GROUND STATE SOLUTION FOR NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING CRITICAL CAFFARELLI-KOHN-NIRENBERG EXPONENT

N. KEDDAR, A. BOUSSETTINE AND A. BENAISSA

Abstract

In this paper, we consider a nonhomogeneous singular elliptic equation involving a critical Caffarelli-Kohn-Nirenberg exponent. By using the Nehari manifold we establish the existence of a ground state solution.

1. Introduction

This work deals with the existence of a ground state solution to the following nonhomogeneous problem

$$
(\mathcal{P})\left\{\begin{array}{l}
-\operatorname{div}\left(\frac{|\nabla u|^{p-2}}{|x|^{p a}} \nabla u\right)-\mu \frac{|u|^{p-2}}{|x|^{p(a+1)}} u=\frac{|u|^{p_{*}-2}}{|x|^{p_{*} b}} u+f(x) \text { in } \Omega \\
u=0
\end{array}\right.
$$

where Ω is a smooth bounded domain in $\mathbb{R}^{N}(N \geq 3)$ containing 0 in its interior, $1<p<N,-\infty<a<(N-p) / p, a \leq b<a+1, p_{*}=p N /(N-p a-p+p b)$ is the critical Caffarelli-Kohn-Nirenberg exponent, $-\infty<\mu<\bar{\mu}, \bar{\mu}:=[(N-p a-p) / p]^{p}$ and f is a given measurable function different than 0 .
This problem is related to the following well known Caffarelli-Kohn-Nirenberg inequality [4]:

$$
\begin{equation*}
\left(\int_{\Omega} \frac{|u|^{p_{*}}}{|x|^{p_{*} b}} d x\right)^{1 / p_{*}} \leq C_{a, b}\left(\int_{\Omega} \frac{|\nabla u|^{p}}{|x|^{p a}} d x\right)^{1 / p} \text { for all } u \in C_{0}^{\infty}(\Omega), \tag{1.1}
\end{equation*}
$$

for some positive constant $C_{a, b}$. For sharp constants and extremal functions associated to (1.1), see $[5,8,11]$. If $b=a+1$ in (1.1), then $p_{*}=p, C_{a, b}=1 / \bar{\mu}$ and we have the following weighted Hardy inequality [4, 6, 10]:

$$
\begin{equation*}
\int_{\Omega} \frac{|u|^{p}}{|x|^{p a+p}} d x \leq \frac{1}{\bar{\mu}} \int_{\Omega} \frac{|\nabla u|^{p}}{|x|^{p a}} d x, \text { for all } u \in C_{0}^{\infty}(\Omega) \tag{1.2}
\end{equation*}
$$

[^0]We shall work with the space $W_{\mu}^{1, p}:=W_{\mu}^{1, p}(\Omega)$ for $-\infty<\mu<\bar{\mu}$ endowed with the norm

$$
\|u\|_{\mu}^{p}:=\int_{\Omega}\left(\frac{|\nabla u|^{p}}{|x|^{p a}}-\mu \frac{|u|^{p}}{|x|^{p a+p}}\right) d x
$$

which is equivalent to the norm $\|\cdot\|_{0}$.
By the so called Pohozaev's identity, if Ω is a star-shaped domain in \mathbb{R}^{N}, then the problem (\mathcal{P}) has no nontrivial solution for $f \equiv 0$. When the problem (\mathcal{P}) has no singular term $(a=b=\mu=c=0)$, Tarantello [12 proved the existence of two nontrivial solutions for it with $p=2$ and $f \in H^{-1}$ (the dual of H_{0}^{1}) such that

$$
\int_{\Omega} f u d x<\frac{4}{N-2}\left[\frac{N-2}{N+2} \int_{\Omega}|\nabla u|^{2} d x\right]^{(N+2) / 4}
$$

Elliptic problems with singular terms has been studied by some authors in either bounded domain or in the whole space \mathbb{R}^{N}, see $[1,2,3,7,9]$ and references therein.

For $f \equiv 0$ and $\Omega=\mathbb{R}^{N}$, Kang in [9] proved that the problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\frac{|\nabla u|^{p-2}}{|x|^{p a}} \nabla u\right)-\mu \frac{|u|^{p-2}}{|x|^{p(a+1)}} u=\frac{|u|^{p_{*}-2}}{|x|^{p_{*} b}} u \text { in } \mathbb{R}^{N}, \\
u \in W_{\mu}^{1, p}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

has radial ground state solution.
Benmansour et.al. in [2] studied the existence of solutions for the elliptic problem

