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NUMERICAL TREATMENTS OF THE TRANSMISSION

DYNAMICS OF WEST NILE VIRUS AND IT’S OPTIMAL

CONTROL

N. H. SWEILAM, O. M. SAAD AND D. G. MOHAMED

Abstract. In this paper, numerical studies for transmission dynamics of West

Nile Virus mathematical model are presented. The nonstandard finite differ-
ence method is introduced to solve the posed model. Positivity, boundedness,

and convergence of the nonstandard finite difference scheme are studied. Also,
numerical stability analysis of fixed points is studied. An optimal control prob-

lem is formulated and studied theoretically using the Pontryagin’s maximum

principle. The obtained results by using nonstandard finite difference method
are compared with standard finite difference method. It can be concluded

that the nonstandard finite difference method is more efficient and preserves

the stability and positivity of the solutions in large regions.
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1. Introduction

West Nile virus (WNV) is characterized as an arboviral encephalitis, a designa-
tion that refers to its mosquito (arthropod) vector, its viral pathogenic agent, and
its encephalitic symptoms. The disease amplifies in a transmission cycle between
vector mosquitoes and reservoir-host birds and is secondarily transmitted to mam-
mals including humans ([5], [7]). WNV was first identified in Uganda in 1937 [38],
and is widespread in Africa, Europe, the Middle East, west and central Asia, Ocea-
nia (subtype Kunjin), and North America, for more details see ([8], [36]). Nearly all
human infections with WNV have resulted from mosquito bites; however, several
novel modalities of transmission were recognized in 2002, for example, a pregnant
woman was infected with WNV while in her second trimester, which was followed
by transplacental transmission to the fetus [10].

The mathematical modeling of transmission dynamics of WNV has been de-
veloped in many publications recently. Thomas and Urena introduced a difference
equation model for WNV targeting its effects on New York City and determined the
amount of sparying (killing the mosquitoes) needed to eliminate the virus [40]. In
2004, there was a study by Wonham et al. on a single season model with a system of
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differential equations for WNV transmission in the mosquito-bird population [42].
But in 2005, Cruz-Pacheco et al. presented and analyzed a mathematical model for
the transmission of WNV infection between mosquito and avain populations and
by using experimental and field data as well as numerical simulations, they found
the phenomena of damped oscillations of the infected bird population [13]. Lewis
et al. studied the spatial spread of the virus in [26], but in [27] they introduced a
comparative study of the discrete-time model in [40] and the continuous-time model
in [43]. Kbenesh et al. determined the cost-effective strategies for combating the
spread of WNV in a given population [23].

Numerical simulations, based on finite difference approximations, are widely used
to predict the dynamics of the interacting populations. Unfortunately, their sta-
bility and accuracy depend strongly on the time step size [16]. Nonstandard finite
difference (NSFD) techniques, developed by Mickens [28], to design elementary sta-
ble NSFD methods that preserve the local stability of equilibria of the approximated
differential system for arbitrary time step sizes. It is important for constructing the
positivity preserving schemes to avoid unrealistic negative values for the solution
[4], [11], [15], [17], [18], [28], [33]. The explicit schemes are generally less expensive
than other classical methods since larger step sizes can be taken without generating
negative solutions [15], [28], [29]. NSFD methodology has been applied in many
areas of science including biological and epidemic models [19], [28], [30].

In this paper, we introduced the transmission dynamics of WNV model which
given in [23]. The aim is to study numerically the optimal control problem for the
proposed model by the NSFD method. Many optimal control methods have been
developed for studying the dynamics of some diseases such as vector-borne diseases,
HIV and Mycobacterium tuberculosis ([1], [24]). This paper is organized as follows,
in section 2, a mathematical model is presented. In section 3, NSFD for the WNV
model is presented. The positivity and boundedness of the proposed scheme are
studied in section 4. Existence and stability of equilibria are presented in section 5.
In section 6, the optimal control problem is introduced and NSFD for this optimal
control proplem is presented. In section 7, a numerical experiment is discussed.
Finally, in section 8, conclusions are presented.

2. Mathematical Model

In this section, we consider the transmission dynamics of WNV model which
given in [23]. This model consists of nine nonlinear ordinary differential equations
(ODEs). The model is based on monitoring the temporal dynamics of suscepti-
ble mosquitoes Ms(t), infected mosquitoes Mi(t), susceptible birds Bs(t), infected
birds Bi(t), susceptible humans S(t), exposed humans E(t), infectious humans I(t),
hospitalized humans H(t) and recoverd humans R(t). Here, NM (t) = Ms(t)+Mi(t)
is the total mosquito population at time t, NB(t) = Bs(t) +Bi(t) is the total bird
population at time t and NH(t) = S(t) + E(t) + I(t) + H(t) + R(t) is the total
human population at time t, as explained in Table 1. The list of parameters values
and their interpretation are introduced in Tables 2 and 3, for more details see [23].
Then the WNV model can be formulated as follows:



EJMAA-2019/7(2) NUMERICAL TREATMENTS OF WNV AND IT’S OPTIMAL CONTROL 11

Ṁs(t) = λM −
b1β1MsBi

NB
− µMMs,

Ṁi(t) =
b1β1MsBi

NB
− µMMi,

Ḃs(t) = λB −
b1β2MiBs

NB
− ΨBBs − µBBs,

Ḃi(t) =
b1β2MiBs

NB
− dBBi − ΨBBi − µBBi,

Ṡ(t) = λH −
b2β3MiS

NH
− µHS,

Ė(t) =
b2β3MiS

NH
− αE − µHE,

İ(t) = αE − γI − dII − rI − µHI,

Ḣ(t) = γI − dHH − τH − µHH,

Ṙ(t) = τH + rI − µHR, (1)

with the following initial conditions:

Ms(0) = Ms0 , Mi(0) = Mi0 , Bs(0) = Bs0 , Bi(0) = Bi0 , S(0) = S0,

E(0) = E0, I(0) = I0, H(0) = H0, R(0) = R0. (2)

Table 1. All variables in the system (1) and their definitions.

Variable Definition
Ms(t) The population of susceptible mosquitoes.
Mi(t) The population of infected mosquitoes.
NM (t) The total population of mosquitoes NM (t) = Ms(t) +Mi(t).
Bs(t) The population of susceptible birds.
Bi(t) The population of infected birds.
NB(t) The total population of birds NB(t) = Bs(t) +Bi(t).
S(t) The population of suscepible humans.
E(t) The population of exposed humans.
I(t) The population of infected humans.
H(t) The population of hospitalized humans.
R(t) The population of recovered humans.
NH(t) The total population of humans NH(t) = S(t) + E(t) + I(t) +H(t) +R(t).

2.1. The Basic Reproduction Number R0. The basic reproduction number
[41], R0, is presented for a general compartmental disease transmission model based
on a system of ODEs. These models have a disease-free equilibrium (DFE) at which
the population remains in the absence of disease. Thus, R0 is a threshold param-
eter for the model. It is the expected number of secondary cases produced, in a
completely susceptible population, by a typical infective individual. The DFE is
locally asymptotically stable if R0 < 1, the average of an infected individual pro-
duces less than one new infected individual over the course of his infectious period
and the infection cannot grow. But the DFE is unstable and invasion is always
possible if R0 > 1, the average of each infected individual produces, more than one
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Table 2. All parameters in the system (1) and their interpretation.

Parameter Interpretation
λM The recruitment rate of mosquitoes (assumed susceptible).
µM The natural death rate of mosquitoes.
λB The recruitment rate of birds (assumed susceptible).
µB The natural death rate of birds.
ΨB The migration rate of birds.
dB The WNV-induced death rate of birds.
λH The recruitment rate of humans (assumed susceptible).
µH The natural death rate of humans.
dI The WNV-induced death rate of humans.
dH The death rate of hospitalized humans.
β1 The probability of WNV transmissionfrom from an infected bird

to a susceptible mosquito.
β2 The probability of WNV transmissionfrom from an infected

mosquitoes to a susceptible bird.
β3 The probability of WNV transmissionfrom from an mosquitos

to humans.
b1 The per capita bitting rate of mosquitoes on the primary

host (birds) and b1 = bNB
NB+NH

.

b2 The per capita bitting rate of mosquitoes on the humans

and b2 = bNH
NB+NH

.

b The average bitting rate of mosquitoes.
α The rate of development of clinical symptoms of WNV.
r The natural recovery rate.
τ The treatment-induced recovery rate.
γ The hospitalized rate of infectious humans.

Table 3. Parameters values used in the system (1).

Parameter Value Parameter Value
µH (3.91 × 10−5 − 0.005) dH (5 × 10−5 − 0.015)
µB (0.0001 − 0.0003) dB (0.06 − 0.2)
µM (0.016 − 0.07) λM 51.1 × 10−3

λB 2.1 λH 5 × 10−2

dI dH + 10−5 ΨB 5.2 × 10−2

β1 0.4 β2 0.1
β3 10−2 b 3
α 0.1 r 2 × 10−4

τ 0.05 γ 9 × 10−4

new infection, and the disease can invade the population, for more details see [23].

