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NUMERICAL TREATMENTS OF THE TRANSMISSION
DYNAMICS OF WEST NILE VIRUS AND IT’S OPTIMAL
CONTROL

N. H. SWEILAM, O. M. SAAD AND D. G. MOHAMED

ABSTRACT. In this paper, numerical studies for transmission dynamics of West
Nile Virus mathematical model are presented. The nonstandard finite differ-
ence method is introduced to solve the posed model. Positivity, boundedness,
and convergence of the nonstandard finite difference scheme are studied. Also,
numerical stability analysis of fixed points is studied. An optimal control prob-
lem is formulated and studied theoretically using the Pontryagin’s maximum
principle. The obtained results by using nonstandard finite difference method
are compared with standard finite difference method. It can be concluded
that the nonstandard finite difference method is more efficient and preserves
the stability and positivity of the solutions in large regions.
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1. INTRODUCTION

West Nile virus (WNV) is characterized as an arboviral encephalitis, a designa-
tion that refers to its mosquito (arthropod) vector, its viral pathogenic agent, and
its encephalitic symptoms. The disease amplifies in a transmission cycle between
vector mosquitoes and reservoir-host birds and is secondarily transmitted to mam-
mals including humans ([5], [7]). WNV was first identified in Uganda in 1937 [3§],
and is widespread in Africa, Europe, the Middle East, west and central Asia, Ocea-
nia (subtype Kunjin), and North America, for more details see ([8], [36]). Nearly all
human infections with WNV have resulted from mosquito bites; however, several
novel modalities of transmission were recognized in 2002, for example, a pregnant
woman was infected with WNV while in her second trimester, which was followed
by transplacental transmission to the fetus [10].

The mathematical modeling of transmission dynamics of WNV has been de-
veloped in many publications recently. Thomas and Urena introduced a difference
equation model for WNV targeting its effects on New York City and determined the
amount of sparying (killing the mosquitoes) needed to eliminate the virus [40]. In
2004, there was a study by Wonham et al. on a single season model with a system of
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differential equations for WNV transmission in the mosquito-bird population [42].
But in 2005, Cruz-Pacheco et al. presented and analyzed a mathematical model for
the transmission of WNV infection between mosquito and avain populations and
by using experimental and field data as well as numerical simulations, they found
the phenomena of damped oscillations of the infected bird population [13]. Lewis
et al. studied the spatial spread of the virus in [26], but in [27] they introduced a
comparative study of the discrete-time model in [40] and the continuous-time model
in [43]. Kbenesh et al. determined the cost-effective strategies for combating the
spread of WNV in a given population [23].

Numerical simulations, based on finite difference approximations, are widely used
to predict the dynamics of the interacting populations. Unfortunately, their sta-
bility and accuracy depend strongly on the time step size [16]. Nonstandard finite
difference (NSFD) techniques, developed by Mickens [28], to design elementary sta-
ble NSFD methods that preserve the local stability of equilibria of the approximated
differential system for arbitrary time step sizes. It is important for constructing the
positivity preserving schemes to avoid unrealistic negative values for the solution
[, [I1], [15], [I7], [18], [28], [33]. The explicit schemes are generally less expensive
than other classical methods since larger step sizes can be taken without generating
negative solutions [I5], [28], [29]. NSFD methodology has been applied in many
areas of science including biological and epidemic models [19], [28], [30].

In this paper, we introduced the transmission dynamics of WNV model which
given in [23]. The aim is to study numerically the optimal control problem for the
proposed model by the NSFD method. Many optimal control methods have been
developed for studying the dynamics of some diseases such as vector-borne diseases,
HIV and Mycobacterium tuberculosis ([I], [24]). This paper is organized as follows,
in section 2, a mathematical model is presented. In section 3, NSFD for the WNV
model is presented. The positivity and boundedness of the proposed scheme are
studied in section 4. Existence and stability of equilibria are presented in section 5.
In section 6, the optimal control problem is introduced and NSFD for this optimal
control proplem is presented. In section 7, a numerical experiment is discussed.
Finally, in section 8, conclusions are presented.

2. MATHEMATICAL MODEL

In this section, we consider the transmission dynamics of WNV model which
given in [23]. This model consists of nine nonlinear ordinary differential equations
(ODEs). The model is based on monitoring the temporal dynamics of suscepti-
ble mosquitoes M, (t), infected mosquitoes M;(t), susceptible birds B,(t), infected
birds B;(t), susceptible humans S(t), exposed humans F(t), infectious humans I(t),
hospitalized humans H(t) and recoverd humans R(¢). Here, Nps(t) = Mg(t)+M;(t)
is the total mosquito population at time ¢, Ng(t) = Bs(t) + B;(t) is the total bird
population at time ¢t and Ny (t) = S(t) + E(t) + I(t) + H(t) + R(¢) is the total
human population at time ¢, as explained in Table 1. The list of parameters values
and their interpretation are introduced in Tables 2 and 3, for more details see [23].
Then the WNV model can be formulated as follows:
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: by B, M, B,
M(t) = Ay — 16‘17\[7 — par M,
B
. bi1 M B;
M;(t) = 715}\] — M
B
. b1 8o M; By,
But) = xo ~ 220B yup
B
Bi(t) = 153\[7 —dpB; —¥pB; — upB;,
B
. bo B3 M; S
S(t) = Au — 2%3,7 — puS,
H
bo B3 M; S

= 200 0E - ugE,

R(t)=7H +rl — uuR, (1)
with the following initial conditions:
My(0) = My,,  M;i(0) = M;,,  Bs(0)=Bs,, Bi(0)=Bi, S(0)= S0,
E(0) = Eo, 1(0) = Io, H(0) = Ho, R(0) = Ro. (2)

TABLE 1. All variables in the system and their definitions.

Variable Definition
M (1) The population of susceptible mosquitoes.
M, (t) The population of infected mosquitoes.
Ny (1) The total population of mosquitoes Ny (t) = M, (¢) + M;(t).
B (t) The population of susceptible birds.
B;(t) The population of infected birds.
Ng(t) The total population of birds Ng(¥) = Bs(t) + B;(t).
S(t) The population of suscepible humans.
E(t) The population of exposed humans.
I(t) The population of infected humans.
H(t) The population of hospitalized humans.
R(t) The population of recovered humans.
Ny (t) | The total population of humans Ny (¢) = S(t) + E(¢) + I(¢) + H(t) + R(?).