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(\frac{\nabla u}{|x|^{2 a}}\right)-\mu \frac{u}{|x|^{2 a+2}}=\frac{|u|^{2 *-2}}{|x|^{2 * b}} u+\lambda \frac{u}{|x|^{c}}+f(x) \text { in } \Omega, \\
u=0
\end{array} \quad \text { on } \partial \Omega,\right.
$$

where Ω is a smooth bounded domain in $\mathbb{R}^{N}(N \geq 3)$ containing 0 in its interior, $-\infty<a<(N-2) / 2, a \leq b<a+1, c<2 a+2$, and $2_{*}=2 N /(N-2 a-2+2 b)$ is the critical Caffarelli-Kohn-Nirenberg exponent, λ and μ are two non-negative parameters and f is a given measurable nonzero function.
In the case when $p \neq 2$, problem (\mathcal{P}) becomes much more complicated. We can not prove the existence of two solutions by using the same method as in [2]. However, in this paper, we prove the existence of a ground state solution for all $\mu<\bar{\mu}$ without the perturbation $\lambda|x|^{-c} u$.

To state our result, let set for all $u \in W_{\mu}^{1, p}$ and $f \in W_{\mu}^{*}$ (the dual of $W_{\mu}^{1, p}$)

$$
\begin{gathered}
\|u\|_{p_{*}}:=\left(\int_{\Omega} \frac{|u|^{p_{*}}}{|x|^{p_{*} b}} d x\right)^{\frac{1}{p_{*}}}, \\
I_{f}(u):=\int_{\Omega} f u d x, S_{\mu}:=\inf _{\|u\|_{p_{*}}=1}\|u\|_{\mu}^{p} \\
\gamma_{f}=: \inf _{\|u\|_{p_{*}}=1}\left\{\left(p_{*}-p\right)\left[\frac{1}{p_{*}-1}\|u\|_{\mu}^{p}\right]^{\frac{p_{*}-1}{p_{*}-p}}-I_{f}(u)\right\}
\end{gathered}
$$

and

$$
\mathcal{D}:=\left\{g \in W_{\mu}^{*}, g \not \equiv 0 ; \gamma_{g}>0\right\}
$$

Note $\mathcal{D} \neq \varnothing$; notice that if $f \in L^{p}(\Omega)$ then

$$
\int_{\Omega}|f|^{p} d x<\left(p_{*}-p\right)^{p}\left[\frac{1}{p_{*}-1}\right]^{\frac{p\left(p_{*}-1\right)}{p_{*}-p}} S_{\mu}^{p_{*} /\left(p_{*}-p\right)}
$$

which implies that $f \in \mathcal{D}$.
The purpose of this paper is to investigate the existence of a ground state solution for the problem (\mathcal{P}) by a "smallness" condition on f. The main result is concluded as the following theorem, which is new for the singular case when $p \neq 2$.
Theorem 1 Let $-\infty<a<(N-p) / p, a \leq b<a+1$ and $-\infty<\mu<\bar{\mu}$. Assume that $f \in \mathcal{D}$, then (\mathcal{P}) has a ground state solution u_{1}.

This paper is organized as follows. In Section 2, we give some preliminaries about Nehari manifold. Section 3 is devoted to the proof of Theorem 1.

2. Preliminaries

In this section, we give some preliminary results which will be used later. First, we know by 9 that $S_{\mu}>0$ and is attained when $\Omega=\mathbb{R}^{N}$.
Since $f \in W_{\mu}^{*}$ then the Euler-Lagrange functional I associated to the problem (\mathcal{P}) is given by:

$$
I(u)=\frac{1}{p}\|u\|_{\mu}^{p}-\frac{1}{p_{*}}\|u\|_{p_{*}}^{p_{*}}-I_{f}(u) \quad \text { for all } u \in W_{\mu}^{1, p}
$$

it's clear that $I \in C^{1}\left(W_{\mu}^{1, p}, \mathbb{R}\right)$ and satisfies

$$
\left\langle I^{\prime}(u), v\right\rangle=\int_{\Omega}\left(\frac{|\nabla u|^{p-2}}{|x|^{p a}} \nabla u \nabla v-\mu \frac{|u|^{p-2}}{|x|^{p(a+1)}} u v-\frac{|u|^{p_{*}-2}}{|x|^{p_{*} b}} u v-f v\right) d x
$$

for all $u, v \in W_{\mu}^{1, p}$.
Hence, weak solutions of (\mathcal{P}) are critical points of the functional I.
We denote the Nehari manifold by

$$
\mathcal{N}=\left\{u \in W_{\mu}^{1, p} \backslash\{0\},\left\langle I^{\prime}(u), u\right\rangle=0\right\} .
$$