In [23], Kbenesh et al. introduced the DFE to be (M̂s, M̂i, B̂s, B̂i, Ŝ, Ê, Î, Ĥ, R̂).
Thus, the reproduction number R0 for the system (1), is given as follows:

R0 = b

√
µM (µB + ΨB + dB)β1β2M̂sB̂s

µM (µB + ΨB + dB)(B̂s + Ŝ)
. (3)

3. NSFD for WNV Model

In this section, we introduce the NSFD schemes to obtain numerical solutions of
the transmission dynamics of WNV model (1). Mickens introduced NSFD schemes
in 1980, as a powerful numerical method that preserve some of the main essential
physical properties of the solution, such as, monotonicity or convergence towards
a stable steady state [4], [18], [28]. The NSFD schemes were defined as follows:
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Definition 1 [3] A numerical scheme is called NSFD discretization if at least one
of the following conditions is satisfied:

(1) nonlocal approximation is used [3], [28], [31].
(2) the discretization of derivative is not traditional and a nonnegative function

ϕ(∆t) = ∆t+O((∆t)2), called a denominator function is used [30].

If f(t) ∈ C1(R), the first derivative df(t)
dt can be defined as df(t)

dt = f(t+∆t)−f(t)
ϕ(∆t) ,

where ϕ(∆t) is a real-valued function on R. The above definition focused on the
nonlocal approximation strategy for the construction of NSFD schemes (i.e., if
there is nonlinear term such as X(t)Y (t) in the differential equation, it can be
replaced by X(t)Y (t + ∆t) or X(t + ∆t)Y (t), for more details see [30]) and the
renormalization of the denominator. The scheme is defined as finite difference or
standard finite difference (SFD) method if ϕ(∆t) = ∆t, where ∆t is the time step
size of the scheme, for more details see [39]. Let us denote by Mn

s , Mn
i , Bns , Bni ,

Sn, En, In, Hn and Rn the values of the approximations of Ms(n∆t), Mi(n∆t),
Bs(n∆t), Bi(n∆t), S(n∆t), E(n∆t), I(n∆t), H(n∆t) and R(n∆t) respectively, for
n = 0, 1, 2, . . . and ∆t is the time step of the scheme. All sequences Mn

s , Mn
i , Bns ,

Bni , Sn, En, In, Hn and Rn should be nonnegative in order to be consistent with
the biological nature of the model. The discretization of the system (1) is given as
follows:

Mn+1
s −Mn

s

ϕ(∆t)
= λM −

b1β1M
n
s B

n
i

Nn
B

− µMMn
s ,

Mn+1
i −Mn

i

ϕ(∆t)
=
b1β1M

n
s B

n
i

Nn
B

− µMMn
i ,

Bn+1
s −Bns
ϕ(∆t)

= λB −
b1β2M

n
i B

n
s

Nn
B

− ΨBBns − µBBns ,

Bn+1
i −Bni
ϕ(∆t)

=
b1β2M

n
i B

n
s

Nn
B

− dBBni − ΨBBni − µBBni ,

Sn+1 − Sn

ϕ(∆t)
= λH −

b2β3M
n
i S

n

Nn
H

− µHSn,

En+1 − En

ϕ(∆t)
=
b2β3M

n
i S

n

Nn
H

− αEn − µHEn,

In+1 − In

ϕ(∆t)
= αEn − γIn − dIIn − rIn − µHIn,

Hn+1 −Hn

ϕ(∆t)
= γIn − dHHn − τHn − µHHn,

Rn+1 −Rn

ϕ(∆t)
= τHn + rIn − µHRn. (4)

The discretizations for NM , NB and NH are given as follows:

Nn
M = Mn

s +Mn
i ,

Nn
B = Bns +Bni ,

Nn
H = Sn + En + In +Hn +Rn. (5)
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The local approximations are used for the nonlinear terms. We use the denominator
function of the form ϕ(∆t) = 1− e−∆t. Then we can obtain:

Mn+1
s = Mn

s + ϕ(∆t)

[
λM −

b1β1M
n
s B

n
i

Nn
B

− µMMn
s

]
,

Mn+1
i = Mn

i + ϕ(∆t)

[
b1β1M

n
s B

n
i

Nn
B

− µMMn
i

]
,

Bn+1
s = Bns + ϕ(∆t)

[
λB −

b1β2M
n
i B

n
s

Nn
B

− ΨBBns − µBBns
]
,

Bn+1
i = Bni + ϕ(∆t)

[
b1β2M

n
i B

n
s

Nn
B

− dBBni − ΨBBni − µBBni
]
,

Sn+1 = Sn + ϕ(∆t)

[
λH −

b2β3M
n
i S

n

Nn
H

− µHSn
]
,

En+1 = En + ϕ(∆t)

[
b2β3M

n
i S

n

Nn
H

− αEn − µHEn
]
,

In+1 = In + ϕ(∆t) [αEn − γIn − dIIn − rIn − µHIn] ,

Hn+1 = Hn + ϕ(∆t) [γIn − dHHn − τHn − µHHn] ,

Rn+1 = Rn + ϕ(∆t) [τHn + rIn − µHRn] . (6)

4. Positivity and Boundedness of NSFD Scheme

Theorem 1 [Positivity] Assume that in the system (6) if M0
s > 0, M0

i > 0,
B0
s > 0, B0

i > 0, S0 > 0, E0 > 0, I0 > 0, H0 > 0, R0 > 0, µH > 0, dH > 0,
µB > 0, dB > 0, µM > 0, λM > 0, λB > 0, λH > 0, dI > 0, ΨB > 0, β1 > 0, β2 > 0,
β3 > 0, b > 0, αw > 0, r > 0, τ > 0, and γ > 0, then Mn

s > 0, Mn
i > 0, Bns > 0,

Bni > 0, Sn > 0, En > 0, In > 0, Hn > 0 and Rn > 0 hold for all n = 0, 1, 2, · · · .
Proof. According to (6), let us have for n = 0

M1
s = M0

s + ϕ(∆t)

[
λM −

b1β1M
0
sB

0
i

N0
B

− µMM0
s

]
,

M1
i = M0

i + ϕ(∆t)

[
b1β1M

0
sB

0
i

N0
B

− µMM0
i

]
,

B1
s = B0

s + ϕ(∆t)

[
λB −

b1β2M
0
i B

0
s

N0
B

− ΨBB0
s − µBB0

s

]
,

B1
i = B0

i + ϕ(∆t)

[
b1β2M

0
i B

0
s

N0
B

− dBB0
i − ΨBB0

i − µBB0
i

]
,

S1 = S0 + ϕ(∆t)

[
λH −

b2β3M
0
i S

0

N0
H

− µHS0

]
,

E1 = E0 + ϕ(∆t)

[
b2β3M

0
i S

0

N0
H

− αE0 − µHE0

]
,

I1 = I0 + ϕ(∆t)
[
αE0 − γI0 − dII0 − rI0 − µHI0

]
,

H1 = H0 + ϕ(∆t)
[
γI0 − dHH0 − τH0 − µHH0

]
,

R1 = R0 + ϕ(∆t)
[
τH0 + rI0 − µHR0

]
. (7)
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Thus M1
s > 0, M1

i > 0, B1
s > 0, B1

i > 0, S1 > 0, E1 > 0, I1 > 0, H1 > 0 and
R1 > 0, we assume that for 1, 2, · · · , n, Mn

s > 0, Mn
i > 0, Bns > 0, Bni > 0, Sn > 0,

En > 0, In > 0, Hn > 0 and Rn > 0.
Theorem 2 [Boundedness] Let us suppose that, if we have N0

M = M0
s + M0

i ,
N0
B = B0

s + B0
i , N0

H = S0 + E0 + I0 + H0 + R0, and µH > 0, dH > 0, µB > 0,
dB > 0, µM > 0, λM > 0, λB > 0, λH > 0, dI > 0, ΨB > 0, β1 > 0, β2 > 0,
β3 > 0, b > 0, αw > 0, r > 0, τ > 0, γ > 0, then the numerical NSFD scheme
given by the system (6), such that, Nn

M = Mn
s + Mn

i < (1− µMϕ(∆t))NN0−1
M ,

Nn
B = Bns +Bni < (1− (ΨB + µB)ϕ(∆t))NN0−1

B , and Nn
H = Sn + En + In +Hn +

Rn< (1− µHϕ(∆t))NN0−1
H for all n = 0, 1, 2, · · · , N0.

