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ON THE FIRST AND SECOND GJMS EIGENVALUES

HICHEM BOUGHAZI

Abstract. In this paper, we define the first and the second eigenvalues of the
GJMS (Graham-Jenne-Mason-Sparling) operator on compact Einstein mani-
fold with positive scalar curvature. We show the attainability of the corre-

sponding eigenvalues by generalized metrics.

1. Introduction

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3, and let k be
an integer such that 1 ≤ k ≤ n

2 for n even. In 1992, Graham-Jenne-Mason-Sparling
defined a family of conformally invariant differential operators ( GJMS operators
for short ). The construction of these operators is based on the ambient metric of
Fefferman-Graham (see [9]). More precisely, for any Riemannian metric g on M ,
there exists a differential operator

Pg : C∞(M) −→ C∞(M),

such that for all u ∈ C∞(M) , the GJMS operator Pg is given by :

Pgu = ∆k
gu+ lot

where ∆g = −divg(∇) is the Laplace-Beltrami operator, and lot denotes differential
terms of lower order. For more details, we refer to [12].
Recently, there are some existence results concerning the GJMS-operator (see [9]
and [12]). The purpose of this paper is to study the first and the second GJMS
eigenvalues on compact Einstein manifold with positive scalar curvature; we seek
situations where these eigenvalues are attained by a generalized metric. For more
details on similar work with Yamabe operator and Paneitz-Branson operator, we
refer the reader to [1], [3],[4] and [5].
Our paper is organized as follows, we begin by giving some properties of the GJMS
operator and we show the existence of minimizers for the first and for the second
eigenvalues for generalized metrics.

2010 Mathematics Subject Classification. Primary 53A30; Secondary 58J50.

Key words and phrases. GJMS operator, eigenvalues, generalized metric.
Submitted Jan. 17, 2018. Revised July 16, 2018.

48



EJMAA-2019/7(2) ON THE FIRST AND SECOND GJMS EIGENVALUES 49

2. Some GJMS properties

In this section, we give some properties of GJMS operator. For the proof of these
properties, the reader is refered to [9] and [12] and references therein.

(1) The operator Pg is elliptic, self-adjoint with respect to the inner product
in L2(M) and has a discrete spectrum :

λ1(g) < λ2(g) ≤ λ3(g) ≤ ··· ≤ λk(g) → +∞

(2) For any conformal metric, g = φ
N−2

k g with n ̸= 2k, φ ∈ C∞(M), φ > 0
and N = 2n

n−2k where the number N is the critical exponent of the Sobolev

embedding H2
k(M) ⊂ LN (M), the operator Pg is conformally invariant in

the following sense:
for all u ∈ C∞(M), we have

Pg(uφ) = φN−1Pg(u),

By taking u ≡ 1, we get

n− 2k

2
Q

g
= Pg̃(1).

Hence

Pg(φ) =
n− 2k

2
Q

g
φN−1.

The quantity Qg can be seen as the analogue of the scalar curvature for the
conformal Laplacian and is called the Q-curvature. When k = 1, Pg it is
exactly the Yamabe operator and the Q-curvature is the scalar curvature
(up to a constant), and when k = 2, Pg is the Paneitz-Branson operator.

(3) A Riemannian manifold (M, g) is Einstein if and only if there exists a real
number λ such that the Ricci tensor writes

Ricg = λg.

Here λ =
Sg

n , where Sg is the scalar curvature and is constant in this case.
On Einstein manifold, Pg expresses as an explicit product of second-order
operators with constant coefficients that depend only on the scalar curva-
ture. In otherwords, the GJSM operator of order k is given by :

Pg = ⨿k
l=1(∆ + clSg),

where

cl =
(n+ 2l − 2)(n− 2l)

4n(n− 1)
.