2.1. The Basic Reproduction Number R;. The basic reproduction number
[41], Ry, is presented for a general compartmental disease transmission model based
on a system of ODEs. These models have a disease-free equilibrium (DFE) at which
the population remains in the absence of disease. Thus, Ry is a threshold param-
eter for the model. It is the expected number of secondary cases produced, in a
completely susceptible population, by a typical infective individual. The DFE is
locally asymptotically stable if Ry < 1, the average of an infected individual pro-
duces less than one new infected individual over the course of his infectious period
and the infection cannot grow. But the DFE is unstable and invasion is always
possible if Ry > 1, the average of each infected individual produces, more than one
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TABLE 2. All parameters in the system and their interpretation.

Parameter Interpretation

A The recruitment rate of mosquitoes (assumed susceptible).
Y The natural death rate of mosquitoes.
AB The recruitment rate of birds (assumed susceptible).
uB The natural death rate of birds.
Up The migration rate of birds.

dp The WNV-induced death rate of birds.
M| The recruitment rate of humans (assumed susceptible).
W The natural death rate of humans.

dr The WNV-induced death rate of humans.
dpg The death rate of hospitalized humans.

B1 The probability of WNV transmissionfrom from an infected bird

to a susceptible mosquito.
B2 The probability of WNV transmissionfrom from an infected
mosquitoes to a susceptible bird.
B3 The probability of WNV transmissionfrom from an mosquitos
to humans.
D1 The per capita bitting rate of mosquitoes on the primary
. bN.
host (birds) and b1 = ﬁ.
b2 The per capita bitting rate of mosquitoes on the humans
and by = _bONm__ .
Np+ Ny

b The average bitting rate of mosquitoes.

a The rate of development of clinical symptoms of WNV.

T The natural recovery rate.

T The treatment-induced recovery rate.

¥ The hospitalized rate of infectious humans.

TABLE 3. Parameters values used in the system .

Parameter Value Parameter Value
s (3.91 x 10~° — 0.005) dy (5 x 107° — 0.015)
B (0.0001 — 0.0003) dp (0.06 — 0.2)
By (0.016 — 0.07) by 51.1 x 10~3
\p 2.1 i 5 x 10~2
dr dyg +107° Up 5.2 x 1072
B1 0.4 B2 0.1
B3 10—2 b 3
a 0.1 T 2x 104
T 0.05 ~ 9x 101

new infection, and the disease can invade the population, for more details see [23].

In [23], Kbenesh et al. introduced the DFE to be (MS,Mi,BS,Ei,S,E,I,H,R).
Thus, the reproduction number Ry for the system , is given as follows:

\/MM(MB +Wp + dg)B1 B2 M, B,

Ro=10 - -
prv (s +¥p +dp)(Bs + 5)

3. NSFD ror WNV MODEL

In this section, we introduce the NSFD schemes to obtain numerical solutions of
the transmission dynamics of WNV model . Mickens introduced NSFD schemes
in 1980, as a powerful numerical method that preserve some of the main essential
physical properties of the solution, such as, monotonicity or convergence towards
a stable steady state [4], [18], [28]. The NSFD schemes were defined as follows:
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Definition 1 [3] A numerical scheme is called NSFD discretization if at least one
of the following conditions is satisfied:

(1) nonlocal approximation is used [3], [28], [31].
(2) the discretization of derivative is not traditional and a nonnegative function
©(At) = At + O((At)?), called a denominator function is used [30].

If f(t) € C1(R), the first derivative dfd—(tt) can be defined as %(tt) = W,

where ¢(At) is a real-valued function on R. The above definition focused on the
nonlocal approximation strategy for the construction of NSFD schemes (i.e., if
there is nonlinear term such as X (¢)Y (¢) in the differential equation, it can be
replaced by X (¢)Y (¢t + At) or X(t + At)Y (t), for more details see [30]) and the
renormalization of the denominator. The scheme is defined as finite difference or
standard finite difference (SFD) method if ¢(At) = At, where At is the time step
size of the scheme, for more details see [39]. Let us denote by M, M, B" B!,
SnoE™ I™, H™ and R"™ the values of the approximations of M, (nAt), M;(nAt),
Bs(nAt), Bi(nAt), S(nAt), E(nAt), I(nAt), H(nAt) and R(nAt) respectively, for
n=0,1,2,... and At is the time step of the scheme. All sequences M, M, B?,
B, S", E", I", H" and R" should be nonnegative in order to be consistent with
the biological nature of the model. The discretization of the system is given as
follows:

W:AM_’W—MMM:,
Ml";(lA—t)Mz” _ 6151]]\\72?3? — uar MP,
W ~ g — % _WRB" — upB,
B;L;:A;)Bf _ blﬁzjféﬂBS —dgB" —WB" — upBY,
MZAH—W_MHSna
p(At) Ni
Entl — En pyBa MTS™
e — QﬂgN}}l —aE" — pgE",
I”;(lm)f" = aE" — " —dgI" — 1" — ",
W —I" —dyH" — TH" — puy H",
WZTHH+T‘ITL_NHR”~ (4)

The discretizations for Ny, Ng and N are given as follows:
Ny =M+ M,
Ng = B! + B,
Ng=8"+E"+I"+ H" +R". (5)
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The local approximations are used for the nonlinear terms. We use the denominator
function of the form p(At) = 1 —e~2t. Then we can obtain:

b1 M*BP
]\48"""1 = Msn -+ @(At) |:)\]\/[ — 1617;1 - /UWM;I] )
NB
b1/ M B?
M = M 4 p(At) {151]\77:1 - MMM{L} ,
B
) b1 B M B ,
B;H—l _ B;L —|—<p(At) |:)\B _ % — WBB;L _ ,UBB;I:| s
B
(b1 Bo M™ BT
Bt = b7+ ol MOy e — un.
B
bo B3 M*S™
H
"~ Mg
En+1 — E" +(‘0<At) lbﬁ?i]vinls — aB"™ _,U/HEn:| ,
L H

I — I 4 (A [0B” — AT — di I — " — 7],
H" = H" + o(At) [y I" —dyH" — TH" — pp H"],
R7L+1 =R" + (p(At) [TH” 4" — NHRH] ) (6)

