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COEFFICIENT INEQUALITIES FOR BOUNDED TURNING

FUNCTIONS ASSOCIATED WITH CONIC DOMAINS

J. O. HAMZAT

Abstract. Suppose that RTk[A,B], k ≥ 0, −1 ≤ B < A ≤ 1 denotes the
class of analytic functions defined in the open unit disk E = {z : |z| < 1}
satisfying the condition that

ℜ
(
(B − 1)f ′(z)− (A− 1)

(B + 1)f ′(z)− (A+ 1)

)
> k

∣∣∣∣∣ (B − 1)f ′(z)− (A− 1)

(B + 1)f ′(z)− (A+ 1)
− 1

∣∣∣∣∣.
The author studied coefficient inequalities for bounded turning functions as-
sociated with conic domain in the open unit disk E.

1. Introduction

Denote by A the class of all functions f of the form

f(z) = z +

∞∑
n=2

akz
k (1)

normalizeed with f(0) = f ′(0) − 1 = 0 that are analytic in the open unit disk
E = {z : |z| < 1} and by Ψ the class of univalent functions f ∈ A. Noor and Malik
[10] had earlier studied the classes k − ST [A,B] and k − UCV [A,B] defined as
follow:
A function f(z) ∈ A is said to be in the class k−ST [A,B], k ≥ 0, −1 ≤ B < A ≤ 1,
if and only if

ℜ

(
(B − 1) zf

′(z)
f(z) − (A− 1)

(B + 1) zf
′(z)

f(z) − (A+ 1)

)
> k

∣∣∣∣∣ (B − 1) zf
′(z)

f(z) − (A− 1)

(B + 1) zf
′(z)

f(z) − (A+ 1)
− 1

∣∣∣∣∣.
A function f(z) ∈ A is said to be in the class k − UCV [A,B], k ≥ 0, −1 ≤ B <
A ≤ 1, if and only if

ℜ

(
(B − 1) (zf

′(z))′

f ′(z) − (A− 1)

(B + 1) (zf
′(z))′

f ′(z) − (A+ 1)

)
> k

∣∣∣∣∣ (B − 1) (zf
′(z))′

f ′(z) − (A− 1)

(B + 1) (zf
′(z))′

f ′(z) − (A+ 1)
− 1

∣∣∣∣∣.
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It is not difficult to verify that

f(z) ∈ k − UCV [A,B] ⇔ zf ′(z) ∈ k − ST [A,B].

Special cases of the above definitions can be found in [7, 8, 9, 11]. Recently, Vamshee
et al [13] studied third Hankel determinant for bounded turning functions of order
alpha while several other researchers ( see[1, 2, 3, 5, 6]) examined some properties
of bounded turning from different perspective and their results litters everywhere .
However, the study of functions of bounded turning with respect to conic domain
were not famous in literatures. Consequently, the present work aim at investigating
certain properties of bounded turning functions associated with conic domain and
for the purpose of this investigation, the following definition shall be necessary. A
function f(z) ∈ A is said to be in the class RTk[A,B], k ≥ 0, −1 ≤ B < A ≤ 1, if
and only if

ℜ

(
(B − 1)f ′(z)− (A− 1)

(B + 1)f ′(z)− (A+ 1)

)
> k

∣∣∣∣∣ (B − 1)f ′(z)− (A− 1)

(B + 1)f ′(z)− (A+ 1)
− 1

∣∣∣∣∣. (2)

Geometrically, if a function f(z) ∈ RTk[A,B] then ω = (B−1)f ′(z)−(A−1)
(B+1)f ′(z)−(A+1) takes all

values from the domain Ωk, k ≥ 0 as Ωk = {ω : ℜ(ω) > k|ω − 1|} or equivalently

Ωk =
{
u+ iv : u > k

√
(u− 1)2 + v2

}
. The domain Ωk represents the right half

plane for k ≥ 0, a hyperbola for 0 < k < 1, a parabola for k = 1 and an ellipse for
k > 1, (see[12, 14] for more details).
Let B denote the class of function p(z) having the form:

p(z) = 1 +
∞∑

n=1

pnz
n (3)

which are analytic in E. Following Hayami and Srivastava technique [4] the author
wishes to present the main results.