Moreover, the scalar curvature Sg is positive (see also [12]):
(4) In the case of Einstein manifolds, the operator Pg is coercive.
(5) For all u ∈ C∞(M) such that Pgu > 0, either u > 0 or u ≡ 0 and

this statement is a direct consequence of k applications of the second-order
comparison principle. (see [12] Proposition 4)

(6) Finally, from property (3),we have Pg = S(∆g) with S a polynomial with
positive constant coefficients. It follows from this that the first eigenvalue
of Pg is S(0) > 0 and Pg satisfies property (4).
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(7) It is not difficult to see that the quantity :∫
M

uPgudvg =

∫
M

(
[
∆

k
2 (u)

]2
+

k−1∑
l=0

al
∣∣∇lu

∣∣2)dvg = ∥u∥2H2
k
,

where al > 0 is some constant, is a norm on H2
k(M) wich is equivalent to

the standard one :

∥u∥2H2
k
=

∫
M

k∑
l=0

∣∣∇lu
∣∣2 dvg

HereH2
k(M) denotes the Sobolev space of functions u such that: u ,|∇u| , ...,

∣∣∇ku
∣∣ ∈

L2(M). It is well known that by the Sobolev embedding theorem [Heb97]
that H2

k(M) ⊂ Lq(M) where 1 < q ≤ N = 2n
n−2k and this embedding is

compact when q < N.

3. Variational characterization of the pth eigenvalue

In this section, we quote some facts which will be used in the sequel of this paper:
Grassmannians and the min-max principle.
Let LN

+ (M) = {u ∈ LN (M), u ≥ 0 and u ̸= 0}

Definition 1. For all u ∈ LN
+ (M), we define Grup (H

2
k(M)) as the set of all p-

dimensional subspaces (p ≥ 1) of H2
k(M) that satisfy

span(v1, ..., vp) ∈ Grup (H
2
2 (M))

if and only if v1, ..., vp are linearly independent on M � u−1(0).

Definition 2. A generalized metric conformal to g is a metric of the form g =

u
N−2

k g with u ∈ LN
+ .

Definition 3. For any generalized metric g = u
N−2

k g, the pth eigenvalue λp(g) of
Pg is characterized by (see [1]):

λp(g) = inf
V ∈Grup (H

2
k(M))

sup
v∈V \{0}

∫
M

vPgvdvg∫
M

uN−2v2dvg
, p ∈ N∗.

4. The first eigenvalue for generalized metric

Lemma 4. Let u ∈ LN
+ (M) and let vm be a sequence in H2

k(M) wich converges
weackly to u, then ∫

M

uN−2(
∣∣v2m − v2

∣∣)dvg → 0.

Proof. Let A be any large real number and set uA = inf(u,A). Then (uA)A is a
monotone sequence, which converges pointwise almost everywhere to u, so by the
Lebesgue dominated convergence theorem, we have∫

M

(uN−2 − uN−2
A )

N
N−2 dvg → 0 when A tend to +∞.
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On the other hand, we have∫
M

uN−2
∣∣v2m − v2

∣∣ dvg ≤
∫
M

uN−2
A

∣∣v2m − v2
∣∣ dvg +(

∫
M

(uN−2 −uN−2
A )(|vm|+ |v|)2dvg

By using Holder inequality, we can write :∫
M

uN−2
∣∣v2m − v2

∣∣ dvg ≤ AN−2

∫
M

∣∣v2m − v2
∣∣ dvg+(

∫
M

(uN−2−uN−2
A )

N
N−2 dvg)

N−2
N (

∫
M

(|vm|+|v|)Ndvg)
2
N

Since the sequence vm is bounded in H2
k(M) then from Sobolev embedding, the

boundedness in LN (M) is assumed, and hence there exists C > 0 such that
∫
M

(|vm|+

|v|)Ndvg ≤ C. By strong convergence of vm in L2(M), we get the result. �

Theorem 5. For any generalized metric g = u
N−2

k g, there exists a non trivial
function v in H2

k(M) such that in the weak sense, v satisfies :

Pg(v) = λ1,gu
N−2v (1)

and

∫
M

uN−2v2dvg = 1

where λ1,g is the first eigenvalue of Pg for the metric g. In other words, the first
eigenvalue of Pg is attained by v.

Proof. Let (vm) be a minimizing sequence for λ1,g, i.e a sequence vm ∈ H2
k(M)

such that u
N−2

2 vm ̸= 0 and

lim
m

∫
M

vmPg(vm)dvg

(
∫
M

|u|N−2v2mdvg)
= λ1,g̃.