Proof. Firstly, for the total mosquito population NM we have for n = 0

M1
s = M0

s + ϕ(∆t)

[
λM −

b1β1M
0
sB

0
i

N0
B

− µMM0
s

]
, (8)

M1
i = M0

i + ϕ(∆t)

[
b1β1M

0
sB

0
i

N0
B

− µMM0
i

]
, (9)

N1
M = M1

s +M1
i < (1− µMϕ(∆t))N0

M . (10)

Next for n = 1

M2
s = M1

s + ϕ(∆t)

[
λM −

b1β1M
1
sB

1
i

N1
B

− µMM1
s

]
, (11)

M2
i = M1

i + ϕ(∆t)

[
b1β1M

1
sB

1
i

N1
B

− µMM1
i

]
, (12)

N2
M = M2

s +M2
i < (1− µMϕ(∆t))N1

M . (13)

Next for n = 2

N3
M = M3

s +M3
i < (1− µMϕ(∆t))N2

M . (14)

Now we assume that for n = 3, · · · , N0, is

NN0

M = MN0
s +MN0

i < (1− µMϕ(∆t))NN0−1
M . (15)

Secondly, for the total bird population NB we have for n = 0

B1
s = B0

s + ϕ(∆t)

[
λB −

b1β2M
0
i B

0
s

N0
B

− ΨBB0
s − µBB0

s

]
, (16)

B1
i = B0

i + ϕ(∆t)

[
b1β2M

0
i B

0
s

N0
B

− dBB0
i − ΨBB0

i − µBB0
i

]
, (17)

N1
B = B1

s +B1
i< (1− (ΨB + µB)ϕ(∆t))N0

B . (18)

Next for n = 1 and n = 2, we have

N2
B = B2

s +B2
i< (1− (ΨB + µB)ϕ(∆t))N1

B , (19)

N3
B = B3

s +B3
i< (1− (ΨB + µB)ϕ(∆t))N2

B . (20)

Thus for n = 3, · · · , N0, is

NN0

B = BN0
s +BN0

i < (1− (ΨB + µB)ϕ(∆t))NN0−1
B . (21)
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Finally, the total human population NH we have for n = 0

S1 = S0 + ϕ(∆t)

[
λH −

b2β3M
0
i S

0

N0
H

− µHS0

]
, (22)

E1 = E0 + ϕ(∆t)

[
b2β3M

0
i S

0

N0
H

− αE0 − µHE0

]
, (23)

I1 = I0 + ϕ(∆t)
[
αE0 − γI0 − dII0 − rI0 − µHI0

]
, (24)

H1 = H0 + ϕ(∆t)
[
γI0 − dHH0 − τH0 − µHH0

]
, (25)

R1 = R0 + ϕ(∆t)
[
τH0 + rI0 − µHR0

]
, (26)

N1
H = S1 + E1 + I1 +H1 +R1< (1− µHϕ(∆t))N0

H . (27)

Next for n = 1 and n = 2, we have

N2
H = S2 + E2 + I2 +H2 +R2< (1− µHϕ(∆t))N1

H , (28)

N3
H = S3 + E3 + I3 +H3 +R3< (1− µHϕ(∆t))N2

H . (29)

Thus for n = 3, · · · , N0, is

NN0

H = SN0 + EN0 + IN0 +HN0 +RN0< (1− µHϕ(∆t))NN0−1
H . (30)

5. Existence and Stability of Equilibria

5.1. Disease Free Equilibrium. In this section, the stability and convergence
properties of the DFE point of the proposed NSFD scheme will be studied. In [23],
Kbenesh et al. established the DFE point and its stability. We determine this DFE
point by considering D∗ = (M̂s, M̂i, B̂s, B̂i, Ŝ, Ê, Î, Ĥ, R̂) to be the fixed point of
the system (6). The DFE point D∗ can be found by solving the following system:

K1 = M̂s, K2 = M̂i, K3 = B̂s,

K4 = B̂i, K5 = Ŝ, K6 = Ê,

K7 = Î , K8 = Ĥ, K9 = R̂,

where,

Kj = Kj(M̂s, M̂i, B̂s, B̂i, Ŝ, Ê, Î, Ĥ, R̂), ∀j = 1, 2, . . . , 9. (31)
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Thus, the system (6) can be written as follows:

K1(M̂s, M̂i, B̂s, B̂i, Ŝ, Ê, Î, Ĥ, R̂) = M̂s + ϕ(∆t)

[
λM −

b1β1M̂sB̂i

N̂B
− µMM̂s

]
,

K2(M̂s, M̂i, B̂s, B̂i, Ŝ, Ê, Î, Ĥ, R̂) = M̂i + ϕ(∆t)

[
b1β1M̂sB̂i

N̂B
− µMM̂i

]
,

K3(M̂s, M̂i, B̂s, B̂i, Ŝ, Ê, Î, Ĥ, R̂) = B̂s + ϕ(∆t)

[
λB −

b1β2M̂iB̂s

N̂B
− ΨBB̂s − µBB̂s

]
,

K4(M̂s, M̂i, B̂s, B̂i, Ŝ, Ê, Î, Ĥ, R̂) = B̂i + ϕ(∆t)

[
b1β2M̂iB̂s

N̂B
− dBB̂i − ΨBB̂i − µBB̂i

]
,

K5(M̂s, M̂i, B̂s, B̂i, Ŝ, Ê, Î, Ĥ, R̂) = Ŝ + ϕ(∆t)

[
λH −

b2β3M̂iŜ

N̂H
− µH Ŝ

]
,

K6(M̂s, M̂i, B̂s, B̂i, Ŝ, Ê, Î, Ĥ, R̂) = Ê + ϕ(∆t)

[
b2β3M̂iŜ

N̂H
− αÊ − µHÊ

]
,

K7(M̂s, M̂i, B̂s, B̂i, Ŝ, Ê, Î, Ĥ, R̂) = Î + ϕ(∆t)
[
αÊ − γÎ − dI Î − rÎ − µH Î

]
,

K8(M̂s, M̂i, B̂s, B̂i, Ŝ, Ê, Î, Ĥ, R̂) = Ĥ + ϕ(∆t)
[
γÎ − dHĤ − τĤ − µHĤ

]
,

K9(M̂s, M̂i, B̂s, B̂i, Ŝ, Ê, Î, Ĥ, R̂) = R̂+ ϕ(∆t)
[
τĤ + rÎ − µHR̂

]
, (32)

where,

N̂M = M̂s + M̂i, N̂B = B̂s + B̂i, N̂H = Ŝ + Ê + Î + Ĥ + R̂. (33)

If we put M̂i = 0, B̂i = 0 and Î = 0 in the above system (32), then the DFE
point D∗ of the system (6) is given by D∗ = (λMµM , 0,

λB
ΨB+µB

, 0, λHµH , 0, 0, 0, 0). Let

us consider the initial conditions for the WNV model (1) as follows (Ms(0), Mi(0),
Bs(0), Bi(0), S(0), E(0), I(0), H(0), R(0)) = (10000, 1000, 1000, 0, 1000, 0, 0,
0, 0). For determining the stability properties of the system (1), we calculate the
Jacobian matrix at the DFE point D∗ = (λMµM , 0,

λB
ΨB+µB

, 0, λHµH , 0, 0, 0, 0). It will

take the following form:

J =



a11 0 0 a14 0 0 0 0 0
0 a22 0 a24 0 0 0 0 0
0 a32 a33 0 0 0 0 0 0
0 a42 0 a44 0 0 0 0 0
0 a52 0 0 a55 0 0 0 0
0 a62 0 0 0 a66 0 0 0
0 0 0 0 0 a67 a77 0 0
0 0 0 0 0 0 a78 a88 0
0 0 0 0 0 0 a79 a89 a99


,
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where:

a11 = 1− µMϕ(∆t), a14 = −b1β1λM (µB + ΨB)

µMλB
ϕ(∆t),

a22 = 1− µMϕ(∆t), a24 =
b1β1λM (µB + ΨB)

µMλB
ϕ(∆t),

a32 = −b1β2ϕ(∆t), a33 = 1− (ΨB + µB)ϕ(∆t),

a42 = b1β2ϕ(∆t), a44 = 1− (dB + ΨB + µB)ϕ(∆t),

a52 = −b2β3ϕ(∆t), a55 = 1− µHϕ(∆t),

a62 = b2β3ϕ(∆t), a66 = 1− (α+ µH)ϕ(∆t),

a67 = αϕ(∆t), a77 = 1− (γ + dI + r + µH)ϕ(∆t),

a78 = γϕ(∆t), a88 = 1− (dH + τ + µH)ϕ(∆t),

a79 = rϕ(∆t), a89 = τϕ(∆t),

a99 = 1− µHϕ(∆t).