It is easy to see that $u \in \mathcal{N}$ if and only if

$$
J(u)=\|u\|_{\mu}^{p}-\|u\|_{p_{*}}^{p_{*}}-I_{f}(u)=0
$$

Lemma 1 The function I is coercive and bounded from below in \mathcal{N}.
Proof. Let $u \in \mathcal{N}$, by Holder and Young inequalities we have

$$
\begin{aligned}
I(u) & =\frac{1}{p}\|u\|_{\mu}^{p}-\frac{1}{p_{*}}\|u\|_{p_{*}}^{p_{*}}-I_{f}(u) \\
& \geq \frac{1}{p}\|u\|_{\mu}^{p}-\frac{1}{p_{*}}\|u\|_{p_{*}}^{p_{*}}+\|u\|_{p_{*}}^{p_{*}}-\|u\|_{\mu}^{p} \\
& \geq-\left(\frac{p-1}{p}\right)\|u\|_{\mu}^{p}+\left(\frac{p_{*}-1}{p_{*}}\right) S_{\mu}^{-p_{*} / p}\|u\|_{\mu}^{p_{*}} .
\end{aligned}
$$

Let $\rho=\|u\|_{\mu}^{p}$ and

$$
h(\rho)=-\left(\frac{p-1}{p}\right) \rho^{p}+\left(\frac{p_{*}-1}{p_{*}}\right) S_{\mu}^{-p_{*} / p} \rho^{p_{*}} .
$$

Direct calculations show that h is convex and achieves its minimum at

$$
\rho_{0}=\left[\frac{p-1}{p_{*}-1} S_{\mu}^{p_{*} / p}\right]^{\frac{1}{p_{*}-p}},
$$

So

$$
I(u) \geq h\left(\rho_{0}\right)=-\frac{(p-1)\left(p_{*}-p\right)}{p p_{*}}\left[\frac{p-1}{p_{*}-1} S_{\mu}^{p_{*} / p}\right]^{\frac{p}{p_{*}-p}}
$$

Then I is coercive and bounded from below in \mathcal{N}.
The Nehari manifold \mathcal{N} is closely linked to the behavior of the function of the form $\Phi_{u}(t): t \rightarrow I(t u)$, which for $t>0$ is defined by

$$
\Phi_{u}(t)=\frac{t^{p}}{p}\|u\|_{\mu}^{p}-\frac{t^{p_{*}}}{p_{*}}\|u\|_{p_{*}}^{p_{*}}-t I_{f}(u)
$$

Lemma 2 Let $u \in W_{\mu}^{1, p}$, then $t u \in \mathcal{N}$ if and only if $\Phi_{u}^{\prime}(t)=0$.
Proof. We have

$$
\begin{aligned}
\Phi_{u}^{\prime}(t) & =\left\langle I^{\prime}(t u), u\right\rangle \\
& =\frac{1}{t}\left\langle I^{\prime}(t u), t u\right\rangle
\end{aligned}
$$

Then the conclusion holds.
The elements in \mathcal{N} correspond to stationary points of the maps Φ_{u}. We note that

$$
\Phi_{u}^{\prime}(t)=t^{p-1}\|u\|_{\mu}^{p}-t^{p_{*}-1}\|u\|_{p_{*}}^{p_{*}}-I_{f}(u)
$$

and

$$
\Phi_{u}^{\prime \prime}(t)=(p-1) t^{p-2}\|u\|_{\mu}^{p}-\left(p_{*}-1\right) t^{p_{*}-2}\|u\|_{p_{*}}^{p_{*}}
$$

By Lemma 2 we have $u \in \mathcal{N}$ if and only if $\Phi_{u}^{\prime}(1)=0$. Hence

$$
\Phi_{u}^{\prime \prime}(1)=(p-1)\|u\|_{\mu}^{p}-\left(p_{*}-1\right)\|u\|_{p_{*}}^{p_{*}}
$$

Then, it is natural to split \mathcal{N} into three subsets corresponding to local minima, local maxima, and point of inflexion, i.e.,

$$
\begin{aligned}
& \mathcal{N}^{+}=\left\{u \in \mathcal{N}: \Phi_{u}^{\prime \prime}(1)>0\right\} \\
& \mathcal{N}^{-}=\left\{u \in \mathcal{N}: \Phi_{u}^{\prime \prime}(1)<0\right\}
\end{aligned}
$$

and

$$
\mathcal{N}^{0}=\left\{u \in \mathcal{N}: \Phi_{u}^{\prime \prime}(1)=0\right\}
$$

First, we prove that $\Phi_{u}^{\prime \prime}(1) \neq 0$ for all $u \in \mathcal{N} \backslash\{0\}$.
Lemma 3 Assume that $f \in \mathcal{D}$. Then $\mathcal{N}^{0}=\varnothing$.
Proof. Suppose that $\mathcal{N}^{0} \neq \varnothing$. For $u \in \mathcal{N}^{0}$, we have

$$
\begin{aligned}
(p-1)\|u\|_{\mu}^{p} & =\left(p_{*}-1\right)\|u\|_{p_{*}}^{p_{*}} \\
(p-1) I_{f}(u) & =\left(p_{*}-p\right)\|u\|_{p_{*}}^{p_{*}}
\end{aligned}
$$

and

$$
\left(p_{*}-1\right) I_{f}(u)=\left(p_{*}-p\right)\|u\|_{\mu}^{p}
$$

Using the definition of S_{μ} we get

$$
\begin{aligned}
\|u\|_{p_{*}}^{p_{*}} & =(p-1)\|u\|_{\mu}^{p} /\left(p_{*}-1\right) \\
& \geq\left[\frac{p-1}{p_{*}-1} S_{\mu}\right]^{p_{*} /\left(p_{*}-p\right)}
\end{aligned}
$$