2. Coefficient inequalities

The following Lemmas shall be necessary for the purpose of our present investi-
gation.
Lemma 1. A function p(z) ∈ B satisfies the following condition:

ℜp(z) > 0 (4)

if and only if

p(z) ̸= ψ − 1

ψ + 1
(z ∈ E;ψ ∈ C; |ψ| = 1)[4]. (5)

Proof. Let

ω =
z − 1

z + 1
(6)

maps the unit circle ∂E onto the imaginary axis ℜ(ω) = 0 and for all ψ such that
|ψ| = 1 (ψ ∈ C), let

ω =
ψ − 1

ψ + 1
(z ∈ E;ψ ∈ C; |ψ| = 1).
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Then, ∣∣ψ∣∣ = ∣∣∣1 + ω

1− ω

∣∣∣ = 1, (7)

which shows that

ℜ(ω) = ℜ
(
ψ − 1

ψ + 1

)
= 0 (ψ ∈ C; |ψ| = 1).

Since p(0) = 1 for p(z) ∈ B, then

p(z) ̸= ψ − 1

ψ + 1
(z ∈ E;ψ ∈ C; |ψ| = 1) (8)

and this obviously completes the proof.
Lemma 2. A function f(z) ∈ A is in the class RTk[A,B] if and only if

1 +
∞∑

n=2

Anz
n−1 ̸= 0 (9)

where

An =
n
[
ψ
[
(1− 2k)

(
B − (B −A)(B + 1)

)
− 1
]
+ (1− 2k)

(
B + (B −A)(B + 1)

)
− 1
]

(1− 2k)(B −A)
[
ψ(1 +A−B) + (1−A+B)

] (10)

Proof. Upon setting

p(z) =

(1− k)

(
(B−1)f ′(z)−(A−1)
(B+1)f ′(z)−(A+1)

)
− k

1− 2k
(11)

for f(z) ∈ RTk[A,B], one observes that

p(z) ∈ B and ℜp(z) > 0, (z ∈ E). (12)

Then by Lemma 1,

(1− k)

(
(B−1)f ′(z)−(A−1)
(B+1)f ′(z)−(A+1)

)
− k

1− 2k
̸= ψ − 1

ψ + 1
(z ∈ E;ψ ∈ C; |ψ| = 1). (13)

It implies that[
(1− k)

(
(B − 1)f ′(z)− (A− 1)

)
− k
(
(B + 1)f ′(z)− (A+ 1)

)]
(ψ + 1)

− (ψ − 1)(B −A)(1− 2k)
[
(B + 1)f ′(z)− (A+ 1)

]
̸= 0 (14)

and

(1− 2k)(B −A)
[
ψ(1 +A−B) + (1−A+B)

]
+

∞∑
n=2

n

[
ψ
[
(1−2k)

(
B−(B−A)(B+1)

)
−1
]
+(1−2k)

(
B−(B−A)(B+1)

)
−1

]
anz

n−1

̸= 0. (15)
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Therefore,

1+

∞∑
n=2

n
[
ψ
[
(1− 2k)

(
B − (B −A)(B + 1)

)
− 1
]
+ (1− 2k)

(
B + (B −A)(B + 1)

)
− 1
]

(1− 2k)(B −A)
[
ψ(1 +A−B) + (1−A+B)

] ̸= 0

and this compltes the proof of Lemma 2.
Corollary 1. A function f(z) ∈ A is in the class RTk[1,−1] if and only if

1 +

∞∑
n=2

Anz
n−1 ̸= 0 (16)

where

An =
n(ψ − 1)

3ψ − 1
. (17)

Theorem 1. If f(z) ∈ A satisfies the condition that

∞∑
n=2

(∣∣∣∣ n∑
m=1

[ m∑
j=1

(−1)m−jj
[
(1−2k)

(
B+(B−A)(B+1)

)
−1
]
aj

(
β

n− j

)](
γ

n−m

)∣∣∣∣
+

∣∣∣∣ n∑
m=1

[ m∑
j−1

(−1)m−jj
[
(1− 2k)

(
B+ (B−A)(B+1)

)
− 1
]
aj

(
β

m− j

)](
γ

n−m

)∣∣∣∣
)

≤ 2(B −A)(1− 2k) (18)

then f(z) ∈ RTk[A,B].
Proof. Here, we note that

(1− z)β ̸= 0 and (1 + z)γ ̸= 0. (19)

Hence, if the following inequality(
1 +

∞∑
n=2

Anz
n−1
)
(1− z)β(1 + z)γ ̸= 0 (20)

holds true, then

1 +
∞∑

n=2

Anz
n−1 ̸= 0,

which is the expression earlier given in (9) of Lemma (2.2). This implies that(
1 +

∞∑
n=2

Anz
n−1
)( ∞∑

n=0

(−1)nbnz
n
)( ∞∑

n=0

cnz
n
)
̸= 0 (21)

where

bn =

(
β

n

)
and cn =

(
γ

n

)
.

