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ASYMPTOTIC STABILITY OF A HIGHER ORDER RATIONAL

DIFFERENCE EQUATION

F. BELHANNACHE

Abstract. In this paper, we study the boundedness nature, the oscillatory
character and the global behavior of positive solutions of the difference equa-
tion

yn+1 =
a+ b0yn−1 + b1yn−3

c+ dyp0n yp1n−2

, n = 0, 1, ...,

where a, bi, i = 0, 1 and the initial conditions are non-negative real numbers,
the parameters c, d are positive real numbers and pi, i = 0, 1 are positive
integers.

1. Introduction

Difference equations have many applications in applied sciences such as economy,
probability theory, ecology and sociology, and many realistic problems arising from
biology can be modelled as difference equations see, for example, [3, 13, 16, 19] and
the references cited therein. It is a known fact that the simplest difference equations
admit solutions given by explicit formulas, but if the form of the solution is not
available then this fact leads to the study of the global behavior of the solutions.
There has been a great interest in studying the global asymptotic stability, bound-
edness and periodicity of solutions for nonlinear difference equations. Recently the
study of higher order difference equations attracted a considerable attention see,
for example, [1, 2, 5, 7, 9, 10, 11, 14, 17, 18].

This work is motivated by the papers [4, 5], in which Belhannache et al. obtained
results concerning the boundedness, oscillation of the positive solutions and the
stability of the unique positive equilibrium of the difference equations

xn+1 =
A+Bxn−1

C +Dxp
nx

q
n−2

, n = 0, 1, ..., (1)
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and

xn+1 =
A+Bxn−2k−1

C +D
k∏

i=l

xmi
n−2i

, n = 0, 1, ..., (2)

In this paper we generalize the aforementioned works. We consider the following
difference equation

yn+1 =
a+ b0yn−1 + b1yn−3

c+ dyp0
n yp1

n−2

, n = 0, 1, ..., (3)

where a, bi, i = 0, 1 and the initial conditions are non-negative real numbers, the
parameters c, d are positive real numbers and pi, i = 0, 1 are positive integers.
Our aim is to investigate the boundedness, oscillation and global asymptotic sta-
bility of the positive solutions of Equation (3).
In order to study Equation (3), we will transform it to a simpler form. We put

yn = ( cd )
1
pxn. Therefore, we obtain the following equivalent difference equation

xn+1 =
α+ β0xn−1 + β1xn−3

1 + xp0
n xp1

n−2

, n = 0, 1, ..., (4)

where α = a
c (

d
c )

1
p , βi = bi

c , i = 0, 1 and p = p0 + p2 and the initial conditions
are arbitrary non-negative real numbers. So, it suffices to study Eq.(4) instead of
Eq.(3).
From now on, we let β = β0 + β1.

2. Linearized stability analysis

In this section we present the local stability of the equilibrium points of Eq.(4).
First, we prove the following proposition.

Proposition 2.1. Let α > 0. Then the following statements are true:

(1) Assume that β ≥ 1. Then, Eq.(4) has a unique positive equilibrium in

((β−1
p+1 )

1
p ,+∞).

(2) Assume that β < 1. Then

(i): If α < p( 1−β
p−1 )

p+1
p , then Eq.(4) has a unique positive equilibrium in

(0, ( 1−β
p−1 )

1
p ).

(ii): If α > p( 1−β
p−1 )

p+1
p , then Eq.(4) has a unique positive equilibrium in

(( 1−β
p−1 )

1
p ,+∞).

Proof. Let us consider the function defined by

f(x) = xp+1 + (1− β)x− α, (5)

whenever α > 0, β ≥ 0.
Then, a point x is an equilibrium point of Eq.(4) if and only if x is a zero of the
function f defined by (5). One easily see that

f(0) = −α < 0 and f ′(x) = (p+ 1)xp + (1− β).

So, we have two cases:
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(1) If β ≥ 1, then f is increasing function on the interval ((β−1
p+1 )

1
p ,+∞). But

f((
β − 1

p+ 1
)

1
p ) = −p(

β − 1

p+ 1
)

p+1
p − α < 0.

Hence, f has a unique zero in ((β−1
p+1 )

1
p ,+∞).

(2) Assume that β < 1. Then f is increasing on (0,+∞). We distinguish also
two cases:
(i): If α < p( 1−β

p−1 )
p+1
p , then

f((
1− β

p− 1
)

1
p ) = p(

1− β

p− 1
)

p+1
p − α > 0.

Therefore, f has a unique zero in (0, ( 1−β
p−1 )

1
p ).

(ii): If α > p( 1−β
p−1 )

p+1
p , then

f((
1− β

p− 1
)

1
p ) < 0.

Thus, f has a unique zero in ((1−β
p−1 )

1
p ,+∞). Thus the result.