Thus

$$
\frac{\|u\|_{\mu}^{p}}{\|u\|_{p_{*}}^{p_{*}}}=\frac{p_{*}-1}{p-1}
$$

Therefore,

$$
\begin{aligned}
0 & =\frac{p_{*}-p}{p_{*}-1}\|u\|_{\mu}^{p}-I_{f}(u) \\
& =\|u\|_{p_{*}}^{p_{*}}\left[\frac{p_{*}-p}{p_{*}-1} \frac{\|u\|_{\mu}^{p}}{\left.\|u\|_{p_{*}}^{p_{*}}-\frac{I_{f}(u)}{\|u\|_{p_{*}}^{p_{*}}}\right]}\right. \\
& \geq\|u\|_{p_{*}}^{p_{*}}\left[\left(p_{*}-p\right)\left[\frac{\|u\|_{\mu}^{p}}{\left(p_{*}-1\right)\|u\|_{p_{*}}^{p_{*}}}\right]^{\left(p_{*}-1\right) /\left(p_{*}-p\right)}-\frac{I_{f}(u)}{\|u\|_{p_{*}}^{p_{*}}}\right] \\
& >0
\end{aligned}
$$

which is impossible.
Define for all $u \in W_{\mu}^{1, p} \backslash\{0\}$

$$
t_{u}^{\max }:=\left[\|u\|_{\mu}^{p}(p-1) /\left(p_{*}-1\right)\|u\|_{p_{*}}^{p_{*}}\right]^{\frac{1}{p_{*}-p}}
$$

Lemma 4 Assume that $f \in \mathcal{D}$. Then for any $u \in W_{\mu}^{1, p} \backslash\{0\}$, there exists a unique positive value t_{u}^{+}such that

$$
t_{u}^{+}>t_{u}^{\max }, t_{u}^{+} u \in \mathcal{N}^{-} \text {and } I\left(t_{u}^{+} u\right)=\max _{t \geq t_{u}^{\max }} I(t u)
$$

Moreover, if $I_{f}(u)>0$, then there exists a unique positive value t_{u}^{-}such that

$$
0<t_{u}^{-}<t_{u}^{\max }, t_{u}^{-} u \in \mathcal{N}^{+} \text {and } I\left(t_{u}^{-} u\right)=\inf _{0 \leq t \leq t_{u}^{\max }} I(t u)
$$

Proof. Set

$$
\Psi_{u}(t)=t^{p-1}\|u\|_{\mu}^{p}-t^{p_{*}-1}\|u\|_{p_{*}}^{p_{*}}
$$

for $u \in W_{\mu}^{1, p} \backslash\{0\}$, then

$$
\Phi_{u}^{\prime}(t)=\Psi_{u}(t)-I_{f}(u)
$$

Easy computations show that Ψ_{u} is concave and achieves its maximum at $t_{u}^{\max }$, also

$$
\Psi_{u}\left(t_{u}^{\max }\right)=\left(p_{*}-p\right)\left(\frac{\|u\|_{\mu}^{p}}{p_{*}-1}\right)^{\frac{p_{*}-1}{p_{*}-p}}\left(\frac{p-1}{\|u\|_{p_{*}}^{p_{*}}}\right)^{\frac{p-1}{p_{*}-p}} .
$$

Then we can get easily the conclusion of our lemma.
By the previous lemma we know that \mathcal{N}^{+}and \mathcal{N}^{-}are not empty, so we can define

$$
\theta^{+}:=\inf _{u \in \mathcal{N}^{+}} I(u) \text { and } \theta^{-}:=\inf _{u \in \mathcal{N}^{-}} I(u)
$$

Lemma 5 Assume that $f \in \mathcal{D}$. Then for any $u \in \mathcal{N}^{ \pm}$, there exist $\varepsilon>0$ and
a differentiable function $\zeta=\zeta(v), v \in W_{\mu}^{1, p},\|v\|_{\mu}<\varepsilon$, such that $\xi(0)=1$, $\zeta(v)(u-v) \in \mathcal{N}^{ \pm}$and

$$
\left(\zeta^{\prime}(0), v\right)=\frac{\int_{\Omega}\left[p\left(\frac{|\nabla u|^{p-2} \nabla u \nabla v}{|x|^{p a}}-\mu \frac{|u|^{p-2} u v}{|x|^{p(a+1)}}\right)-p_{*} \frac{|u|^{p_{*}-2} u v}{|x|^{2_{*} b}}-f v\right] d x}{(p-1)\|u\|_{\mu}^{p}-\left(p_{*}-1\right)\|u\|_{p_{*}}^{p_{*}}}
$$