4. POSITIVITY AND BOUNDEDNESS OF NSFD SCHEME

Theorem 1 [Positivity] Assume that in the system @ if M2 >0, MY > 0,
BY>0,BY>0 8 >0 E'>0,I°>0, H> >0, R > 0, uyg > 0, dg > 0,
u >0,dg >0, upr >0, Ay >0, A5 >0, Ay >0,d; >0,¥p >0,5, >0, 5 >0,
B3 >0,b>0,0 >0,r>0,7>0,and v > 0, then M} >0, M >0, B} >0,
BY>0,5">0,E">0,I">0, H* >0 and R" >0 hold for alln =0,1,2,---.
Proof. According to @, let us have for n =0

b1 B M?BY
M = M? + p(At) |:)\M - 1517051 NMM?} )
b1 S MOBY
B
[ by B2 MY BY?
B! = BY + o(At) |\ — 1&7025 —UpB] - MBBS] )
L NB
[ M?B?
B} = BY 4 ¢(At) % —dpB] —V¥pB} _MBB?:| .
L B
by B3 M? SV
St = 8%+ p(At) {AH - 2’8370 - uHSO] ;
NH
[bo B3 M SO
E' = E° + o(At) 2%70 —aE’ - MHEO] :
L H

I'=1°+ p(At) [aE® —41° — df1° —7I° — pyI°],
H'=H° + p(At) [yI° —dyH® — TH® — ng H]
R' =R+ o(At) [tH® +7I° — uy R°] . (7)
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Thus M! >0, M} >0, B} >0, Bl >0, S'>0, E* >0, I' >0, H' > 0 and
R' > 0, we assume that for 1,2,--- ,n, M™ >0, M >0, B® > 0, B >0, S™ > 0,
E™>0,I">0, H" >0 and R" > 0.

Theorem 2 [Boundedness] Let us suppose that, if we have N{; = M? + M?,
NY =B+BY N =8+ E°+1°+ H°+R% and py > 0, dy > 0, ug > 0,
dg >0, upr > 0, Apy >0, Ap >0, Ag >0,d; >0,%g >0, 5 >0, 2 >0,
Bs >0,b>0, ay, >0, 7>0,7>0,v >0, then the numerical NSFD scheme
given by the system (6), such that, Ny, = MP? 4+ MP< (1 — upp(At)) Nap ™t
Ng =B 4+ BP< (1 — (p + pup) p(At)) Ny°~ and N = S* + E" + I" + H" +
R"< (1 — ppe(At)) Ny~ for all n = 0,1,2,- -+, No.

Proof. Firstly, for the total mosquito population Ny, we have for n =0

b1 S MO BY
M2 = MY+ p(80) [rag = PO ] 5)
Np
b1 /1 MO BY
M} = M + p(At) [IINO — M| (9)
B
Nip = M + M < (1 — parp(At)) Ny (10)
Next for n =1
b S ML B}
M2 = bt ) aas = PO ). (1)
B
b1 ML B}
M2 =i+ ) [PE B ] (12)
B
Nip = M? + M2< (1= parp(At)) Ny (13)
Next for n = 2
Niy = M2+ MP< (1 - jigp(A) Ny (14)
Now we assume that for n = 3,---, Ny, is
NI = MNo 4 MNo< (1 — pprp(At)) Nt (15)

Secondly, for the total bird population Ng we have for n =0

Bl = B] + p(At) {/\B - blﬁivj\/ggg —UpB] - MBBS:| ; (16)
B} = B? + ¢(At) [blﬁQNJ\foBo —dpB) —UpB) — MBB?] : (17)
B
Nj = B! + BI< (1 — (Vg + i) p(A1)) N, (18)
Next for n = 1 and n = 2, we have
NE = BZ + Bf<(1 = (¥ + pp) ¢(At)) Np, (19)
N = BS + B{<(1 - (Wp + up) p(At)) N3. (20)

Thus for n =3, -+, Ng, is
N3® = B 4 BNo< (1 — (W + ) pl(AL) NYO . (21)
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Finally, the total human population Ny we have for n =0

bo B3 M SO

S = 59+ (AL [)\H -
Ny

s o

baBsMPS°

E' = E° + o(At) [
N

aE°® — MHEO} , (
I'=1°+ o(At) [aE® —41° — df1° —rI° — puyI°], (24)
H'=H"+ o(At) [yI° —dyH® — 7H? — ng H] (25)
R' =R+ o(At) [tH® +rI° — uy R°] (26)
Nip=S'+ E'+ 1"+ H' + R'< (1 — pgp(At)) N (27)

Next for n = 1 and n = 2, we have

Nf =S+ E*+1* + H* + R°< (1 — ppp(At)) Ny, (28)
N}y =S+ B+ P+ H + R°< (1 — upp(At)) N, (29)

Thus for n =3, -+, Np, is

NYo = gNop pNo  [No o RNo< (1 — pupp(AL)) NP~ (30)

5. EXISTENCE AND STABILITY OF EQUILIBRIA

5.1. Disease Free Equilibrium. In this section, the stability and convergence
properties of the DFE point of the proposed NSFD scheme will be studied. In [23],
Kbenesh et al. established the DFE point and its stability. We determine this DFE
point by considering D* = (Z\L7 M;, By, B;, S, E,1,H, I:Z) to be the fixed point of
the system @ The DFE point D* can be found by solving the following system:

where,

K; = K;(Ms, M;, B, B;, S, E, I, H,R), ¥j=1,2,...,9. (31)
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Thus, the system @ can be written as follows:

Ky (Mo, N, Bo, Bi, 8, B 1L H R) = M. + o(A8) [AM - "15}%3 ~ s ] 7
B
Ka(Mo, Ny, By, By, S, B, 1, I, B) = NI; + o(Al) [blﬁﬁwz A
B
Ks(Mo, Ny, Bo, By, S, B, 1, I, ) = B, + o(Al) [AB _ blﬁjVMB —WpB. - upB. |
B
Ko(ML ML Bo. By, 8. BT L R) = By + o(AF) WNMB dpBs— Wb — pnBi) |
B
Ko (N, Vs, By B 6, B, 1 11 B) = &+ p(At) | gy — 2038 o]
H
Ko (M Mo, B, By, S BT R) = B+ () lbﬁ%g b bl
H
Ko(M,, M;, By, Bi, 8, E, 1, H, R) = I + o(Al) [aE Nl —dpd — D — HHf] ,
Ks(V N, B, By, 8. B0 HLR) = 4 o) [3] = d Bl — 71 — g ]
Ko(M,, M;, By, By, 8, E, 1, H,R) = R+ o(At) [Tﬁ - MHR] , (32)
where,
Ny =M,+M;, Ng=B,+B;, Nuy=S8+FE+I1+H+R. (33)