Now, we determine the stability of the fixed points of the system (6) numerically by
reporting the spectral radii ρ of the Jacobian matrix J corresponding to the DFE
point of NSFD scheme when R0 < 1. It can be seen that all the spectral radii ρ in
Table 4. are less than one in magnitude irrespective of the time step size ∆t used
in simulations. Hence, we have the DFE point D∗ = (λMµM , 0,

λB
ΨB+µB

, 0, λHµH , 0, 0, 0, 0)

of the system (1) is unconditionally locally asymptotically stable if R0 < 1.

Table 4. The spectral radii of the Jacobian matrix corresponding
to the DFE point of NSFD scheme when R0 < 1.

∆t ρ (NSFD)
0.05 0.9998(convergent)
0.1 0.9995(convergent)
0.5 0.9980(convergent)
1 0.9968(convergent)
10 0.9950(convergent)
25 0.9950(convergent)

5.2. Endemic Equilibria. In this section, we present a study for the existence
and uniqueness, stability and convergence properties of the endemic equilibrium
for the WNV model (1) (with b1, b2 constants). In the following we compute the
endemic equilibria. Consider the first four equations in system (1):

Ṁs(t) = λM −
b1β1MsBi

NB
− µMMs, (34)

Ṁi(t) =
b1β1MsBi

NB
− µMMi, (35)

Ḃs(t) = λB −
b1β2MiBs

NB
− ΨBBs − µBBs, (36)

Ḃi(t) =
b1β2MiBs

NB
− dBBi − ΨBBi − µBBi. (37)
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Since we have NM = Ms +Mi and NB = Bs +Bi, given by:

˙NM (t) = Ṁs(t) + Ṁi(t) = λM − µMNM , (38)

ṄB(t) = Ḃs(t) + Ḃi(t) = λB − dBBi − (µB + ΨB)NB , (39)

Adding equations (34) and (35) gives, at steady state,

Ms =
λM
µM
−Mi. (40)

Similarly, adding equations (36) and (37)

Bs =
λB

µB + ΨB
−
(

1 +
dB

µB + ΨB

)
Bi. (41)

From (40) and (41), we have Ms ≥ 0 and Bs ≥ 0 if Mi ≤ λM
µM

and Bi ≤ λB
µB+ΨB+dB

=

B̃i2, respectively. Thus all state variables in equations (34)-(37) are non-negative

if (Mi, Bi) ∈
[
0, λMµM

]
×
[
0, B̃i2

]
. At steady state, equation (38) can be written as:

NB =
λB

µB + ΨB
− dB
µB + ΨB

Bi, (42)

substituting from (40) and (42) to (35), at steady state, we get

Mi =
b1β1

λM
µM

Bi

µM
λB

µB+ΨB
+
(
b1β1 − µM dB

µB+ΨB

)
Bi

= Θ1(Bi). (43)

It is clear that Θ1(0) = 0 and mΘ1 = b1β1λM (µB+ΨB)
λBµ2

M
is the slope of Θ1 at

(Mi, Bi). If b1β1(µB + ΨB) 6= µMdB , then Θ1 has a vertical asymptote given

by Bi = µMλB
µMdB−b1β1(µB+ΨB) = B̃i1. substituting from (41) and (42) to (37), at

steady state, we get

Mi =
(λB − dBBi)Bi

b1β2

(
λB

µB+ΨB+dB
−Bi

) = Θ2(Bi), (44)

where Θ2 has a vertical asymptote at Bi = λB
µB+ΨB+dB

= B̃i2. We need to verify

that Mi ≤ λM
µM

, since we have Bi = B̃i2 ≤ λB
µB+ΨB+dB

≤ λB
dB

. Therefore, from

equation (43) we have

Mi =
b1β1

λM
µM

Bi

b1β1Bi + µMdB
µB+ΨB

(
λB
dB
−Bi

) ≤ b1β1
λM
µM

Bi

b1β1Bi
=
λM
µM

. (45)

The subsystem (34)-(37) has a unique endemic equilibrium at Bi = ˜̃Bi ∈
(

0, B̃i2

)
.

It can be obtained by substituting from (43) to (44) to get

a0

(
˜̃Bi

)2

+ a1

(
˜̃Bi

)
+ a2 = 0, (46)
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where

a0 =
dB (µMdB − b1β1 (µB + ΨB))

b1β2 (µB + ΨB)
, (47)

a1 = b1β1
λM
µM
−
(

2µMdB − b1β1 (µB + ΨB)

b1β2 (µB + ΨB)

)
λB , (48)

a2 =
µMλ

2
B

b1β2 (µB + ΨB)
− b1β1λMλB
µM (µB + ΨB + dB)

. (49)

We can get ˜̃Bi by solving equation (46) and also the variables ˜̃Mi,
˜̃Bs and ˜̃Ms can

be computed. Secondly, we consider the last five equations in system (1):

Ṡ(t) = λH −
b2β3MiS

NH
− µHS, (50)

Ė(t) =
b2β3MiS

NH
− αE − µHE, (51)

İ(t) = αE − γI − dII − rI − µHI, (52)

Ḣ(t) = γI − dHH − τH − µHH, (53)

Ṙ(t) = τH + rI − µHR. (54)

At equilibrium, the variables S, E, I, H and R in equations (50)-(54) can be ex-

pressed in terms of the variable E, i.e. S = λH
µH
−
(
µH+α
µH

)
E, I = α

γ+dI+r+µH
E, H =

αγ
(dH+τ+µH)(γ+dI+r+µH)E, and R = ταγ+rα(dH+τ+µH)

µH(dH+τ+µH)(γ+dI+r+µH)E, where E = ˜̃E in

the biologically meaningful range 0 < ˜̃E < λH
µH+α . Thus the unique endemic equi-

librium for the full system (1) is E1 =
(

˜̃Ms,
˜̃Mi,

˜̃Bs,
˜̃Bi,

˜̃S, ˜̃E, ˜̃I, ˜̃H, ˜̃R
)

.

Theorem 3 The endemic equilibrium E1 is asymptotically stable if R0 > 1 for the
model (1).
Proof. Let us consider the mosquito-bird cycle, described by the subsystem
(34)-(37). We evaluate the Jacobian of (34)-(37) at E1:

J =


− b1β1

˜̃
Bi

(
˜̃
Bs+

˜̃
Bi)

− µM 0
b1β1

˜̃
Ms

˜̃
Bi

(
˜̃
Bs+

˜̃
Bi)

2
− b1β1

˜̃
Ms

(
˜̃
Bs+

˜̃
Bi)

+
b1β1

˜̃
Ms

˜̃
Bi

(
˜̃
Bs+

˜̃
Bi)

2

b1β1
˜̃
Bi

(
˜̃
Bs+

˜̃
Bi)

−µM − b1β1
˜̃
Ms

˜̃
Bi

(
˜̃
Bs+

˜̃
Bi)

2

b1β1
˜̃
Ms

(
˜̃
Bs+

˜̃
Bi)

− b1β1
˜̃
Ms

˜̃
Bi

(
˜̃
Bs+

˜̃
Bi)

2

0 − b1β2
˜̃
Bs

(
˜̃
Bs+

˜̃
Bi)

− b1β2
˜̃
Mi

(
˜̃
Bs+

˜̃
Bi)

+
b1β2

˜̃
Mi

˜̃
Bs

(
˜̃
Bs+

˜̃
Bi)

2
− (µB + ΨB)

b1β2
˜̃
Mi

˜̃
Bs

(
˜̃
Bs+

˜̃
Bi)

2

0
b1β2

˜̃
Bs

(
˜̃
Bs+

˜̃
Bi)

b1β2
˜̃
Mi

(
˜̃
Bs+

˜̃
Bi)

− b1β2
˜̃
Mi

˜̃
Bs

(
˜̃
Bs+

˜̃
Bi)

2
− b1β2

˜̃
Mi

˜̃
Bs

(
˜̃
Bs+

˜̃
Bi)

2
− (µB + ΨB + dB)

 ,

where the eigenvalues of J are −µM and the roots of the following equation

Λ3 + a1Λ2 + a2Λ + a3 = 0,
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where

a1 =
1

( ˜̃Bs + ˜̃Bi)
[b1β2

˜̃Mi + (b1β1 + (µM + dB) + 2(µB + ΨB)) ˜̃Bi + ((µM + dB)

+ 2(µB + ΨB)) ˜̃Bs],

a2 =
1

( ˜̃Bs + ˜̃Bi)2
[(µ2

B + Ψ2
B + µBdB + µMdB + ΨBdB + 2µBµM + 2µMΨB

+ 2µBΨB) ˜̃B2
s + (b1β1dB + 2b1β1(µB + ΨB) + µ2

B + Ψ2
B + dB(µB + µM + ΨB)

+ 2µM (µB + ΨB) + 2µBΨB) ˜̃B2
i + (b1β1dB + 2b1β1(µB + ΨB) + 2µ2

B + 2Ψ2
B

+ 2dB(µB + µM + ΨB) + 4µM (µB + ΨB) + 4µBΨB) ˜̃Bs
˜̃Bi + b1β2(µB + µM

+ ΨB) ˜̃Mi
˜̃Bs + b1β2(µB + µM + ΨB + dB) ˜̃Mi

˜̃Bi + b21β1β2( ˜̃Bi − ˜̃Ms)
˜̃Mi]