By Cauchy product of the first two factors in (21), we obtain(
1 +

∞∑
n=2

Bnz
n−1
)( ∞∑

n=0

cnz
n
)
̸= 0, (22)

where

Bn =

n∑
j=1

(−1)n−jAjbn−j .
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Likewise, following the same process, (22) can be expressed as

1 +
∞∑

n=2

( n∑
m=1

Bmcn−m

)
zn−1 ̸= 0 (z ∈ E). (23)

Obviously, (23) may be expressed as

1 +

∞∑
n=2

[ n∑
m=1

( m∑
j=1

(−1)m−jAjbm−j

)
cn−j

]
zn−1 ̸= 0, (z ∈ E).

Now, if f(z) ∈ A satisfies the condition that
∞∑

n=2

∣∣∣ n∑
m=1

( m∑
j=1

(−1)m−jAjbm−j

)
cn−j

∣∣∣ ≤ 1,

that is if

L
∞∑

n=2

∣∣∣∣ n∑
m=1

( m∑
j=1

(−1)m−jj
[
(1−2k)

(
B+(B−A)(B+1)

)
−1+ψ

[
(1−2k)

(
B−(B−A)(B+1)

)
−1
]]
ajbm−j

)
cn−m

∣∣∣∣
≤ 2L

∞∑
n=2

(∣∣∣∣ n∑
m=1

[ m∑
j=1

(−1)m−jj
[
(1− 2k)

(
B + (B −A)(B + 1)

)
− 1
]
ajbm−j

]
cn−m

∣∣∣∣
+

∣∣∣∣ n∑
m=1

[ m∑
j−1

(−1)m−jj
[
(1− 2k)

(
B + (B −A)(B + 1)

)
− 1
]
ajbm−j

]
cn−m

∣∣∣∣
)

≤ 1,

where

L =
1

2(1− 2k)(B −A)

then f(z) ∈ RTk[A,B] and hence the proof.
Supposing k = 0, the the following corollary is immediate.
Corollary 2.

∞∑
n=2

(∣∣∣∣ n∑
m=1

[ m∑
j=1

(−1)m−jj
[(
B + (B −A)(B + 1)

)
− 1
]
aj

(
β

n− j

)](
γ

n−m

)∣∣∣∣
+

∣∣∣∣ n∑
m=1

[ m∑
j−1

(−1)m−jj
[(
B + (B −A)(B + 1)

)
− 1
]
aj

(
β

m− j

)](
γ

n−m

)∣∣∣∣
)

≤ 2(B −A)

then f(z) ∈ RT [A,B].
Corollary 3. If f(z) ∈ A satisfies the following condition

∞∑
n=2

∣∣∣ n∑
m=1

( m∑
j=1

(−1)m−jj(1− k)aj

(
β

m− j

))( γ

n−m

)∣∣∣ ≤ 1− 2k

then f(z) ∈ RTk[1,−1]
Suppose that β = γ = 0, then we have the following corollary.
Corollary 4. If f(z) ∈ A satisfies the following condition

∞∑
n=2

n|an| ≤
∣∣∣B −A

B − 1

∣∣∣
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then f(z) ∈ RTk[A,B].
Also, if β = γ = 0, β = −1 and A = 1. The following corollary follows:
Corollary 5. If f(z) ∈ A satisfies the following condition that

∞∑
n=2

n|an| ≤ 1

then f(z) ∈ RTk[1,−1].
If k = 0, β = −1 and A = 1. Then, we have the following corollary.
Corollary 6. Let f(z) ∈ A satisfies the following condition that

∞∑
n=2

∣∣∣ n∑
m=1

( m∑
j=1

(−1)m−jjaj

(
β

m− j

))( γ

n−m

)∣∣∣ ≤ 1

then f(z) ∈ RT [1,−1].
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