Without loss of generality, we can always normalize vm by
∫
M

uN−2v2mdvg = 1.
Now for a large enough m, we have

∥u∥2H2
k
=

∫
M

vmPg(vm)dvg ≤ λ1,g̃ + 1,

then the sequence (vm) is bounded in H2
k(M), and after restriction to a subsequence

we may assume that there exists v in H2
k(M) such that vm → v weackly in H2

k(M),
strongly in H2

k−1(M) and in L2(M) and almost everywhere in M , so that∫
M

vPg(v)dvg ≤ lim inf

∫
M

vmPg(vm)dvg = λ1,g̃

and since λ1,g̃ is the infimum, it follows that∫
M

vPg(v)dvg = λ1,g̃,

from lemma (4), we get∫
M

uN−2(v2 − v2m) dvg → 0 i.e

∫
M

uN−2v2dvg = 1.

Consequently v is a non-trivial weak minimizer of the functional associated to
λ1,g̃. Writing the Euler-Lagrange equation, we find that v satisfies the equation

Pg(v) = λ1,g̃u
N−2v.
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Moreover, we can also obtain the sign of the first eingenvalue in this case i.e :

λ1,g̃ = ∥v∥2H2
k
> 0.

�

Proposition 6. If u ∈ C∞
+ (M), then the solution of equation (1) v ∈ C2k(M).

Proof. We have λ1,gu
N−2v ∈ H2

k(M) , Pg(v) ∈ H2
k(M) and by regularity theorems

v ∈ H2
3k(M), it follows by successive iterations that v ∈ H2

l (M) where l is large

enough and finally if 1
2 < l−m

n ,

H2
l (M) ⊂ Cm(M)

so we can take m = 2k i.e

v ∈ C2k(M).

�

Now, we are going to show that the equation (1) has a positive solution.

Proposition 7. Let v be the solution of equation (1), there exists a non trivial
positive function f in C2k, such that

Pg(f) = λ1,gu
N−2f and

∫
M

uN−2f2dvg = 1.

In other word, we can say that the first eingenvalue λ1,g is attained by a C2k(M)
positive function.

Proof. Let v be a solution of (1) and let f be the solution of the equation

Pg(f) = |Pg(v)| ,

we can show the existence of the function f by using the factorization of GJMS as
:

Pg = ⨿k
l=1(∆ + clSg)

where cl are positive, so all operators ∆ + clSg are invertible and applying strong
maximum principle for elliptic equations of second order for k times(see [12] Propo-
sition 4), we show that f > |v| > 0 and by regularity f ∈ C2k(M). Let A be a real
number such that 0 < A ≤ 1 and

∫
M

(Af)2uN−2dvg = 1, then∫
M

(Af)Pg(Af)dvg − λ1,g̃ = A2

∫
M

(f) |Pg(v)| dvg − λ1,g̃

= A2 |λ1,g̃|
∫
M

(f)uN−2 |v| dvg − λ1,g̃ = A |λ1,g̃|
∫
M

(Af)u
N−2

2 u
N−2

2 |v| dvg − λ1,g̃

≤ A |λ1,g̃|

∫
M

(Af)2uN−2dvg

 1
2
∫
M

(v)2uN−2dvg

 1
2

− λ1,g̃

≤ (A− 1)λ1,g̃ as λ1,g̃ > 0.
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Thus, ∫
M

(Af)Pg(Af)dvg ≤ λ1,g̃

and as λ1,g̃ is the infimum, we get equality i.e Af is a positive solution of Pg(v) =
λ1,g̃u

N−2v. �

5. The second eigenvalue for generalized metric

Proposition 8. Let v be the solution of equation (1). Then the set :

E = { w ∈ H2
k(M) such that u

N−2
2 w ̸= 0 ,

∫
M

uN−2w2dvg = 1 and

∫
M

uN−2wvdvg = 0},

is not empty.

Proof. Let v, s ∈ H2
k(M) non-collinear functions, by multiplying if necessary v and

s by certain constants, we assume that :
∫
M

uN−2v2dvg =
∫
M

uN−2s2dvg = 1, and

thus u
N−2

2 v ̸= 0 and u
N−2

2 s ̸= 0. We set

w = αv + βs

where α, β are real numbers.
Now we are going to find α, β such that w ∈ E. We begin by multiplying w by
uN−2v and we integrate :∫

M

uN−2wvdvg = α+ β

∫
M

uN−2svdvg = 0

i.e

β = − α∫
M

uN−2svdvg
.