Proof. Define $\varphi: \mathbb{R} \times W_{\mu}^{1, p} \longrightarrow \mathbb{R}$ such that

$$
\varphi(\zeta, v)=\zeta^{p-1}\|u-v\|_{\mu}^{p}-\zeta^{p_{*}-1}\|u-v\|_{p_{*}}^{p_{*}}-\int_{\Omega} f(u-v) d x
$$

As $u \in \mathcal{N}$ and $\mathcal{N}^{0}=\varnothing$, we have

$$
\varphi(1,0)=0, \frac{\partial \varphi}{\partial \zeta}(1,0)=(p-1)\|u\|_{\mu}^{p}-\left(p_{*}-1\right)\|u\|_{p_{*}}^{p_{*}} \neq 0
$$

Then by the implicit function Theorem, we get our result.
Lemma 6 Let $f \in \mathcal{D}$, then there exist $\theta_{0}^{+}<0$ and $\theta_{0}^{-}>0$ such that $\theta^{+} \leq \theta_{0}^{+}$and $\theta^{-} \geq \theta_{0}^{-}$.
Proof. Let $v \in W_{\mu}^{1, p}$ be the unique solution of the following problem

$$
\begin{cases}-\operatorname{div}\left(\frac{|\nabla u|^{p-2} \nabla u}{|x|^{p a}}\right)-\mu \frac{|u|^{p-2} u}{|x|^{p(a+1)}}=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Then, as $f \not \equiv 0$ we have $I_{f}(v)=\|v\|_{\mu}^{p}>0$ and $\|v\|_{\mu}^{p}=\|f\|_{-}^{p}$ where $\|\cdot\|_{-}=\|\cdot\|_{W_{\mu}^{*}}$. Moreover, from Lemma 4, there exists $t_{v}^{-}>0$ such that $t_{v}^{-} v \in \mathcal{N}^{+}$. This implies that

$$
\begin{aligned}
\theta^{+} & \leq I\left(t_{v}^{-} v\right) \\
& =\frac{(1-p)\left(t_{v}^{-}\right)^{p}}{p}\|v\|_{\mu}^{p}+\frac{1-p_{*}}{p_{*}}\left(t_{v}^{-}\right)^{p_{*}}\|v\|_{p_{*}}^{p_{*}} \\
& \leq \frac{(1-p)\left(t_{v}^{-}\right)^{p}}{p}\|v\|_{\mu}^{p} \\
& \leq \frac{1-p}{p}\left(t_{v}^{-}\right)^{p}\|f\|_{-}^{p}
\end{aligned}
$$

Thus $\theta^{+} \leq \theta_{0}^{+}<0$ where $\theta_{0}^{+}=\frac{1-p}{p}\left(t_{v}^{-}\right)^{p}\|f\|_{-}^{p}$.
On the other hand, there exists $t_{v}^{+}>0$ such that $t_{v}^{+} v \in \mathcal{N}^{-}$which yields

$$
\begin{aligned}
\theta^{-} & \geq I\left(t_{v}^{+} v\right) \\
& =\left(t_{v}^{+}\right)^{p}\|v\|_{\mu}^{p}-\frac{p_{*}-1}{p-1}\left(t_{v}^{+}\right)^{p_{*}}\|v\|_{p_{*}}^{p_{*}} \\
& \geq\left(t_{v}^{+}\right)^{p}\left[\frac{p-1}{p_{*}-1} S_{\mu}\right]^{\frac{p_{*}}{p_{*}-p}}
\end{aligned}
$$

Therefore, $\theta^{-} \geq \theta_{0}^{-}>0$ where

$$
\theta_{0}^{-}=\left(t_{v}^{+}\right)^{p}\left[\frac{p-1}{p_{*}-1} S_{\mu}\right]^{\frac{p_{*}}{p_{*}-p}}
$$

The proof is complete.
Lemma 7 Assume that $f \in \mathcal{D}$. Then, there exists a minimizing sequence $\left(u_{n}\right)$ such that

$$
I\left(u_{n}\right) \longrightarrow \theta^{+} \text {and } I^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } W_{\mu}^{*}
$$

Proof. It is easy to prove that I is bounded in \mathcal{N}^{+}. Then by applying Ekeland's variational principle, we show that there exists a minimizing sequence $\left(u_{n}\right) \subset \mathcal{N}^{+}$ satisfying

$$
\theta^{+} \leq I\left(u_{n}\right) \leq \theta^{+}+\frac{1}{n} \text { and } I(u) \geq I\left(u_{n}\right)-\frac{1}{n}\left\|u-u_{n}\right\|_{\mu} \text { for all } u \in \mathcal{N}^{+}
$$