If we put M; = 0, B; = 0 and I = 0 in the above system || then the DFE
point D* of the system @ is given by D* = (%,o, w;fw()’ 2,0,0,0,0). Let
us consider the initial conditions for the WNV model (1)) as follows (M;(0), M;(0),
B;(0), B;(0), S(0), E(0), I(0), H(0), R(0)) = (10000, 1000, 1000, 0, 1000, 0, O,
0, 0). For determining the stability properties of the system , we calculate the
Jacobian matrix at the DFE point D* = (%,0, Ws)fus’o’ 2—2,0,070,0). It will
take the following form:

a1 O 0 aua O 0 0 0 0
0 a2 0 ay O 0 0 0 0
0 a3z as3z3 0 0 0 0 0 0
0 42 0 aq4 0 0 0 0 0

J = 0 as2 0 0 ass 0 0 0 0 s

0 ag2 0 0 0 age 0 0 0
0 0 0 0 0 agy arr O 0
0 0 0 0 0 0 arg  ass 0
0 0 0 0 0 0 arg agg Ag9g
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where:
b1 81 A 4
a1 = 1— (AL, G = — 1812 (B + B)(p(At%
UMAB
b1 81 4
4 = 1— jrp(AD), azy = O Aults VE) npy
UMAB

asy = —b1fap(At),
asz = b1 B2p(At),
ase = —baf3p(At),
agz = bafB3p(At),

azzs =1 — (U + up)p(At),

age =1 — (dp +¥p + up)p(At),
ass =1 — pup(At),

ass = 1 — (a + pu)p(At),

agr = ap(At), arr =1 — (v +dr +r+ pm)e(At),
ars = yp(At), ags =1 — (du + 7+ pm)p(At),
arg = T@(At), agg = T@(At%

ago = 1 — ppp(At).

Now, we determine the stability of the fixed points of the system @ numerically by
reporting the spectral radii p of the Jacobian matrix J corresponding to the DFE
point of NSFD scheme when Ry < 1. It can be seen that all the spectral radii p in
Table 4. are less than one in magnitude irrespective of the time step size At used
in simulations. Hence, we have the DFE point D* = (2—“};, 0, WB)\%MB’ 0, 2—5, 0,0,0,0)
of the system is unconditionally locally asymptotically stable if Ry < 1.

TABLE 4. The spectral radii of the Jacobian matrix corresponding
to the DFE point of NSFD scheme when Ry < 1.

At 5 (NSFD)
0.05 | 0.9998(convergent)
0.1 | 0.9995(convergent)
0.5 | 0.9980(convergent)
1 | 0.9968(convergent)
( )
( )

10 | 0.9950(convergent
25 | 0.9950(convergent

5.2. Endemic Equilibria. In this section, we present a study for the existence
and uniqueness, stability and convergence properties of the endemic equilibrium
for the WNV model (with by, ba constants). In the following we compute the
endemic equilibria. Consider the first four equations in system :

: b1 B1 M, B;
V(1) = dng — OB (34)
B
: by 8y M, B;
M;(t) = 1%\[7 — pmM; (35)
B
: by B2 M; B,
Bs(t) = Ap — 715?\[ — VBB, — upbBs, (36)
B
: by B2 M; B,
Bi(t) = hpeMiBs dpB; — W3B; — ugB;. (37)

Np
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Since we have Ny; = My + M; and Ng = By + B;, given by:

Nar(t) = M(t) + M;(t) = s — par N, (38)
Ng(t) = By(t) + Bi(t) = Ap — dpB; — (up + ¥5)Np, (39)

Adding equations and gives, at steady state,

M, =M g (40)
1227}
Similarly, adding equations and
B < dp )
=——— |1+ —— ) B;. 41
up +¥s up +¥s (1)

Fromand , we have M, > 0 and B, > 0if M; < andB’—u3+WB+dB =

Bio, respectively. Thus all state variables in equatlons are non-negative
l

if (M;, B;) € {O, %} [07 Bﬂ} At steady state, equation 38 can be written as:

AB
N = — B;, 42
B u+¥Yp  uB + ‘I/B (42)

substituting from (40)) and (| . ) to , at steady state, we get

by By 202

d
137 HB+‘I’B (blﬂl 123,78 HB"EWB) Bz

jY; B;

M; = = 0,(By). (43)

It is clear that ©1(0) = 0 and m©; = % is the slope of ©; at

(M;, B;). If byBi(up + ¥B) # uMdB, then ©; has a vertical asymptote given

by B; = rds ﬁf//’a’l\@B_WB) Bj;1. substituting from |) and to , at
steady state, we get

(A —dpB;) B;

M; = = 05(B;), (44)
b (isas — Bi)
where ©5 has a vertical asymptote at B; = “B_&ﬁ = Bjs. We need to verify
that M, —M, since we have B; Blg < — 2B < 2B, Therefore, from
M pup+¥p+dp B
equation (43)) we have
A
PR . - S VI
by By B; + uﬂﬂidWBB (2711; _ Bi) b161B; 5%

The subsystem 1) has a unique endemic equilibrium at B; = B; € (0, Big).
It can be obtained by substituting from to to get

ao (52)2 +a; (él) +as =0, (46)
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where

dp (urvrdp — 0151 (uB +¥B))

ag = , 47
0 b1B2 (1B + ¥sB) (47)
Am <2MMdB —b1f1 (uB + WB))
ay = by By oM _ A, 48
1= b 15 bif2 (up +¥s) B (48)
A2 bi1B1i A A
ag = HMAB _ 181 A AB (49)

biBe (B +¥s)  pum(pB+¥s+dp)

We can get B; by solving equation and also the variables M;, B, and M, can
be computed. Secondly, we consider the last five equations in system :

. ba B3 M;S
S(t) = Ag — 25137 — nuS, (50)
H

bo B3 M; S

D= TN

I(t)=aE —~yI —d;I —rl — pgl,
H(t)=~I —dyH — 7H — g H,
(

Rt)—TH—i—rI wyR.

E aoF —upFE,

At equilibrium, the variables S, F, I, H and R in equations (50| - can be ex-

. . . _ AH pHtO
pressed in terms of the variable F, i.e. S = au— ( e ) E, I= +d1+r+#H E, H=
ay o Tayt+ra(dg+T+pm) _ .
(dH+T+#H)(’Y+dI+7“+,uH)E and R = uH(dH+T+uH)('y+d1+r+,uH)E’ where E' = E m

. Thus the unlque endemic equi-
librium for the full system 1) is By = (MS, Mi, BS, Bi, S, E, I, H, R).
Theorem 3 The endemic equilibrium Ej; is asymptotically stable if Ry > 1 for the

model .