+
1

( ˜̃Bs + ˜̃Bi)3
[b21β1β2( ˜̃Mi − ˜̃Bs)

˜̃Ms],

a3 =
1

( ˜̃Bs + ˜̃Bi)3
[µM (µB + ΨB)(µB + ΨB + dB)( ˜̃Bs + ˜̃Bi)

3 + (µB + ΨB

+ dB)(b1β1(µB + ΨB) ˜̃Bi + b1β2µM
˜̃Mi)(

˜̃Bs + ˜̃Bi)
2 + b1β2

˜̃Mi(b1β1(dB + ΨB

+ µB) ˜̃Bi − b1β1(µB + ΨB) ˜̃Ms + dBµM
˜̃Bs + b21β1β2

˜̃Ms(
˜̃Mi + ˜̃Bs))(

˜̃Bs + ˜̃Bi)

+ b21β1β2(b1β2
˜̃Ms

˜̃Mi(
˜̃Bs − ˜̃Mi)− β1

˜̃Bs
˜̃Bi((µB + ΨB + dB) ˜̃Ms + dB

˜̃Mi)

+ β1(µB + ΨB) ˜̃Ms
˜̃Mi

˜̃Bi)].

It is clear that a1 > 0. But for a2 and a3 are both positive if ˜̃Bi <
λB

µB+ΨB+dB
<

λB
ΨB+dB

(this condition is required for Bs) and µB > ΨB + dB (this condition is

biologically reasonable). We will use Routh-Hurwitz criteria to show that a1a2 −
a3 > 0. Since a1a2 − a3 can be written as:

Z3b
3
1 + Z2b

2
1 + Z1b1 + Z0, (55)
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where

Z3 = β2( ˜̃Bi + ˜̃Mi)(β1β2
˜̃Mi(

˜̃Bi − ˜̃Ms)(
˜̃Bs + ˜̃Bi)

2 − β1β2
˜̃Ms

˜̃Bi ∗ ( ˜̃Bs − ˜̃Mi)(
˜̃Bs

+ ˜̃Bi)
3)( ˜̃Bs + ˜̃Bi)− (β1β

2
2

˜̃Ms
˜̃Mi(

˜̃Bs − ˜̃Mi) + β1β
2
2

˜̃Ms
˜̃Mi(

˜̃Bs + ˜̃Mi)(
˜̃Bs

+ ˜̃Bi))(
˜̃Bs + ˜̃Bi)

3,

Z2 = (β1β2(β1
˜̃Bi

˜̃Bs(dB
˜̃Mi + ˜̃Ms(dB + µB + ΨB))− β1

˜̃Ms
˜̃Mi

˜̃Bi(µB + ΨB))

+ β2
˜̃Mi(β1

˜̃Ms(µB + ΨB)− β1
˜̃Bi(dB + µB + ΨB))( ˜̃Bs + ˜̃Bi))(

˜̃Bs + ˜̃Bi)
3

+ ( ˜̃Bi(dB + 2µB + µM + 2ΨB) + ˜̃Bs(dB + 2µB + µM + 2ΨB))(β1β2
˜̃Mi(

˜̃Bi

− ˜̃Ms)(
˜̃Bs + ˜̃Bi)

2 − β1β2
˜̃Ms

˜̃Bi(
˜̃Bs − ˜̃Mi)(

˜̃Bs + ˜̃Bi)
3)( ˜̃Bs + ˜̃Bi) + (β2

˜̃Bi

+ β2
˜̃Mi)(

˜̃Bs + ˜̃Bi)
3( ˜̃B2

i (β1dB + 2β1(µB + ΨB)) + ˜̃Bs
˜̃Bi(β1dB + 2β1(µB + ΨB))

+ β2
˜̃Mi

˜̃Bi(dB + µB + µM + ΨB) + β2
˜̃Bs

˜̃Mi(µB + µM + ΦB)),

Z1 = ( ˜̃Bi(dB + 2µB + µM + 2ΨB) + ˜̃Bs(dB + 2µB + µM + 2ΨB))( ˜̃Bs

+ ˜̃Bi)
3( ˜̃B2

i (β1dB + 2β1(µB + ΨB)) + ˜̃Bs
˜̃Bi(β1dB + 2β1(µB + ΨB))

+ ˜β2M̃i
˜̃Bi(dB + µB + µM + ΨB) + β2

˜̃Mi
˜̃Bs(µB + µM + ΨB))− ((β1

˜̃Bi(µB

+ ΨB) + β2µM
˜̃Mi)(

˜̃Bs + ˜̃Bi)
2(dB + µB + ΨB) + β2dBµM

˜̃Mi
˜̃Bs(

˜̃Bs + ˜̃Bi))(
˜̃Bs

+ ˜̃Bi)
3 + (β2

˜̃Bi + β2
˜̃Mi)(

˜̃Bs + ˜̃Bi)
3((2µM (µB + ΨB)) + 2µBΨB + dB(µB + µM

+ ΨB) + µ2
B + Ψ2

B) ˜̃B2
i + (4µM (µB + ΨB) + 4µBΨB + 2dB(µB + µM + ΨB) + 2µ2

B

+ 2Ψ2
B

˜̃Bs
˜̃Bi + (dBµB + dBµM + dBΨB + 2µBµM + 2µBΨB + 2µMΨB + µ2

B

+ Ψ2
B) ˜̃B2

s ),

Z0 = ( ˜̃Bi(dB + 2µB + µM + 2ΨB) + ˜̃Bs(dB + 2µB + µM + 2ΨB))( ˜̃Bs

+ ˜̃Bi)
3((2µM (µB + ΨB) + 2µBΨB + dB(µB + µM + ΨB) + µ2

B + Ψ2
B) ˜̃B2

i

+ (4µM (µB + ΨB) + 4µBΨB + 2dB(µB + µM + ΨB) + 2µ2
B + 2Ψ2

B) ˜̃Bs
˜̃Bi + (dBµB

+ dBµM + dBΨB + 2µBµM + 2µBΨB + 2µMΨB + µ2
B + Ψ2

B) ˜̃B2
s )− µM (µB

+ ΨB)( ˜̃Bs + ˜̃Bi)
6(dB + µB + ΨB).

If the inequaliltis ˜̃Bi <
λB

µB+ΨB+dB
< λB

ΨB+dB
and µB > ΨB + dB are satisfied, then

equation (55) is positive. Thus a1a2 − a3 > 0 provided the above inequalities hold.

. For the human subsystem described by equations (50)-(54)(since we have ˜̃NH =
˜̃S + ˜̃E + ˜̃I + ˜̃H + ˜̃R), the Jacobian of (50)-(54) at E1

J =


− b2β3

˜̃
Mi

˜̃
NH

+
b2β3

˜̃
Mi

˜̃
S

˜̃
N2
H

− µH
b2β3

˜̃
Mi

˜̃
S

˜̃
N2
H

b2β3
˜̃
Mi

˜̃
S

˜̃
N2
H

b2β3
˜̃
Mi

˜̃
S

˜̃
N2
H

b2β3
˜̃
Mi

˜̃
S

˜̃
N2
H

b2β3
˜̃
Mi

˜̃
S

˜̃
NH

− b2β3
˜̃
Mi

˜̃
N2
H

− b2β3
˜̃
Mi

˜̃
S

˜̃
N2
H

− (α + µH ) − b2β3
˜̃
Mi

˜̃
S

˜̃
N2
H

− b2β3
˜̃
Mi

˜̃
S

˜̃
N2
H

− b2β3
˜̃
Mi

˜̃
S

˜̃
N2
H

0 α −(γ + dI + r + µH ) 0 0
0 0 γ −(dH + τ + µH ) 0
0 0 r τ −µH

 ,
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where the eigenvalues of J are −µH and the roots of the polynomial