From the preceding lemma we have $\theta^{+} \leq \theta_{0}$. So that

$$
\left(\frac{1}{p}-\frac{1}{p_{*}}\right)\left\|u_{n}\right\|_{\mu}^{p}<\left(\frac{1}{p}-\frac{1}{p_{*}}\right) \frac{1-p}{p}\left(t_{v}^{-}\right)^{p}\|f\|_{-}^{p}+\frac{p_{*}-1}{p_{*}}\|f\|_{-}^{p-1}\left\|u_{n}\right\|_{\mu}
$$

and

$$
\frac{p_{*}(p-1)}{p\left(p_{*}-1\right)}\left(t_{v}^{-}\right)^{p}\|f\|_{-}^{p} \leq I_{f}\left(u_{n}\right) \leq\|f\|_{-}^{p-1}\left\|u_{n}\right\|_{\mu}
$$

for n large. This implies that $C_{1} \leq\left\|u_{n}\right\|_{\mu} \leq C_{2}$ with

$$
C_{1}=\frac{p_{*}(p-1)}{p\left(p_{*}-1\right)}\left(t_{v}^{-}\right)^{p}\|f\|_{-}
$$

and

$$
C_{2}=\frac{p\left(p_{*}-1\right)}{(p-1)\left(p_{*}-p\right)}\|f\|_{-} .
$$

Now, we show that $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in W_{μ}^{*}. For that, fix n such that $\left\|I^{\prime}\left(u_{n}\right)\right\|_{-} \neq 0$. Then by Lemma 5 there exist $\varepsilon>0$ and a function $\zeta_{n}: B_{\varepsilon} \longrightarrow \mathbb{R}$ such that $w_{n}=\zeta_{n}\left(v_{n}\right)\left(u_{n}-v_{n}\right) \in \mathcal{N}^{+}$with

$$
v_{n}=\delta \frac{I^{\prime}\left(u_{n}\right)}{\left\|I^{\prime}\left(u_{n}\right)\right\|_{-}} \text {and } 0<\delta<\varepsilon
$$

Let $A_{n}=\left\|w_{n}-u_{n}\right\|_{\mu}$. By the Taylor expansion of I, we obtain

$$
\begin{aligned}
-\frac{1}{n} A_{n} \leq & I\left(w_{n}\right)-I\left(u_{n}\right) \\
\leq & \left\langle I^{\prime}\left(u_{n}\right), w_{n}-u_{n}\right\rangle+o\left(A_{n}\right) \\
= & \left(\zeta_{n}\left(v_{n}\right)-1\right)\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle-\delta \zeta_{n}\left(v_{n}\right)\left\langle I^{\prime}\left(u_{n}\right), \frac{I^{\prime}\left(u_{n}\right)}{\left\|I^{\prime}\left(u_{n}\right)\right\|_{-}}\right\rangle+ \\
& o\left(A_{n}\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
\zeta_{n}\left(v_{n}\right)\left\|I^{\prime}\left(u_{n}\right)\right\|_{-} \leq \frac{\zeta_{n}\left(v_{n}\right)-1}{\delta}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle+\frac{A_{n}}{n \delta}+\frac{o\left(A_{n}\right)}{\delta} \tag{2.1}
\end{equation*}
$$

We have

$$
\lim _{\delta \rightarrow 0} \zeta_{n}\left(v_{n}\right)=1, \lim _{\delta \rightarrow 0} \frac{\left|\zeta_{n}\left(v_{n}\right)-1\right|}{\delta}=\lim _{\delta \rightarrow 0} \frac{\left|\zeta_{n}\left(v_{n}\right)-\zeta_{n}(0)\right|}{\delta} \leq\left\|\zeta_{n}^{\prime}(0)\right\|_{-}
$$

and

$$
\begin{aligned}
\lim _{\delta \rightarrow 0} \frac{A_{n}}{n \delta} & =\lim _{\delta \rightarrow 0} \frac{1}{n \delta}\left\|\left(\zeta_{n}\left(v_{n}\right)-1\right) u_{n}-\zeta_{n}\left(v_{n}\right) v_{n}\right\|_{\mu} \\
& \leq \frac{1}{n}\left(\left\|\zeta_{n}^{\prime}(0)\right\|_{-}\left\|u_{n}\right\|_{\mu}+1\right)
\end{aligned}
$$

