

(P« = 1) Iy (u) = (s« — ) [[u]]},-
Using the definition of S, we get

lu

(=1l / (= 1)

1 p«/(P+—p)
px— 1

Y2
P

v
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Thus
fully:  p—1
Therefore,
DPx — D P
0 = -1
Pl — 1y ()
po | 2= p Muli Iy (u)
= e Tl
D« Px D
(p=—1)/(p=—p)
> ully: | (e —p) Ll L)
- P (P = 1) [Jully [[ully:
> 0,

which is impossible. O
Define for all u € WP\ {0}

1

Px Px —P
D= :

Lemma 4 Assume that f € D. Then for any u € WP\ {0}, there exists a unique
positive value ¢ such that

= [l (0 = 1) /(pe = 1) |lu

th >t tfu e N”and I (tiu) = nax I (tu).

Moreover, if Iy (u) > 0, then there exists a unique positive value ¢; such that

—_ — + —_ _ .
0<t, <t tyue N and I (t,u) = Ogtlgtf;fax I (tu).

Proof. Set
W, () = 77 lullf — 7 [lully:

for u € W;?\ {0}, then
Oy, (1) = Wy () = If (u).

Easy computations show that ¥, is concave and achieves its maximum at ¢};*%,

also
||uHP 5::11) p— 1 pp*ilp
P, (¢max) — _ H .
u(t™) = (p« —p) (p*—1> <|u gi>

Then we can get easily the conclusion of our lemma. [
By the previous lemma we know that A" and A/~ are not empty, so we can
define

6" := inf I(u) and §~ := inf I (u).
ueEN+ ueN—

Lemma 5 Assume that f € D. Then for any u € N'*, there exist £ > 0 and
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a differentiable function ¢ = ((v), v € WP, |v]|, < &, such that £(0) = 1,
¢ (v) (u—v) € N* and

VP ™% VuVo |~ uw [l % uv p
o p |x|Pa _’U"xlp(aJrl) _p*w —fU z

(¢'(0),v) = (o — 1) ul, = (px — 1) [ullZ"

Proof. Define ¢ : R x W;» — R such that

PC) = ¢ =l = ¢ =l = [ flum) do
Q
As u € N and N? = &, we have
Op
©(1,0) =0, ac Z2(1,0) = (p = 1) [lull?, — (p — 1) [[ull2 #0.

Then by the implicit function Theorem, we get our result. [
Lemma 6 Let f € D, then there exist 7 < 0 and 6 > 0 such that 6 < 6 and
0~ >0,.
Proof. Let v e Wﬁ’p be the unique solution of the following problem

Vulf A vu lulP?u ,
—div( P ) — ,u|m|p(a+1) =f inQ,
u=0 on 0f).
Then, as f # 0 we have Iy (v) = [[v]|, > 0 and [jo||}, = [|f[|” where [|.|_ = || -

Moreover, from Lemma 4, there exists ¢, > 0 such that t;v € A't. This implies
that

0t < I(t U)
 (-p ) ol 4 L7Pe —ype o
= 7]9 | ||,,+7p* (t,) o
< %anﬁ
P
< p(t ISP

1
Thus 67 < 65 < 0 where Gar = > (t;)p IF117 .
On the other hand, there exists ¢ > 0 such that ¢;v € N~ which yields

6= > I(ttv)
E ]- * *
= (tj)l’”vui—];_l (tj)P v||p*
e |p—1 E=
> () [p* _154 :

Therefore, 0~ > 0, > 0 where
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The proof is complete. [
Lemma 7 Assume that f € D. Then, there exists a minimizing sequence (u,,) such
that

I (up) — 0" and I' (u,,) — 0 in W

Proof. It is easy to prove that I is bounded in A'*. Then by applying Ekeland’s
variational principle, we show that there exists a minimizing sequence (u,) C N'*
satisfying

0" <1 (uy,) §9+—&—l and I (u) Zl(un)—lﬂu—unﬂﬂ for all u € N'T.
n n

From the preceding lemma we have §7 < 6. So that

1 1 1 1 1—p _\P p*—l _1

Lo ||un||p<(—) ) AP+ 2 A1 ),

(p p*> a p p) P ) P 1= lrunl,
and

;12(511)) () NFINE < Ip (un) < |IFI1 1 el

for n large. This implies that C; < ||unHH < (5 with

_pp=1) e
€= =D ()

and
p(p—1)
Co=—""""—""—|fl_-
= -0 —p 7!
Now, we show that I’ (u,) — 0 in W};. For that, fix n such that [|I’ (u,)||_ # 0.