Λ4 +G1Λ3 +G2Λ2 +G3Λ +G4 = 0,

where

G1 =
1
˜̃N2
H

(dH
˜̃N2
H + dI

˜̃N2
H + γ ˜̃N2

H + 3µH
˜̃N2
H + r ˜̃N2

H + τ ˜̃N2
H + b2β3

˜̃Mi
˜̃NH),

G2 =
1
˜̃N2
H

(µ2
H

˜̃N2
H + dHdI

˜̃N2
H + dHγ

˜̃N2
H + 2dHµH

˜̃N2
H + 2dIµH

˜̃N2
H + 2γµH

˜̃N2
H

+ dHr
˜̃N2
H + dIτ

˜̃N2
H + 2µHr

˜̃N2
H + 2µHτ

˜̃N2
H + rτ ˜̃N2

H + b2β3dH
˜̃Mi

˜̃NH

+ b2β3dI
˜̃Mi

˜̃NH + b2β3α
˜̃Mi

˜̃S + b2β3γ
˜̃Mi

˜̃NH + 2b2β3µH
˜̃Mi

˜̃NH + b2β3r
˜̃Mi

˜̃NH

+ b2β3µH
˜̃Mi

˜̃S + b2β3τ
˜̃Mi

˜̃NH),

G3 =
1
˜̃N2
H

(µH
˜̃N2
H + dHµ

2
H

˜̃N2
H + dIµ

2
H

˜̃N2
H + γµ2

H
˜̃N2
H + rµ2

H
˜̃N2
H + τµ2

H
˜̃N2
H

+ dHdIµH
˜̃N2
H + dHγµH

˜̃N2
H + dHµHr

˜̃N2
H + dIµHτ

˜̃N2
H + γµHτ

˜̃N2
H + µHrτ

˜̃N2
H

+ b2β3µ
2
H

˜̃Mi
˜̃NH + 2b2β3µ

2
H

˜̃Mi
˜̃S + b2β3dHdI

˜̃Mi
˜̃NH + b2β3dHα

˜̃Mi
˜̃S

+ b2β3dHγ
˜̃Mi

˜̃NH + b2β3αγ
˜̃Mi

˜̃S + b2β3dHµH
˜̃Mi

˜̃NH + b2β3dIµH
˜̃Mi

˜̃NH

+ 2b2β3µHα
˜̃Mi

˜̃NH + b2β3γµH
˜̃Mi

˜̃NH + b2β3dHr
˜̃Mi

˜̃NH + b2β3dHµH
˜̃Mi

˜̃S

+ b2β3dIµH
˜̃Mi

˜̃S + b2β3α
˜̃Mi

˜̃S + b2β3dIτ
˜̃Mi

˜̃NH + b2β3γµH
˜̃Mi

˜̃S + b2β3τα
˜̃Mi

˜̃S

+ b2β3γτ
˜̃Mi

˜̃NH + b2β3µHr
˜̃Mi

˜̃NH + b2β3µHτ
˜̃Mi

˜̃NH + b2β3µHr
˜̃Mi

˜̃S

+ b2β3rτ
˜̃Mi

˜̃NH + b2β3µHτ
˜̃Mi

˜̃S),

G4 =
1
˜̃N2
H

(b2β3µ
3
H

˜̃Mi
˜̃S + b2β3µ

2
Hr

˜̃Mi
˜̃S + b2β3µ

2
Hτ

˜̃Mi
˜̃S + b2β3µ

2
Hα

˜̃Mi
˜̃S

+ b2β3dHµ
2
H

˜̃Mi
˜̃S + b2β3dIµ

2
H

˜̃Mi
˜̃S + b2β3γµ

2
H

˜̃Mi
˜̃S + b2β3γτ

˜̃Mi
˜̃S

+ b2β3µHrα
˜̃Mi

˜̃S + b2β3dIµHτ
˜̃Mi

˜̃S + b2β3rτα
˜̃Mi

˜̃S + b2β3µHγτ
˜̃Mi

˜̃S

+ b2β3µHrτ
˜̃Mi

˜̃S + b2β3dHµHα
˜̃Mi

˜̃S + b2β3dHdIµH
˜̃Mi

˜̃S + b2β3γµHα
˜̃Mi

˜̃S

+ b2β3dHrα
˜̃Mi

˜̃S + b2β3dHγµH
˜̃Mi

˜̃S).

All constants in the above polynomial are positive. Thus, E1 is locally asymptoti-
cally stable provided that µB > ΨB + dB .

6. The Optimal Control Problem

In this section, an optimal control problem for the transmission dynamics of
WNV is introduced. This optimal control problem is described by two control
functions uk, k = 1, 2, (u1 represents the level of larvacide and adulticide used
for mosquito control administered at mosquito breeding sites and u2 measures the
level of successful prevention (personal protection) efforts). We need to minimize
the exposed and infected human populations, the total number of mosquitos and
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the cost of implementing the control. The optimal control problem in transmission
dynamics of WNV model in [23] is given by

J̌(u1, u2) =

∫ T

0

(
A1E(t) +A2I(t) +A3NM (t) +B1u

2
1 +B2u

2
2

)
dt, (56)

where A1, A2, and A3 represent, respectively, the weight constants of the exposed,
infected human and the total mosquito populations and B1 and B2 are weights con-
stants for mosquito control and personal protection (prevention of mosquito-human
contacts) [23].

Subject to the constraints,

dMs

dt
= λMNM (1− u1(t))− b1β1MsBi

NB
− µMMs − r0u1(t)Ms,

dMi

dt
=
b1β1MsBi

NB
− µMMi − r0u1(t)Mi,

dBs
dt

= λB + ρNB −
b1β2MiBs

NB
− ΨBBs − µBBs,

dBi
dt

=
b1β2MiBs

NB
− dBBi − ΨBBi − µBBi,

dS

dt
= λH + γHNH −

b2β3MiS(1− u2(t))

NH
− µHS,

dE

dt
=
b2β3MiS(1− u2(t))

NH
− αE − µHE,

dI

dt
= αE − γI − dII − rI − µHI,

dH

dt
= γI − dHH − τH − µHH,

dR

dt
= τH + rI − µHR, (57)

where the initial conditions are given in (2). Since, the factor of the term (1−u1(t))
reduces the reproduction rate of the mosquito population and in human population,
the associated force of infection is reduced by a factor of (1−u2(t)). Let us consider

Ṁs = =1, Ṁi = =2, Ḃs = =3,

Ḃi = =4, Ṡ = =5, Ė = =6,

İ = =7, Ḣ = =8, Ṙ = =9,

where,

=j = =j(Ms,Mi, Bs, Bi, S, E, I,H,R, u1, u2, t), ∀j = 1, 2, . . . , 9.
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Now, we define the Hamiltonian function Ha(Ms,Mi, Bs, Bi, S, E, I,H,R, u1, u2, t)
as follows:

Ha(Ms,Mi, Bs, Bi, S, E, I,H,R, u1, u2, t) = Υ(Ms,Mi, Bs, Bi, S, E, I,H,R, u1, u2, t)

+

9∑
j=1

λj=j(Ms,Mi, Bs, Bi, S, E, I,H,R, u1, u2, t),

(58)

where λj , j = 1, 2, . . . , 9, are Lagrange multipliers. Thus, a modified objective
function can be expressed by

J̌ =

∫ T

0

[Ha(Ms,Mi, Bs, Bi, S, E, I,H,R, u1, u2, t)

−
9∑
j=1

λj=j(Ms,Mi, Bs, Bi, S, E, I,H,R, u1, u2, t)]dt. (59)

According to Pontryagin’s maximum principle [37], the necessary conditions for the
optimal control problem (56) and (57) are

λ̇1 =
∂Ha
∂Ms

, λ̇2 =
∂Ha
∂Mi

, λ̇3 =
∂Ha
∂Bs

,

λ̇4 =
∂Ha
∂Bi

, λ̇5 =
∂Ha
∂S

, λ̇6 =
∂Ha
∂E

,

λ̇7 =
∂Ha
∂I

, λ̇8 =
∂Ha
∂H

, λ̇9 =
∂Ha
∂R

, (60)

∂Ha
∂uk

= 0, ∀k = 1, 2, (61)

and also we have

λj(T ) = 0, j = 1, 2, 3, ..., 9. (62)

From the necessary conditions (60) and (61), the Lagrange multipliers λj and the
control variables uk, k = 1, 2, can be written as follows [23]:

λ̇1 = −A3 − (λ2 − λ1)bβ1Biξ − λ1[λM (1− u1)− (µ1 + µ2NM )

− µ2Ms − r0u1] + λ2µ2Mi,

λ̇2 = −A3 − λ1 [λM (1− u1)− µ2Ms] + λ2 [µ1 + µ2NM + µ2Mi + r0u1]

− (λ4 − λ3)bβ2Bsξ − bβ3S(1− u2)ξ(λ6 − λ5),

λ̇3 = (λ2 − λ1)bβ1BiMsξ
2 − λ3

[
ρ− bβ2Mi(ξ −Bsξ2)− ΨB − µB

]
− λ4bβ2Mi(ξ −Bsξ2)− (λ5 − λ6)bβ3MiS(1− u2)ξ2,

λ̇4 = −(λ2 − λ1)bβ1Ms(ξ −Biξ2)− λ3[ρ+ bβ2MiBsξ
2]

+ λ4[bβ2MiBsξ
2 + (dB + ΨB + µB)]− (λ5 − λ6)bβ3MiS(1− u2)ξ2,
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λ̇5 = −(λ1 − λ2)bβ1BiMsξ
2 − (λ3 − λ4)bβ2MiBsξ