Taking $\delta \rightarrow 0$ in (2.1) and since $\left(u_{n}\right)$ is a bounded sequence we get

$$
\left\|I^{\prime}\left(u_{n}\right)\right\|_{\mu} \leq \frac{C_{3}}{n}\left(\left\|\zeta_{n}^{\prime}(0)\right\|_{-}+1\right)
$$

for a suitable constant $C_{3}>0$. Now, we must show that $\left\|\zeta_{n}^{\prime}(0)\right\|_{-}$is uniformly bounded in n.
From the boundedness of $\left(u_{n}\right)$ we have by Lemma 5

$$
\left\langle\zeta_{n}^{\prime}(0), v\right\rangle \leq \frac{C_{4}\|v\|_{\mu}}{\left|(p-1)\left\|u_{n}\right\|_{\mu}^{p}-\left(p_{*}-1\right)\left\|u_{n}\right\|_{p_{*}}^{p_{*}}\right|}
$$

for all $v \in W_{\mu}^{1, p}$ and some constant $C_{4}>0$. We only need to show that for any sequence $\left(u_{n}\right) \subset \mathcal{N}^{+}$

$$
\left|(p-1)\left\|u_{n}\right\|_{\mu}^{p}-\left(p_{*}-1\right)\left\|u_{n}\right\|_{p_{*}}^{p_{*}}\right|>C_{5}
$$

for some constant $C_{5}>0$.
Assume by contradiction that there exists $\left(u_{n}\right) \subset \mathcal{N}^{+}$such that

$$
\lim _{n \rightarrow \infty}\left[(p-1)\left\|u_{n}\right\|_{\mu}^{p}-\left(p_{*}-1\right)\left\|u_{n}\right\|_{p_{*}}^{p_{*}}\right]=0
$$

Then as $\left\|u_{n}\right\|_{\mu} \geq C_{1}>0$, we get

$$
\frac{\left\|u_{n}\right\|_{p_{*}}^{p_{*}}}{\left\|u_{n}\right\|_{\mu}^{p}}=\frac{(p-1)}{p_{*}-1}+o_{n}(1) \text { and }(p-1) I_{f}\left(u_{n}\right)=\left(p_{*}-p\right)\left\|u_{n}\right\|_{p_{*}}^{p_{*}}+o_{n}(1)
$$

where $o_{n}(1) \rightarrow 0$ as $n \rightarrow \infty$. But this is impossible since, as in the proof of Lemma 3 we have

$$
\begin{aligned}
o_{n}(1) & =(p-1)\left\|u_{n}\right\|_{\mu}^{p}-\left(2_{*}-1\right)\left\|u_{n}\right\|_{p_{*}}^{p_{*}} \\
& =\left(p_{*}-p\right)\left\|u_{n}\right\|_{p_{*}}^{p_{*}}-(p-1) I_{f}\left(u_{n}\right) \\
& =\left\|u_{n}\right\|_{p_{*}}\left[\left(p_{*}-p\right)\left(\frac{\left\|u_{n}\right\|_{\mu}^{p}}{\left(p_{*}-1\right)\left\|u_{n}\right\|_{p_{*}}^{p}}\right)^{\left(p_{*}-1\right) /\left(p_{*}-p\right)}-\frac{I_{f}\left(u_{n}\right)}{\left\|u_{n}\right\|_{p_{*}}}\right] \\
& >0 .
\end{aligned}
$$

At this point we conclude that $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in $W_{\mu}^{*} . \square$

3. Proof of Theorem 1

First, we prove that I can achieve a local minimum on \mathcal{N}^{+}.
According to the proof of Lemma 7, there exists a minimizing sequence $\left(u_{n}\right) \subset \mathcal{N}^{+}$ such that $C_{1} \leq\left\|u_{n}\right\|_{\mu} \leq C_{2}$. Up to a subsequence if necessary, we have

$$
\begin{aligned}
& u_{n} \rightarrow u_{1} \text { in } W_{\mu}^{1, p} \\
& u_{n} \quad \rightharpoonup u_{1} \text { in } L_{p *}\left(\Omega,|x|^{-p * b}\right) \\
& u_{n} \rightarrow u_{1} \text { a.e.in } \Omega
\end{aligned}
$$

for some $u_{1} \in W_{\mu}^{1, p}$. As $\theta^{+}<0$ then $u_{1} \not \equiv 0$.
Now we show that $u_{n} \rightarrow u_{1}$ in $W_{\mu}^{1, p}$. Suppose otherwise, so $\left\|u_{1}\right\|_{\mu}<\underline{n \rightarrow \infty} \underset{\underline{\lim }}{\|} u_{n} \|_{\mu}$, which implies that

$$
\begin{aligned}
& \theta^{+} \leq I\left(u_{1}\right) \\
&=\left(\frac{1}{p}-\frac{1}{p_{*}}\right)\left\|u_{1}\right\|_{\mu}^{p}-\left(1-\frac{1}{p_{*}}\right) I_{f}\left(u_{1}\right) \\
&<\underset{n \xrightarrow{\lim }\left(\frac{p_{*}-p}{p p_{*}}\left\|u_{n}\right\|_{\mu}^{p}-\frac{p_{*}-1}{p_{*}} I_{f}\left(u_{n}\right)\right)}{ } \\
&=\theta^{+} .
\end{aligned}
$$