Proof. Let us consider the mosquito-bird cycle, described by the subsystem

([34)-(37). We evaluate the Jacobian of (34)-(37) at E;:

_b1B1B; i o by 81 Mg B, _ b1B1Ms I blﬂllw BL
(Bs+B;). (Bs+B;)2 (Bs+B;)  (Bs+B;)?
b18185; i _ b1 Ms By b181Ms _ b181MsB;
J= (Bs+B;) N (Bs+B;)? (Bs+B;) _(Bs+B; )2
0 _ b}ﬁ2§5 _ 111621\/1z + blﬂzl\/f B2 (/‘B +WB) bIBZM st
(Bs+B;) (Bs+B;)  (Bs+By) (Bs+B;)
o h};srz?s b~1521ff by BoM;Bs _ by1BoM;Bs g+ ¥p +dg)
(Bs+B;) (Bs+B;)  (Bs+B;)? (Bs+B;)?

where the eigenvalues of J are —ujy; and the roots of the following equation

A3+G1A2+CLQA+G,3 = O,
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where

a = S [b152M + (011 + (pm +dp) +2(up + LZ’B))fg’i + ((um +dp)
(Bs + By)

+2(up +Vp)) By,

1
as = ————=[(uh +¥% + ppdp + pmdp +Vedp + 2uppun + 2umPs
(Bs + Bl)2

+2upWB)B2 + (byfrdp + 20181 (g + ¥p) + u% + W3 + dp(up + par + ¥p)
+ 2p0s (B + ¥p) + 2upWs) B + (b1frdp + 26181 (1 + ) + 2u% + 205
+2dp(up + v +¥B) +4pun(up +¥s) + 4MBWB)B B + b1 B (B + pr

Jrg/)B)]\/[B + b1 52 + v + g +dB)MB +b2ﬂ152(B M )M}
1

+ ﬁ[b%ﬁlﬁﬂﬂzi - §s>ﬁs]7
(Bs + B;)?
ag = é[ﬂM(ﬂB +¥B)(uB +¥p + dB)(-és + éi)B + (uB +V¥nB
(Bs + B;)3

+dB)(b161(/1'B+WB)é‘+b162MM]\§[')(é +B) +blﬁ2 i(b1B1(dp +¥p
+ 13)B; — b1 1 (1 +WB)M erBMMB + b2 Bo M, (M +B ))(B +Bi)

+ 0261 Ba(by B MM, (By — My) — $1 B Bi((np + Wi + d) M, + dp M)
+ B + Vi) MLV B,).

U:jzz

It is clear that a; > 0. But for as and a3 are both positive if Bl- < Mﬁ <
‘I’B)\f o (this condition is required for By) and up > ¥p + dp (this condition is
biologically reasonable). We will use Routh-Hurwitz criteria to show that ajag —

asz > 0. Since ajas — ag can be written as:

Z3b} + Zabi + Z1by + Zo, (55)
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where

Zs = Ba(By + M;) (81 8o M(Bi — M) (B, + Bi) — BifoM, B, (B, — M;)(B,
+ Bi)*)(Bq + By) — (B1 B2M, M(B, — M;) + 8183 M My (B, + M;)(B
+Bi)(B, + B,)?,

Zy = (B1P2(B1B; B, (dBJ\} + ﬁs(dB +up +¥p)) — 51M M, B; (B +¥R))
+ BN (B Mo (s + W) — B1 Bildp + i + W) (By + B)(By + By)?
+ (Bi(dB +2up + pav + 2¥) + és(dB +2up +pm + 2@3))(5152]\:41'(&
— M,)(B, + é->2 — 8182 M, By(B, — M;)(B, + B;)*)(B, + B:) + (B2 B;
+ BaNE)(By + B> (B2 (Brd + 261 (1 + V) + BoBi(Brd + 261 (s + Us))
+52]\~43 (dB + pp + prr +¥B) +52B M(MB + pnr + PB)),

1

Zy = (Bi(dp + 2up + piar + 205) + Bu(dp + 205 + pas + 205)) (B,
+ éi)3(§?(51d3 +2B1(uB +¥B)) + éséi(51d3 +2B81(uB + ¥B))
+ 62Miéi(d3 +pp +pm +¥B) + 52]\:42‘]-[:35(#3 + pnv +¥p)) — ((51&‘(#}3
+Up) + 52MMJ\:4')(§ + é')2(dB +up+¥p)+ ﬁQdBﬂMﬁiés(és + éz))(és
+ B)® + (BeBi + B2Mi) (Bs + By)*(2nar (s + Us)) + 2u5¥s + dp(us + par
+Vp) + up + W}%)B? + (4pre(pp + ¥B) + 4up¥Pp + 2dp(us + v + ¥B) + 2up
+ QW%éséi + (dpps + dppsr + dp¥p + 2uppn + 208Ys + 2um¥Ps + ik
+w3)B2),

Zo = (Bi(dp + 2up + par + 205) + By(dp + 2up + piar + 205))(Bs
+ B)* (21 (s + U) + 28 + dp (s + par + Up) + 1% + U2)B?
+ (4pne (i + Vi) + 4ppWp + 2dp (1p + par + Vg) + 2% + 203) B, B, + (dppp
+dpunr +dp¥p + 2uppar + 2uBPs + 2unPs + u% + Wé)éi) — v (B

+p)(Bs + Bi)’(ds + pp + ¥p).
If the inequaliltis B < u3+312+d3 < ‘I/B)\de and pup > ¥p + dp are satisfied, then
equation (55]) is positive. Thus ajas —az > 0 pr0v1ded the above inequalities hold

. For the human subsystem described by equations (5 . (since we have N H =
S+ E+ 1+ H+ R), the Jacobian of (50)-(54) at E;

7172@31% " b2ﬁ31\7[-§ -~ b2ﬁ31\7[-§ bgﬁﬁz\?ps bgﬁgl\;[is' b2 B3 M; S
Nt Ny N N N N
J = baB3M;S _ byB3M; _baBgM;S (o4 1p) _ baBzM; 3 _baB3M;S _baB3M;S
- 5 72 V2 2 N2 N2 3
N N% N% N% N N%
0 @ *(‘Y‘FdI‘FT“FHH) 0 0
0 0 —(dg +7+npg) 0
0 0 7‘ T — B
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where the eigenvalues of J are —puy and the roots of the polynomial