2

− λ5[γH − bβ3Mi(1− u2)(ξ − Sξ2)− µ4S − (µ3 + µ4NH)]

− λ6[bβ3Mi(1− u2)(ξ − Sξ2)− µ4E] + λ7µ4I + λ8µ4H + λ9µ4R,

λ̇6 = −A1 − (λ1 − λ2)bβ1BiMsξ
2 − (λ3 − λ4)bβ2MiBsξ

2

− λ5[γH + bβ3MiBs(1− u2)ξ2 − µ4S]

+ λ6[bβ3MiS(1− u2)ξ2 + α+ µ4E + µ3 + µ4NH ]

− λ7[α− µ4I] + λ8µ4H + λ9µ4R,

λ̇7 = −A2 − (λ1 − λ2)bβ1BiMsξ
2 − (λ3 − λ4)bβ2MiBsξ

2

− λ5[γH + bβ3MiS(1− u2)ξ2 − µ4S] + λ6[bβ3MiS(1− u2)ξ2 + µ4E]

+ λ7[γ + dI + r + µ4I + µ3 + µ4NH ]− λ8[γ − µ4H]− λ9[r − µ4R],

λ̇8 = −(λ1 − λ2)bβ1MsBiξ
2 − (λ3 − λ4)bβ2MiBsξ

2

− λ5[γH + bβ3MiS(1− u2)ξ2 − µ4S] + λ6[bβ3MiS(1− u2)ξ2 + µ4E]

+ λ7µ4I + λ8[dH + τ + µ4NH + µ3 + µ4H]− λ9[τ − µ4R],

λ̇9 = −(λ1 − λ2)bβ1MsBiξ
2 − (λ3 − λ4)bβ2MiBsξ

2

− λ5[γH + bβ3MiS(1− u2)ξ2 − µ4S] + λ6[bβ3MiS(1− u2)ξ2 + µ4E]

+ λ7µ4I + λ8µ4H + λ9[µ4R+ µ3 + µ4NH ], (63)

u1 = max{0,min{1, 1

2B1
[λ1(λMNM + r0Ms) + λ2r0Mi]}},

u2 = max{0,min{1, 1

2B2
bβ3MiSξ(λ6 − λ5)}}, (64)

where ξ = 1
NB+NH

. Thus, we have the following theorem:

Theorem 1 The optimal controls u1 and u2 of the optimal control problem (56)
and (57) satisfy the necessary conditions (60) and (61) and the Lagrange multipliers
λj(T ) = 0, ∀j = 1, 2, . . . , 9.

6.1. NSFD for the Optimal Control Problem. In this section, the numerical
scheme for optimal control problem classified into two steps. Firsty, the state sys-
tem under control (57) is discretized by using local approximation for the nonlinear
terms, see section 3. Secondly, the adjoint system (63) will be discretized by using
nonlocal approximation as follows:

λn1 − λn+1
1

ϕ(∆t)
= −A3 − (λn2 − λn1 )bβ1B

n+1
i ξn − λn1 [λM (1− un+1

1 )− (µ1 + µ2N
n
M )

− µ2M
n+1
s − r0u

n+1
1 ] + λn2µ2M

n+1
i ,

λn2 − λn+1
2

ϕ(∆t)
= −A3 − λn1

[
λM (1− un+1

1 )− µ2M
n+1
s

]
+ λn2

[
µ1 + µ2N

n
M + µ2M

n+1
i

+ r0u
n+1
1

]
− (λn4 − λn3 )bβ2B

n+1
s ξn − bβ3S

n+1(1− un+1
2 )ξn(λn6 − λn5 ),
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λn3 − λn+1
3

ϕ(∆t)
= (λn2 − λn1 )bβ1B

n+1
i Mn+1

s (ξn)2

− λn3
[
ρ− bβ2M

n+1
i (ξn −Bn+1

s (ξn)2)− ΨB − µB
]

− λn4 bβ2M
n+1
i (ξn −Bn+1

s (ξn)2)− (λn5 − λn6 )bβ3M
n+1
i Sn+1(1− un+1

2 )(ξn)2,

λn4 − λn+1
4

ϕ(∆t)
= −(λn2 − λn1 )bβ1M

n+1
s (ξn −Bn+1

i (ξn)2)− λn3 [ρ+ bβ2M
n+1
i Bn+1

s (ξn)2]

+ λn4 [bβ2M
n+1
i Bn+1

s (ξn)2 + (dB + ΨB + µB)]

− (λn5 − λn6 )bβ3M
n+1
i Sn+1(1− un+1

2 )(ξn)2,

λn5 − λn+1
5

ϕ(∆t)
= −(λn1 − λn2 )bβ1B

n+1
i Mn+1

s (ξn)2 − (λn3 − λn4 )bβ2M
n+1
i Bn+1

s (ξn)2

− λn5 [γH − bβ3M
n+1
i (1− un+1

2 )(ξn − Sn+1(ξn)2)− µ4S
n+1 − (µ3 + µ4N

n
H)]

− λn6 [bβ3M
n+1
i (1− un+1

2 )(ξn − Sn+1(ξn)2)− µ4E
n+1] + λn7µ4I

n+1

+ λn8µ4H
n+1 + λn9µ4R

n+1,

λn6 − λn+1
6

ϕ(∆t)
= −A1 − (λn1 − λn2 )bβ1B

n+1
i Mn+1

s (ξn)2 − (λn3 − λn4 )bβ2M
n+1
i Bn+1

s (ξn)2

− λn5 [γH + bβ3M
n+1
i Bn+1

s (1− un+1
2 )(ξn)2 − µ4S

n+1]

+ λn6 [bβ3M
n+1
i Sn+1(1− un+1

2 )(ξn)2 + α+ µ4E
n+1 + µ3 + µ4N

n+1
H ]

− λn7 [α− µ4I
n+1] + λn8µ4H

n+1 + λn9µ4R
n+1,

λn7 − λn+1
7

ϕ(∆t)
= −A2 − (λn1 − λn2 )bβ1B

n+1
i Mn+1

s (ξn)2 − (λn3 − λn4 )bβ2M
n+1
i Bn+1

s (ξn)2

− λn5 [γH + bβ3M
n+1
i Sn+1(1− un+1

2 )(ξn)2 − µ4S
n+1]

+ λn6 [bβ3M
n+1
i Sn+1(1− un+1

2 )(ξn)2 + µ4E
n+1]

+ λn7 [γ + dI + r + µ4I
n+1 + µ3 + µ4N

n
H ]− λn8 [γ − µ4H

n+1]− λn9 [r

− µ4R
n+1],

λn8 − λn+1
8

ϕ(∆t)
= −(λn1 − λn2 )bβ1M

n+1
s Bn+1

i (ξn)2 − (λn3 − λn4 )bβ2M
n+1
i Bn+1

s (ξn)2

− λn5 [γH + bβ3M
n+1
i Sn+1(1− un+1

2 )(ξn)2 − µ4S
n+1]

+ λn6 [bβ3M
n+1
i Sn+1(1− un+1

2 )(ξn)2 + µ4E
n+1]

+ λn7µ4I
n+1 + λn8 [dH + τ + µ4N

n
H + µ3 + µ4H

n+1]− λn9 [τ − µ4R
n+1],

λn9 − λn+1
9

ϕ(∆t)
= −(λn1 − λn2 )bβ1M

n+1
s Bn+1

i (ξn)2 − (λn3 − λn4 )bβ2M
n+1
i Bn+1

s (ξn)2

− λn5 [γH + bβ3M
n+1
i Sn+1(1− un+1

2 )(ξn)2 − µ4S
n+1]

+ λn6 [bβ3M
n+1
i Sn+1(1− un+1

2 )(ξn)2 + µ4E
n+1]

+ λn7µ4I
n+1 + λn8µ4H

n+1 + λn9 [µ4R
n+1 + µ3 + µ4N

n
H ]. (65)

7. Numerical Experiment

In this section, two numerical methods are introduced to solve the system (1)
and the optimality system (57) and (63); NSFD method and SFD method. These
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methods are applied at different time step sizes ∆t. Firstly, NSFD and SFD meth-
ods are used for obtaining the approximate solutions for the system (1) as provided
in the previous sections. The initial conditions are (10000,1000,1000,0,1000,0,0,0,0).
In Table 5, the convergence behavior of these proposed methods is introduced. It
can be seen that, the SFD method is convergent at time step sizes ∆t = 0.05,
∆t = 0.1 and ∆t = 0.5, otherwise it is divergent. But NSFD method is convergent
at all time step sizes ∆t. Figures 1., 2. and 3., respectively, describe the numerical
simulations of the system (1) at different time step sizes ∆t. Figure 1. describes
the numerical comparisons between NSFD and SFD methods of the system (1) at
time step size ∆t = 0.5. But the numerical simulations of the system (1) using
NSFD method at time step size ∆t = 1 is displayed in Figure 2. It is clear from
Figure 3. that the SFD method is divergent at time step size ∆t = 1. From the
numerical results presented in Table 5., it can be concluded that NSFD preserves
the positivity of the solution and numerical stability in large regions. Secondly,

Table 5. Comparisons between NSFD and SFD methods for the
system (1) with different time step size ∆t when R0 > 1.