This is a contradiction, which leads to conclude that $u_{n} \rightarrow u_{1}$ in $W_{\mu}^{1, p}$ and $I\left(u_{1}\right)=$ θ^{+}.
Moreover, we have $u_{1} \in \mathcal{N}^{+}$. In fact, if $u_{1} \in \mathcal{N}^{-}$then by Lemma $4, t_{u_{1}}^{+}=1$ and there exists an unique $t_{u_{1}}^{-}>0$ such that $t_{u_{1}}^{-} u_{1} \in \mathcal{N}^{+}$.
Since

$$
\left.\frac{d I\left(t u_{1}\right)}{d t}\right|_{t=t_{\bar{u}_{1}}}=0,\left.\quad \frac{d^{2} I\left(t u_{1}\right)}{d t}\right|_{t=t_{\overline{u_{1}}}^{-}}>0
$$

there exists $t_{u_{1}}^{-}<t_{u_{1}}^{0}<t_{u_{1}}^{+}$such that $I\left(t_{u_{1}}^{-} u_{1}\right)<I\left(t_{u_{1}}^{0} u_{1}\right) \leq I\left(t_{u_{1}}^{+} u_{1}\right)=I\left(u_{1}\right)$, which is a contradiction.
Hence $u_{1} \in \mathcal{N}^{+}$and

$$
\theta^{+}=\inf _{u \in \mathcal{N}^{+}} I(u)=\inf _{u \in \mathcal{N}} I(u)
$$

By the Lagrange multiplier rule, there exists $\lambda \in \mathbb{R}$ such that

$$
\Phi_{u_{1}}^{\prime}(1)=I^{\prime}\left(u_{1}\right)=\lambda \Phi_{u_{1}}^{\prime \prime}(1)
$$

which implies that

$$
0=\left\langle I^{\prime}\left(u_{1}\right), u_{1}\right\rangle=\lambda\left\langle J^{\prime}\left(u_{1}\right), u_{1}\right\rangle,
$$

we have $\left\langle J^{\prime}\left(u_{1}\right), u_{1}\right\rangle \neq 0$, so $\lambda=0$ and $I^{\prime}\left(u_{1}\right)=0$. Thus u_{1} is a ground state solution of problem (\mathcal{P}).

References

[1] Abdellaoui B, Felli V, Peral I. Existence and nonexistence for quasilinear equations involving the p-Laplacian. Boll Unione Mat Ital Sez, B9 (2006) 445-484.
[2] S. Benmansour and A. Matallah, Multiple Solutions for Nonhomogeneous Elliptic Equations Involving Critical Caffarelli-Kohn-Nirenberg Exponent Mediterr. J. Math. (2016).
[3] Y. Chen, J. Chen, Multiple positive solutions for a semilinear equation with critical exponent and prescribed singularity, Nonlinear Anal. 130 (2016), 121-137.
[4] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequality with weights, Compos. Math. 53, 259-275 (1984).
[5] F. Catrina, Z. Wang, On the Caffarelli-Kohn -Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math. 54, 229-257 (2001).
[6] K.S. Chou, C.W. Chu, On the best constant for a weighted Sobolev-Hardy Inequality, J. London Math. Soc. 2, 137-151 (1993).
[7] V. Felli, M. Schneider, Perturbation results of critical elliptic equations of Caffarelli-KohnNirenberg type, J. Differential Equations 191, 121-142 (2003).
[8] T. Horiuchi, Best constant in weighted Sobolev inequality with weights being powers of distance from the origin, J. Inequal. Appl. 1 (1997) 275-292.
[9] D. Kang, Positive solutions to the weighted critical quasilinear problems, Applied Mathematics and Computation 213, 432-439(2009).
[10] S. Secchi, D. Smets, M. Willem, Remarks on a Hardy-Sobolev inequality, C.R. Acad. Sci. Paris 336 (2003) 811-815.
[11] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pur. Appl. 110 (1976) 353-372.
[12] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincaré 9, 281-304 (1992).

Naima Keddar, Laboratoire d'Analyse et Contrôle des Equations aux Dérivées Partielles de l'Université Dullqali Liabès de Sidi Bel Abbes, EMS de Tlemcen, Algérie.

E-mail address: naima_keddar@yahoo.fr
Atika Boussettine, Laboratoire d'Analyse et Contrôle des Equations aux Dérivées Partielles de l'Université Djillali Liabès de Sidi Bel Abbes, ESM de Tlemcen, Algérie.

E-mail address: a.boussettine@yahoo.com
Abbes Benaissa, Laboratoire d'Analyse et Contrôle des Equations aux Dérivées Partielles de l'Université Djillali Liabès, Sidi Bel Abbes- Algérie.

E-mail address: benaissa_abbes@yahoo.com

[^0]: 1991 Mathematics Subject Classification. 35A15, 35B25, 35B33, 35J60.
 Key words and phrases. Variational methods, critical Caffarelli-Kohn-Nirenberg exponent, singular weights, Nehari manifold, Palais-Smale condition.

 Submitted Mach 10, 2018. Revised April 15, 2018.