A + G1A3 + GoA? + G3A + Gy = 0,

where
1 = ~ = ~ = ~ M-~
Gi1=—=(dgN§ +diNi +YNE +3ug N +rNg + 7N5 + boBsM;Nyp),
N
1 ~ = = ~ I~ =
Gy = = (u%—Ile—I + deINIZJ + dH’yNIZ_I + QdHMHNIQ_I + 2dIUHNgI + Q'YHHNIZ-[
N

H
+ dHTN%I + d[TN?[ + 2,uHrNI2{ + 2/LHTN[2{ + TTN?{ + bgﬂg,dHMiNH

+ b Badr M Nyp + b S + bo B3y M Ny + 2boBajusr My Nir + boBar M; N
+ bo B MiS + ba B3 M; Ny,

1 = = = = = =
= (ni N + dypg N + dipd Niy + 03 Nip + rug N + 70 Ny
H

Gs =

+ deluHJ\:fIQJ + deuHﬁ% + dHuHTJ\:fIQJ + dIuHTKff{ + ’YMHTKT%I + MHTTJ\:/'?{
+ bzﬁaﬂ?{]\:@]\sz + 2b253/ﬁqﬁi§ + by Bsdprdy My Ny + boBsdpa ;S

+ by Bsdsry My Nz + boBaayMiS + boBad s My Nyt + boBady o M Ny

+ 2B @M Nir + baBsyierr My Nig + boBodirr M Nyg + boBadpr i My S

+ bQBSdIMH]\Z[z‘g' + bzﬂsaﬂzfz‘g + by BadyTM; Ny + bQBS'V,UH]\:L‘é + byByrall;S
+ by By M Nz + b B M Ny + baBspurrmMi N + b M;S

+ boBarT M Ny + baBapuamM;S),

1 M M- M- z oz
Gy = % (D23 M;S + baBapzrr M S + bo sy 7M; S + bofspfral; S
H

+ b253dH/13{-]\:4i§ + bQBBdI#%IJ\:@g + 52537/@11\:42'5' + by B3y M, S

+ bzﬂsliHTa]\Zfig + b253d1,uH7']\:4i§ + baBarrall;S + b263ﬂH'YTA:4i§

+ baBa T M;S + ba B M;S + boBadsrdy s MiS + boBayp ol S
+ b263dHT04-Z\:4i§ + 5253dH’WHJ\:/fi§)~

All constants in the above polynomial are positive. Thus, F; is locally asymptoti-
cally stable provided that pug > Vg + dp.

6. THE OPTIMAL CONTROL PROBLEM

In this section, an optimal control problem for the transmission dynamics of
WNYV is introduced. This optimal control problem is described by two control
functions ug, k = 1,2, (u; represents the level of larvacide and adulticide used
for mosquito control administered at mosquito breeding sites and uy measures the
level of successful prevention (personal protection) efforts). We need to minimize
the exposed and infected human populations, the total number of mosquitos and
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the cost of implementing the control. The optimal control problem in transmission
dynamics of WNV model in [23] is given by

T
j(u1, UQ) = / (AlE(t) =+ Agl(t) + AgNM(t) + Bluf + BQU%) dt, (56)
0

where A1, As, and As represent, respectively, the weight constants of the exposed,
infected human and the total mosquito populations and By and By are weights con-
stants for mosquito control and personal protection (prevention of mosquito-human
contacts) [23].

Subject to the constraints,

dMs o blﬂlMsBi
5 = AN (1= i (1) "

dM; b1 1M B;

— um M; — rous (t) M;

dt Np
dzs gt N - % — UEB, — pupB,,
djx‘ _ blﬁj\[# —dpB; — VpB; — upB;,

% =Ag +vaNg — b253MiS.;\(711_ ) - pa,
% _ b?»BSMiSZ\%_ wl) _ g e,

% =aFE —~I —d;I —rl — pugl,

% =T —dyH —7H — py H,

% =7H +rl — pgR,

— unm Mg — rouq (£) Mg,

(57)

where the initial conditions are given in (2)). Since, the factor of the term (1—u(t))
reduces the reproduction rate of the mosquito population and in human population,
the associated force of infection is reduced by a factor of (1 —wus2(t)). Let us consider

where,

Ms; =31, M; =S, Bs=Ss3,
Bi =S4, S=Ss, E =S,
I:%% H:%& R:%%

%j = %j(MvainsaBivsvEaIaHaR,uhuQat)v V] =

1,2,...
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Now, we define the Hamiltonian function H,(Ms, M;, Bs, B;, S, E, I, H, R, u1, us, t)
as follows:

Ha(Mvai7stBi7S7E7lvH7 R7 u17u27t) = T(MsaMivstBiu S,E7I,H, R7ulvu27t)

9
+ ijgj(MsaMivBMBia SaE7]7H7 Ra Ul,’UQ,t),

j=1
(58)
where A\;, 7 = 1,2,...,9, are Lagrange multipliers. Thus, a modified objective
function can be expressed by
5 T
J:/ [Ha(MvathaBivSvEaIaHaR7u17u27t)
0
9
— > NS(My, M;, By, By, S, E, 1, H, R, uy, ua, t)]dt. (59)
j=1

According to Pontryagin’s maximum principle [37], the necessary conditions for the

optimal control problem and are

. OH, - OH, - OH,
)\1 - aMsy )\2_ 8Mi7 )‘3_ 6387
. OH, - OH, - OH,
)\4—6Bia )\5_857 >\6_8E7
. OH, - O0Ha - OH,
A7 = o Asi(‘)H’ 9= Zp (60)
0H,
=0, Vk=1,2 61
aUk ) 9~y ( )
and also we have
A(T)=0, j=1,2,3,..,9. (62)

From the necessary conditions and , the Lagrange multipliers A\; and the
control variables uy, k = 1,2, can be written as follows [23]:

A= —As — (A2 = M)bB1Bi& — Mi[Am(1 —ur) — (p1 + p2Nag)
— pa My — rous] + Aapa M;,
Xo = —As — A Ar(1 = wr) — pa M)+ Xo [ + paNag + poM; + rous]
— (A1 = A3)bB2Bs& — bB3S(1 — u2)§(Xe — As),
X = (A2 — M)bBLBiME? — s [p — bBaM;(€ — Bo&?) — g — ]
— MabBaMi(€ — By€?) — (A5 — X6)bBaM;S(1 — ug)€?,
X = —(Aa = M)BBIM, (€ — Bi€®) — As[p + bBa M, Bo&?]
+ M[DB2M;Bo&% + (dp +Wp + up)] — (A5 — A6)bBzM;S(1 — ug)€?,
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As = —(A1 = A)bB1 BiM&? — (A3 — Aa)bfa M, B, &>
— sy — 0B Mi(1 — u2)(§ — SE%) — paS — (us + paNer)]
— A6 [0Bs Mi(1 — ug) (& — SE?) — pa E] + Arpual + AgpaH + Aopa R,
Xo = —A1 — (A1 — M)bB1 B M2 — (A3 — \a)bB2M; Bs&?
— Xs[vm + 683 M; Bs(1 — us)€? — 114 5]
+ A6 [bB3M;S(1 — u2)€ + a + s E + p3 + paNp]
— Ao — pal] + AgpaH + Aopa R,
A7 = —Ay — (A1 — Mo)bB1 Bi M2 — (A3 — Aa)bB2M; Bs&?
— As[vm + 0B M S(1 — u2)€? — 11y S) 4 Ns[bBsM;S(1 — up)E% + pyE)]
+ A7y +dr + 74 pad + ps 4 paNe] — As[y — paH] = Xo[r — pa R],
As = —(A1 = Ao)bBi My Bi€® — (A3 — A\a)bBaM; B¢
— XAslym + B M;S(1 — u)&® — p1aS] + As[bBs M;S(1 — u2)& + pa E)
+ Arpal + Agldp + 7+ paNg + ps + paH) — Ao[T — paR],
Ao = —(A1 = Ao)bBi M Bi€® — (A3 — A\a)bBaM; B¢
— Xs[ym 4+ 0B3MiS(1 — )€ — paS) + Ne[bB3 M S(1 — ug)€? + paFE)
+ Arpad + AgpaH + Ng[paR + pu3 + paNgl, (63)

1
u; = max{0, min{1, ﬁ[)\l()\MNM + roMs) + Xaro M)},
1

ug = max{0, min{1, il)ﬂg,f\/.fisf(>\6 = As)t, (64)
2B,

where £ = m Thus, we have the following theorem:

Theorem 1 The optimal controls u; and us of the optimal control problem
and satisfy the necessary conditions and and the Lagrange multipliers
N(T)=0,Vj=1,2,...,9.

6.1. NSFD for the Optimal Control Problem. In this section, the numerical
scheme for optimal control problem classified into two steps. Firsty, the state sys-
tem under control is discretized by using local approximation for the nonlinear
terms, see section 3. Secondly, the adjoint system will be discretized by using
nonlocal approximation as follows:

A\ — )\n+1 . . . § )
W = A = (A = ADbALB; TR = AT (1 - “1“) — (m1 + p2Nyy)

— pa M — rou T+ Ny e M
)\72L - )\g‘Fl n n+1 n+1 n n nal
W = 7A3 - )\1 [)\M(l — Uy ) — ,11,2.]\4's ] —+ )\2 [,Ufl + M?NM +:U‘2Mi

+rouf T = (N = A§)bB2BITE — bAs ST (1 — upTEM (NG — A7),
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Ag _ /\;H-l n n n+1 n+1/¢en\2
W = (/\2 - )\1)b/813i Ms (5 )
_ )\g [p _ b/BQMin-H(fn _ B;L+1(§n)2) /S HB]
— NPOB M (E™ — BIFH(EM)?) — (A5 — A§)bBs M S™H (1 — ug 1) (€7)2,
A — At
T = O MIBBMITHE — BITHET?) — Ao+ b MBI ()]

+ AL 0B MBI (EM)? + (d + ¥ + )]
= (A5 = ADDB MIFES (1 — up ) (67),
Ag B )\g+1 n n n+1q rn+1/6n\2 n n n+1 pn+l/en\2
R = O =AM BI M ) — (0 — A B )
— Ay — 0B M (1 —ug ) (" — S"HEM)?) = paS™ T — (us + paNE)]
= NGB M1 — up (€™ = SMTHER)?) — pa BT 4 A pa I
FAGpa " MG g R,
Ag — )‘g+1 n n n+1 n+1/¢n\2 n n n+1 pntl/eny\2
oA — A1 = (AT = AD)DBL BT MIT(E")T — (A5 — A)bBa M BT (E")
— AB[ym + 0B MBI (1 — w1 (€7)? — pa ST
+ MG B M TS (1 — uf ™) (€M) + a + paB" T 4 s 4 pa NG
— Mo — pa "+ NG pa H 4 NG g R,
>‘771 7 /\777,4_1 n n n+1 n+1/¢en\2 n n n+1 pn+1l/en\2
W =—A — (/\1 - AZ)bﬁlBi My (f ) - (>\3 - /\4)b/82Mi By (5 )
= A5 lym + 0B MPTS (1 — up ) (€7) — paS™Y
+AG BB M]HES™H (1 — up ™) (€7)? + pa B
Ny dr A sl s+ pa NG = Mgy — pa HP T = NG [
- ,U4Rn+1]v
Ag _ Ag+1 n n n+1 pn+l/en)\2 n n n+1 pn+l/en)\2
oAl —(AT = ADOBIMIT BT (E")T — (A5 — AD)bB M BT (")
— A?['YH + b53Min+1Sn+l(1 _ ug+1)(§n)2 _ M4Sn+1]
FARBMIHS (1~ g€ 4+ B
F A pal " NG [ + 7 A paNFy + 3+ pa H' ) = MG [T — pa R,
AL — \ntt
A = O MM B ) - (0 - MM B €
= A5 lym + 0B MPTS (1 — up ) (€7) — paS"
+AG BB M LS (1 — up ™) (€7)? + pa B

+ A2 g I NS g H P+ MG [ R+ ps + pa Ny . (65)

7. NUMERICAL EXPERIMENT

In this section, two numerical methods are introduced to solve the system
and the optimality system and ; NSFD method and SFD method. These
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methods are applied at different time step sizes At. Firstly, NSFD and SFD meth-
ods are used for obtaining the approximate solutions for the system as provided
in the previous sections. The initial conditions are (10000,1000,1000,0,1000,0,0,0,0).
In Table 5, the convergence behavior of these proposed methods is introduced. It
can be seen that, the SFD method is convergent at time step sizes At = 0.05,
At = 0.1 and At = 0.5, otherwise it is divergent. But NSFD method is convergent
at all time step sizes At. Figures 1., 2. and 3., respectively, describe the numerical
simulations of the system at different time step sizes At. Figure 1. describes
the numerical comparisons between NSFD and SFD methods of the system at
time step size At = 0.5. But the numerical simulations of the system using
NSFD method at time step size At = 1 is displayed in Figure 2. It is clear from
Figure 3. that the SFD method is divergent at time step size At = 1. From the
numerical results presented in Table 5., it can be concluded that NSFD preserves
the positivity of the solution and numerical stability in large regions. Secondly,

TABLE 5. Comparisons between NSFD and SFD methods for the
system with different time step size At when Ry > 1.