∆t SFD NSFD
0.05 convergent convergent
0.1 convergent convergent
0.5 convergent convergent
1 divergent convergent
5 divergent convergent
10 divergent convergent
25 divergent convergent

we present different optimal control strategies for the optimality system (57) and
(63) under the parameter values are given in Table 1. The following strategies are
explored:

•: Strategy 1, which implements measures for the level of larvacide and
adulticide used for mosquito control administered at mosquito breeding
sites (control u1 only),

•: Strategy 2, which implements measures for the level of successful preven-
tion (personal protection) efforts (control u2 only),

•: Strategy 3, which represents measures for the level of larvacide and adul-
ticide used for mosquito control administered at mosquito breeding sites
and measures for the level of successful prevention (personal protection)
efforts (controls u1 and u2). More than one approach is used for obtaining
and confirming the numerical results.

The weights A1 = A2 = 1, A3 = 10−4 in the cost functional (56), (i.e., the mini-
mization of the number of exposed and infected humans, is given more importance
than the reduction of the total number of mosquito). We use the upper bound of
0.8 and 0.5 on u1 and u2, respectively. The convergence behavior of numerical com-
parisons between NSFD and SFD methods of the optimality system (57) and (63)
at different time step sizes ∆t is presented in Table 6. Also, we observe that NSFD
method is convergent at large time step sizes ∆t but SFD method is divergent.
Numerical comparisons between strategy 1 (describes control u1 only), strategy 2
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(describes control u2 only) and strategy 3 (describes controls u1 and u2) of the
optimality system (57) and (63) by using NSFD method are provided in Figures 4.
and 6. at time step size ∆t = 1 and ∆t = 4, respectively. By applying strategy 1,
we observe that the optimal control u1 stays at the upper bound for 19 days when
∆t = 1 and for 16 days when ∆t = 4 (see Figures 4. and 6.), respectively. When the
control u1 is considered, we see the level of the infected human population I(t) is
about 383 when ∆t = 1 and about 328 when ∆t = 4. If strategy 2 is considered, we
observe that the optimal control u2 stays at the upper bound for almost the same
duration when ∆t = 1 and for 96 days when ∆t = 4. In this strategy, we see the
level of I(t) is about 749 when ∆t = 1 and about 503 when ∆t = 4. This implies a
higher value of the cost functional J̌(u1, u2) associated strategy 1, and strategy 2,
as clear in Table 7. The best choice to use is strategy 3. Indeed, with strategy 3,
there is a lower value of the cost functional J̌(u1, u2). Numerical comparison be-
tween strategy 3 (using NSFD method) and SFD method of the optimality system
(57) and (63) at time step size ∆t = 1 is provided in Figure 5. In Figure 7. it can
be observed that the SFD method is divergent of the optimality system (57) and
(63) at time step size ∆t = 4. The cost function J̌(u1, u2) and the sum of numerical
values of E and I at T = 100 days at different time step sizes ∆t are computed by
these implemented methods in Table 8.

Table 6. Comparisons between NSFD and SFD methods for the
optimality system (57) and (63) with different time step size ∆t
when R0 > 1.

∆t SFD NSFD
0.05 convergent convergent
0.1 convergent convergent
0.5 convergent convergent
1 convergent convergent
5 divergent convergent
10 divergent convergent
25 divergent convergent
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Table 7. Comparisons between different strategies of NSFD
method for the optimality system (57) and (63) with different time
step size ∆t, where the total simulation time T = 100 days.

∆t Methods J̌(u1, u2)
0.5 NSFD-strategy1 18404

NSFD-strategy2 33766
NSFD-strategy3 12440

1 NSFD-strategy1 18254
NSFD-strategy2 32581
NSFD-strategy3 12265

2 NSFD-strategy1 17464
NSFD-strategy2 29012
NSFD-strategy3 11633

4 NSFD-strategy1 14943
NSFD-strategy2 21312
NSFD-strategy3 9804.3

5 NSFD-strategy1 13083
NSFD-strategy2 17274
NSFD-strategy3 8511

10 NSFD-strategy1 6918.4
NSFD-strategy2 6898.3
NSFD-strategy3 4353.9

25 NSFD-strategy1 1678.3
NSFD-strategy2 1146.9
NSFD-strategy3 1044.8

Table 8. Comparisons between NSFD-strategy3 and SFD meth-
ods for the optimality system (57) and (63) with different time step
size ∆t, where the total simulation time T = 100 days.

∆t Methods J̌(u1, u2) E(100) + I(100)
4 NSFD-strategy3 9804.3 286.2127

SFD NaN NaN
5 NSFD-strategy3 8511 280.6345

SFD NaN NaN
10 NSFD-strategy3 4353.9 202.4972

SFD 5.4681× 1054 3.2809× 1054

25 NSFD-strategy3 1044.8 48.8770
SFD −7.7748× 1014 −1.8659× 1014

8. Conclusion

In this paper, numerical studies for the transmission dynamics of WNV mathe-
matical model and it’s optimal control are presented. It can be concluded from the
numerical results provided that NSFD scheme is more efficient than SFD scheme.
It preserves the positivity of the solutions and numerical stability in large regions.
The optimal control problem is described by two control functions u1 and u2. The
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(a) Susceptibles

(b) Infected

(c) Exposed, Hospitalized and Recovered Humans

Figure 1. Numerical simulations of the system (1) when R0 > 1 with
time step size ∆t = 0.5 by using NSFD and SFD methods.

measures for the level of larvacide and adulticide used for mosquito control adminis-
tered at mosquito breeding sites is represented by u1 and the measures for the level
of successful prevention (personal protection) efforts is represented by u2. Three
optimal control strategies are presented. If we considered only one control, then
we have strategy 1 for the first control u1 and strategy 2 for the second control u2.
When the two controls u1 and u2 are considered, this means that we have strategy
3. According to the numerical results, we have the best choice to use strategy 3
Indeed, with strategy 3, there is a lower value of the cost functional J̌(u1, u2).
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(a) Susceptibles

(b) Infected

(c) Exposed, Hospitalized and Recovered Humans

Figure 2. Numerical simulations of the system (1) when R0 > 1 with
time step size ∆t = 1 by using NSFD method.
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Figure 3. Numerical simulations of the system (1) when R0 > 1 with
time step size ∆t = 1 by using SFD method.
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(d) Control Functions

Figure 4. Numerical simulations of the optimality system (57) and (63)
when 0 ≤ u1 ≤ 0.8, 0 ≤ u2 ≤ 0.5 with time step size ∆t = 1 by using NSFD
method, where parameters used are A1 = A2 = 1, A3 = 10−4, B1 = B2 =
1.
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Figure 5. Numerical simulations of the optimality system (57) and (63)
when 0 ≤ u1 ≤ 0.8, 0 ≤ u2 ≤ 0.5 with time step size ∆t = 1 by using NSFD
and SFD methods, where parameters used are A1 = A2 = 1, A3 = 10−4,
B1 = B2 = 1.
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Figure 6. Numerical simulations of the optimality system (57) and (63)
when 0 ≤ u1 ≤ 0.8, 0 ≤ u2 ≤ 0.5 with time step size ∆t = 4 by using NSFD
method, where parameters used are A1 = A2 = 1, A3 = 10−4, B1 = B2 =
1.
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Figure 7. Numerical simulations of the optimality system (57) and (63)
when 0 ≤ u1 ≤ 0.8, 0 ≤ u2 ≤ 0.5 with time step size ∆t = 4 by using SFD
method, where parameters used are A1 = A2 = 1, A3 = 10−4, B1 = B2 =
1.

[11] M. Chapwanya, J. M. S. Lubuma, and R. E. Mickens, Nonstandard Finite Difference Schemes

for Michaelis-Menten Type Reaction-Diffusion Equations, Numerical Methods for Partial
Differential Equations, 29, 337-360, 2013.

[12] M. Y. Chowers, R. Lang, F. Nassar, and et al., Clinical Characteristics of the West Nile Fever

Outbreak, Israel, 2000, Emerging Infectious Diseases, 7, 686-691, 2001.
[13] G. Cruz-Pacheco, L. Esteva, J. Montano-Hirose, and D. Vargas, Modelling the Dynamics of

West Nile Virus, Bulletin of Mathematical Biology, 67, 1157-1172, 2005.
[14] R. Culshaw, Optimal HIV Treatment by Maximising Immune Response, Journal of Mathe-

matical Biology, 48, 545-562, 2004.
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