If
∫
M

uN−2svdvg = 0, then s ∈ E and E is not empty and if
∫
M

uN−2svdvg ̸= 0,

hence β is well defined.
By the equality

∫
M

uN−2w2dvg = 1, we obtain:
∫
M

uN−2(αv + βs)2dvg = 1 i.e

α2 + β2 + 2αβ

∫
M

uN−2svdvg = 1,

therefore

α = ±

∫
M

uN−2svdvg

(1− [
∫
M

uN−2svdvg]2)
1
2

then the number α is also well defined because
∫
M

uN−2svdvg < 1 is always true. In

fact, if
∫
M

uN−2svdvg ≥ 1, Holder inequality implies that

1 ≤
∫
M

uN−2svdvg =

∫
M

u
N−2

2 s u
N−2

2 vdvg ≤ [

∫
M

uN−2v2dvg]
1
2 [

∫
M

uN−2s2dvg]
1
2 ≤ 1,
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then there is equality in Holder inequality, and this is possible if and only if there
is a real constant c such that v = cs, hence v and s are colinear and we get a
contradiction. �

Proposition 9. Let u and v two functions as in the theorem (5), then there exists
a fonction w in H2

k(M) solution in the weak sense of the equation

Pg(w) = λ′
2,gu

N−2w,

such that
∫
M

uN−2w2dvg = 1 and
∫
M

uN−2wvdvg = 0 where

λ′
2,g = inf

E

∫
M

vPgvdvg∫
M

uN−2v2dvg
.

Proof. let (wm ) be a minimizing sequence for λ′
2,g i.e wm ∈ E is such that :

lim
m

∫
M

wmPg(wm)dvg

(
∫
M

uN−2w2
mdvg)

= λ′
2,g,

with the same proof of theorem (5), we can find w ∈ C2k(M) solution of Pg(w) =
λ′
2,g uN−2w such that

∫
M

uN−2w2 = 1.

Now writing∫
M

uN−2wvdvg =

∫
M

uN−2wmv − uN−2wmv + uN−2wvdvg

=

∫
M

uN−2v(w − wm)dvg +

∫
M

uN−2wmvdvg = 0.

As the sequence wm ∈ E,
∫
M

uN−2wmvdvg = 0, and using the weak convergence

of wm to w in LN (M), we get∫
M

uN−2v(w − wm)dvg → 0 (uN−2v ∈ L
N

N−1 dual space of LN (M)).

�

Proposition 10. We have

λ′
2,g = λ2,g̃

Proof. Since w ∈ E, the functions u
N−2

2 v , u
N−2

2 w are linearly independent, then
the space

V0 = span(v, w) ∈ Gru2 (H
2
k(M)).

Putting f = αv + βw with α, β are non-zero real numbers, we evaluate

s =

∫
M

fPg(f)dvg∫
M

uN−2f2dvg
over V0

we find

s =
α2

∫
M

vLg(v)dvg + β2
∫
M

wPg(w)dvg

α2 + β2

s =
α2

α2 + β2
λ1,g̃ +

β2

α2 + β2
λ′
2,g̃
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and as α2

α2+β2 + β2

α2+β2 = 1, so for θ ∈ R, we can get :

s = λ1,g̃ cos
2 θ + λ′

2,g̃ sin
2 θ.

On the other hand
ds

dθ
= (λ′

2,g̃ − λ1,g̃) sin 2θ,

and taking into account that:

λ1,g̃ = inf
H2

2

≤ λ′
2,g̃ = inf

E
because (E ⊂ H2

k(M)).

We get that λ1,g̃ is a minimum of s(θ) and λ′
2,g̃(θ) is a maximum of s,

λ′
2,g̃ = sup

f∈V0

∫
M

fPg(f)dvg∫
M

uN−2f2dvg
,

and as the infimum of the quantity sup
f∈V0

∫
M

fPg(f)dvg∫
M

uN−2f2dvg
on all elements ofGru2 (H

2
k(M))

is attained over V0, it folows

λ′
2,g̃ = inf

V ∈Gru2 (H
2
k(M))

sup
v∈V \{0}

∫
M

vPgvdvg∫
M

uN−2v2dvg
= λ2,g̃.

�
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