At SFD NSFD
0.05 | convergent | convergent
0.1 | convergent | convergent
0.5 | convergent | convergent
1 divergent | convergent
5 divergent | convergent
10 divergent | convergent
25 divergent | convergent

we present different optimal control strategies for the optimality system and
(63) under the parameter values are given in Table 1. The following strategies are
explored:

e: Strategy 1, which implements measures for the level of larvacide and
adulticide used for mosquito control administered at mosquito breeding
sites (control uy only),

e: Strategy 2, which implements measures for the level of successful preven-
tion (personal protection) efforts (control ug only),

e: Strategy 3, which represents measures for the level of larvacide and adul-
ticide used for mosquito control administered at mosquito breeding sites
and measures for the level of successful prevention (personal protection)
efforts (controls uy and uy). More than one approach is used for obtaining
and confirming the numerical results.

The weights A; = Ay = 1, A3 = 10~% in the cost functional , (i.e., the mini-
mization of the number of exposed and infected humans, is given more importance
than the reduction of the total number of mosquito). We use the upper bound of
0.8 and 0.5 on u; and us, respectively. The convergence behavior of numerical com-
parisons between NSFD and SFD methods of the optimality system and
at different time step sizes At is presented in Table 6. Also, we observe that NSFD
method is convergent at large time step sizes At but SFD method is divergent.
Numerical comparisons between strategy 1 (describes control u; only), strategy 2
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(describes control us only) and strategy 3 (describes controls u; and ug) of the
optimality system and by using NSFD method are provided in Figures 4.
and 6. at time step size At = 1 and At = 4, respectively. By applying strategy 1,
we observe that the optimal control u; stays at the upper bound for 19 days when
At =1 and for 16 days when At = 4 (see Figures 4. and 6.), respectively. When the
control u; is considered, we see the level of the infected human population I(t) is
about 383 when At = 1 and about 328 when At = 4. If strategy 2 is considered, we
observe that the optimal control us stays at the upper bound for almost the same
duration when At = 1 and for 96 days when At = 4. In this strategy, we see the
level of I(t) is about 749 when At = 1 and about 503 when At = 4. This implies a
higher value of the cost functional .J (u1,ug) associated strategy 1, and strategy 2,
as clear in Table 7. The best choice to use is strategy 3. Indeed, with strategy 3,
there is a lower value of the cost functional J (u1,uz). Numerical comparison be-
tween strategy 3 (using NSFD method) and SFD method of the optimality system
and at time step size At =1 is provided in Figure 5. In Figure 7. it can
be observed that the SFD method is divergent of the optimality system and
at time step size At = 4. The cost function J(uy,uz) and the sum of numerical
values of F and I at T' = 100 days at different time step sizes At are computed by
these implemented methods in Table 8.

TABLE 6. Comparisons between NSFD and SFD methods for the
optimality system and with different time step size At

when Ry > 1.

At SED NSFD

0.05 | convergent | convergent
0.1 | convergent | convergent
0.5 | convergent | convergent
1 convergent | convergent
5 divergent | convergent
10 divergent | convergent
25 divergent | convergent
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TABLE 7. Comparisons between different strategies of NSFD
method for the optimality system and with different time
step size At, where the total simulation time T' = 100 days.

At Methods J(uy, uz)
0.5 | NSFD-strategyl 18404
NSFD-strategy2 | 33766
NSFD-strategy3 | 12440
1 | NSFD-strategyl 18254
NSFD-strategy2 | 32581
NSFD-strategy3 | 12265
2 | NSFD-strategyl 17464
NSFD-strategy2 | 29012
NSFD-strategy3 | 11633
4 | NSFD-strategyl 14943
NSFD-strategy2 21312
NSFD-strategy3 | 9804.3
5 | NSFD-strategyl 13083
NSFD-strategy?2 17274
NSFD-strategy3 8511
10 | NSFD-strategyl | 6918.4
NSFD-strategy2 | 6898.3
NSFD-strategy3 | 4353.9
25 | NSFD-strategyl | 1678.3
NSFD-strategy2 | 1146.9
NSFD-strategy3 | 1044.8

TABLE 8. Comparisons between NSEFD-strategy3 and SFD meth-
ods for the optimality system and with different time step
size At, where the total simulation time 7" = 100 days.

At Methods J(u1,u2) E(100) + 1(100)

4 | NSFD-strategy3 9804.3 286.2127
SFD NaN NaN

5 | NSFD-strategy3 8511 280.6345
SFD NaN NaN

10 | NSFD-strategy3 4353.9 202.4972
SFD 5.4681 x 10°* | 3.2809 x 10

25 | NSFD-strategy3 1044.8 48.8770
SFD —7.7748 x 10™ | —1.8659 x 10

8. CONCLUSION

In this paper, numerical studies for the transmission dynamics of WNV mathe-
matical model and it’s optimal control are presented. It can be concluded from the
numerical results provided that NSFD scheme is more efficient than SFD scheme.
It preserves the positivity of the solutions and numerical stability in large regions.
The optimal control problem is described by two control functions u; and us. The
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FIGURE 1. Numerical simulations of the system when Ry > 1 with
time step size At = 0.5 by using NSFD and SFD methods.

measures for the level of larvacide and adulticide used for mosquito control adminis-
tered at mosquito breeding sites is represented by u; and the measures for the level
of successful prevention (personal protection) efforts is represented by wug. Three
optimal control strategies are presented. If we considered only one control, then
we have strategy 1 for the first control u; and strategy 2 for the second control us.
When the two controls u; and ug are considered, this means that we have strategy
3. According to the numerical results, we have the best choice to use strategy 3
Indeed, with strategy 3, there is a lower value of the cost functional J(u;, uz).
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