Then by Lemma 5 there exist ¢ > 0 and a function ¢,, : B. — R such that
Wn = Cn (U’n) (un - Un) € Nt with

I (un)
Uy =0—-——and 0 < 0 < €.
117 (un)l|
Let An = [[wy, — up||, - By the Taylor expansion of I, we obtain
—lAn < I (wy) =TI (uy)
n
< I (ug) s wy —un) +0(Ay)
= (G = DT ) ) = 06 () (1) ) 4
" ’ " T (un)
o(Ay).
Then
Cp (v) =1 An | o(Ay)
! <=2 (T — ) .
Cn (vn) 1" (un)]|— < S (' (un) , un) + nd + s (2.1)

We have

Up) — 1 . n (n) = C, (0 /
o (o) 1) _ o C0n) G O < v ),

lim v,) = 1, lim
§—>0<” ( n) 7550 §—0
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and

A1
%1_{%% = %1_{%% (¢ (vn) = 1) up — ¢, (Vi) UnHM

< (GOl +1).

Taking 6 — 0 in (2.1) and since (u,,) is a bounded sequence we get

17 @l < 2 (I @) +1),

for a suitable constant C3 > 0. Now, we must show that H(; (O)H_ is uniformly
bounded in n.
From the boundedness of (u,) we have by Lemma 5

Cy vl

o=l = @ = D)l

’
P«
D

for all v € Wﬁ’p and some constant C; > 0. We only need to show that for any
sequence (u,) C NT

> (s,

(0= 1) funlll = (e = 1) a2

for some constant Cs > 0.
Assume by contradiction that there exists (u,,) C N such that

Tim [ = 1) Juallh = (0 = 1) Jua]2:] = 0.

Then as [lun[|,, > C1 > 0, we get

Px
. -1 )
I ”7; =1 +o0, (1) and (p— )17 (un) = (ps — p) a2 + 0 (1),
n “w *

where o, (1) — 0 as n — oo. But this is impossible since, as in the proof of Lemma
3 we have

on(l) = (p—1) Hun”Z — (2« — 1) |lup g:
= (p* _p) ”un”pi - (p - 1)If (un)

= |lu (p« — D) Ml (p*_l)/(p*_p)_ £ (un)
B (s = 1) lually, llwnll,,

> 0.

At this point we conclude that I’ (u,) — 0 in W;.00

3. PROOF OF THEOREM 1

First, we prove that I can achieve a local minimum on N't.
According to the proof of Lemma 7, there exists a minimizing sequence (u,) C N'*
such that C1 < [lun||, < Cs. Up to a subsequence if necessary, we have
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U, — upin W,}’p

. —px*b
Up — Uy in Lp. (Q, |z| 7 )
U, — U a.ein

for some u; € Wﬁ’p. As 67 < 0 then uy Z 0.

Now we show that u, — wu; in WP, Suppose otherwise, so ||u|, < lLm |lu,], ,
2 I I
n—oo

which implies that
9+ S I (ul)

()i -

. Ds — D Dx — 1
< lim ( up||? — I un)
tim (E |~ P ()

n——00

= 0.

This is a contradiction, which leads to conclude that u,, — u; in W;’p and [ (up) =
0.

Moreover, we have u; € N. In fact, if u; € N~ then by Lemma 4, t} = 1 and
there exists an unique ¢, > 0 such that ¢, u; € N'T.

Since (tu) 21 (1)
dl tu1 o d=1 tu1
dt =0, dt >0,

t=tz, t=tm,
there exists ¢, < 3 < tf such that I (t; u1) < I(tS ui) <I(tfur)=1I(u1),
which is a contradiction.
Hence u; € N1 and
0" = inf I(u)= inf I(u).
ueN+ ueN
By the Lagrange multiplier rule, there exists A € R such that

@ (1) =TI (w) = A" (1),

U1 ul
which implies that
0=(I"(u1),w) =A{J (w1),u1),
we have (J' (u1),u1) # 0, 0 A = 0 and I’ (u1) = 0. Thus u; is a ground state
solution of problem (P).
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