�

Theorem 2.2. Assume α > 0. Let x be the unique positive equilibrium of Eq.(4).
Then, the following statements are true:

(1) If β ≥ 1, then x is unstable.
(2) If β < 1, then

(i): x is locally asymptotically stable if α < p( 1−β
p−1 )

p+1
p .

(ii): x is unstable if α > p( 1−β
p−1 )

p+1
p .

Proof. The linearized equation associated with Eq.(4) about x is

zn+1 = − xp

1 + xp

1∑
i=0

pizn−2i +
1

1 + xp

1∑
i=0

βizn−2i−1, for every n = 0, 1, ...

The characteristic equation associated with this equation is

λ4 +
xp

1 + xp

1∑
i=0

piλ
3−2i − 1

1 + xp

1∑
i=0

βiλ
2−2i = 0. (6)

(1) Assume that β ≥ 1 and consider the function g defined by

g(λ) = λ4 +
xp

1 + xp

1∑
i=0

piλ
3−2i − 1

1 + xp

1∑
i=0

βiλ
2−2i.

Then, we have

lim
λ→−∞

g(λ) = +∞ and g(−1) = 1− β + pxp

1 + xp < 1− 1 + xp

1 + xp = 0.

It follows that, the characteristic equation (6) has a root λ1 in (−∞,−1),
which completes the proof of the first part of the theorem.

(2) Assume that β < 1. Thus
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(i): If α < p( 1−β
p−1 )

p+1
p , then x < ( 1−β

p−1 )
1
p . Let us consider the functions

h1 and h2 defined by

h1(λ) = λ4;

h2(λ) =
xp

1 + xp

1∑
i=0

piλ
3−2i − 1

1 + xp

1∑
i=0

βiλ
2−2i.

Then, we get

|h2(λ)| ≤
β + pxp

1 + xp < 1 = |h1(λ)|,

for all λ ∈ C where |λ| = 1. By Rouché’s Theorem, all roots of (6)
lie in the open unit disk |λ| < 1 and, hence, the result follows from
Theorem 1.1 [12].

(ii): The proof is similar to that of the case 1 and it will be omitted.

�

Now we study the local stability of the equilibrium points of Eq.(4) in the case
when α = 0.
It is clear that if α = 0 the Eq.(4) becomes

xn+1 =
β0xn−1 + β1xn−3

1 + xp0
n xp1

n−2

, n = 0, 1, ... (7)

Note that x = 0 is always an equilibrium point of Eq.(7). When β > 1, Eq.(7) also

possesses the unique positive equilibrium x = (β − 1)
1
p .

Some difference equations very close to Eq.(7) have been studied, for example, in
[6, 7, 11, 15].

Theorem 2.3. The following statements are true

(1) The equilibrium point x = 0 of Eq.(7) is locally asymptotically stable if
β < 1 and it is unstable if β > 1.

(2) When β > 1, then the positive equilibrium x = (β−1)
1
p of Eq.(7) is unstable.

Proof. (1) The linearized equation associated with Eq.(7) about the equilib-
rium point x = 0 is

zn+1 = β0zn−1 + β1zn−3, n = 0, 1, ...

Its characteristic equation is

λ4 − β0λ
2 − β1 = 0. (8)

Assume β < 1. Using theorem of Rouchè, we obtain that all roots of (8) lie
in the open unit disk.
Let β > 1. It is clear that (8) has a root in the interval (1,+∞). Therefore,
the point x = 0 is locally asymptotically stable if β < 1 and it is unstable
if β > 1.

(2) Let β > 1. The linearized equation associated with Eq.(7) about the equi-

librium point x = (β − 1)
1
p is

zn+1 =
1− β

β

1∑
i=0

pizn−2i +
1

β

1∑
i=0

βizn−2i−1 n = 0, 1, ...
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Its characteristic equation is

λ4 +
β − 1

β

1∑
i=0

piλ
3−2i − 1

β

1∑
i=0

βiλ
2−2i = 0. (9)

We can see that (9) has a root in (−∞,−1). Therefore, the point x =

(β − 1)
1
p is unstable.

�

3. Boundedness and oscillation

Theorem 3.1. Let x be the unique positive equilibrium of Eq.(4) and let {xn}∞n=−3

be a solution of the same equation. If one of the following conditions
(a1) x−3, x−1 < x ≤ x−2, x0,
(a2) x−2, x0 < x ≤ x−3, x−1,
is satisfied, then the solution {xn}∞n=−3 oscillates about x with semicycles of length
one.

Proof. Assume that the condition (a1) is satisfied. Then

x1 =
α+ β0x−1 + β1x−3

1 + xp0

0 xp1

−2

<
α+ βx

1 + xp = x

and

x2 =
α+ β0x0 + β1x−2

1 + xp0

1 xp1

−1

>
α+ βx

1 + xp = x.

By induction on n, we obtain

x2n ≥ x and x2n+1 < x, for all n ≥ 0.

If the condition (a2) is satisfied, the proof is similar and it is omitted. �

Theorem 3.2. Assume that β < 1 and α > 0. Then every solution of Eq.(4) is
bounded and persists.

Proof. Assume β < 1. let {xn}∞n=−3 be a solution of Eq.(4).
From Eq.(4), we have

xn+1 ≤ α+ β0xn−1 + β1xn−3, n = 0, 1... (10)

Consider the linear difference equation

wn+1 = α+ β0wn−1 + β1wn−3, n = 0, 1, ... (11)

with
wj = xj , for j ∈ {−3,−2,−1, 0}. (12)

By induction we get
xn ≤ wn, ∀ n ≥ −3 (13)

It is clear that α
1−β is a particular solution of Eq.(11).

On the other hand the assumption β < 1 implies that every solution of the ho-
mogeneous equation which is associated with Eq.(11) tends to zero as n −→ +∞.
Hence

lim
n−→+∞

wn =
α

1− β
,

then {xn}∞n=−3 is bounded by a positive constant, say M. That is

xn ≤ M, ∀ n ≥ 0. (14)
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Now we prove that {xn}∞n=−3 persists.
From Eq.(4), we have

xn+1 >
α

1 + xp0
n xp1

n−2

, ∀ n ≥ 0.

Using (14) we obtain

xn >
α

1 +Mp
, ∀ n ≥ 3,

which completes the proof. �

Lemma 3.3. Suppose β < 1 and α > 0. let {xn}∞n=−3 be a solution of Eq.(4). If
Λ = lim supxn

n→∞
and λ = lim inf xn

n→∞
, then Λ and λ satisfy the following inequalities

α+ βλ

1 + Λp
≤ λ ≤ Λ ≤ α+ βΛ

1 + λp
.

Proof. Assume β < 1 and α > 0. From Theorem 3.2, the solution {xn}∞n=−3 is
bounded. Hence, for every ε ∈ (0, λ) there exists n0 ∈ N such that

λ− ε ≤ xn ≤ Λ + ε, for all n ≥ n0.

So, this implies that

α+ β(λ− ε)

1 + (Λ + ε)p
≤ xn+1 ≤ α+ β(Λ + ε)

1 + (λ− ε)p
, for all n ≥ n0 + 3.

Therefore, we obtain
α+ βλ

1 + Λp
≤ λ ≤ Λ ≤ α+ βΛ

1 + λp
.

�

4. Global asymptotic stability

In this section we give global asymptotic stability result for Eq.(4). We show that
the unique positive equilibrium is globally asymptotically stable in the subregion
of the parametric region of local asymptotic stability when α > 0 and that the zero
equilibrium is globally asymptotically stable if β < 1 and α = 0.

Theorem 4.1. Assume that α > 0 and β < 1. If α < p( 1−β
p−1 )

p+1
p , then the positive

equilibrium x ∈ (0, ( 1−β
p−1 )

1
p ) of Eq.(4) is globally asymptotically stable.

Proof. Let {xn}∞n=−3 be a solution of Eq.(4). Since β < 1, the solution {xn}∞n=−2k−1

is bounded. Let Λ = lim supxn
n→∞

and λ = lim inf xn
n→∞

. Using Lemma 3.3, we have

α+ βλ

1 + Λp
≤ λ ≤ Λ ≤ α+ βΛ

1 + λp
.

This implies that

(1− β)λp − αλp−1 ≥ (1− β)Λp − αΛp−1. (15)

Now, let us consider the function

h(x) = (1− β)xp − αxp−1.

Hence,

h′(x) = xp−2(p(1− β)x− (p− 1)α),
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and the function h(x) is increasing on (α(p−1)
p(1−β) ,∞). As α < p( 1−β

p−1 )
p+1
p , we get

α(p− 1)

p(1− β)
< x < (

1− β

p− 1
)

1
p .

In view of inequality (15), we have a contradiction. Therefore, λ = Λ = x and so x
is a global attractor.
The global asymptotically stability of x is obtained by combining the global attrac-

tivity and the local asymptotic stability of x when α < p( 1−β
p−1 )

p+1
p . �

The following result deals with the global attractivity of the zero equilibrium of
Eq.(7).

Theorem 4.2. Assume β < 1. Then the equilibrium point x = 0 of Eq.(7) is
globally asymptotically stable.

Proof. We know by Theorem 2.3 that the equilibrium point x = 0 of Eq.(7) is
locally asymptotically stable.
From Eq.(7) we have

xn+1 < β0xn−1 + β1xn−3.

By substuting α = 0 in Eq.(11), we obtain Eq.(13). Since β < 1, then lim
n−→+∞

wn =

0. Hence

lim
n→+∞

xn = 0.

This completes the proof.
�
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