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FUNCTIONAL QUADRATIC INTEGRAL

EQUATIONS IN L1
loc(R+)

LATIFA BENHAMOUCHE AND SMAÏL DJEBALI

Abstract. In this work, we study the existence of solutions for a class of
functional quadratic integral equations of Volterra type in the space L1

loc(R
+).

The main result of this paper is obtained by applying the Schauder-Tychonov
fixed point theorem combined with Ascoli-Arzéla Lemma and Dunford-Pettis
compactness criterion. It generalizes some previous results obtained in [12]
and [13]. Two illustrative examples are included.

1. Introduction

In this paper, we are concerned with the following equation:

x(t) = f

(
t, x(t), g(t, x(t))

∫ t

0

k(t, s)h(s, x(s))ds

)
, t > 0, (1)

where f , g, h, and k are Carathéodory functions. We look for a solution in the
space L1

loc(R+) consisting of all locally integrable real functions on R+.
In the last couple of years, many authors have considered the solvability of

different types of integral equations on the Banach space BC(R+) consisting of all
real functions defined, bounded, and continuous on R+, while in some practical
situations integral equations are better understood in L1 settings (see, e.g., [10]).

Recently in [12], a technique using a family of measures of weak noncompactness
has been applied to get an existence result for the equation

x(t) = f

(
t,

∫ t

0

v(t, s, x(s))ds

)
, t > 0,

in the space L1
loc(R+).

In [13], fixed point theorems were developed in locally convex spaces with the

Krein-S̆mulian property. As an application, the authors have given an existence
result in the space L1

loc(R+) for the following Volterra integral equation:

x(t) = f

(
t, x(t),

∫ t

0

k(t, s)v(s, x(s))ds

)
, t > 0,
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where f is lipschitzian in the two last arguments. However the quadratic case is
not covered by this work.

In [4]. the authors studied the existence of integrable solutions of the nonlinear
quadratic integral equation given by

x(t) = u(t, x(t)) + g(t, x(t))

∫ ϕ(t)

0

k(t, s)f(s, x(s))ds

on the bounded interval [0, 1]. Other quadratic equations are discussed in [3, 8].
In the present work, we wish to generalize the results obtained in [4] and [13] to

the more general equation (1) set on the half axis R+ and where all the nonlinear
functions involved are of Carathéodory type. The strategy we are going to use is a
combination of ideas from [2], [4], and [12]. The concept of measure of noncompact-
ness, usually employed in the recent literature, is replaced here by direct arguments
from functional analysis that are collected in Section 2. The main existence result
is then presented in Section 3 while two examples of application are given in Section
4.

2. Preliminaries

This section is devoted to presenting some definitions and classical results which
will be needed in the sequel. Let m(D) denote the Lebesgue measure of a Lebesgue
measurable subset D ⊂ R+. L1[0, T ] refers to the Banach space of all real functions
defined and Lebesgue integrable on the set [0, T ] for T > 0; it is equipped with the
norm

∥x∥T =

∫ T

0

|x(t)|dt. (2)

Denote by L1
loc(R+) the space of all real measurable functions x : R+ → R that are

locally Lebesgue integrable on R+, i.e., ∥x∥T <∞, for all T > 0.
The family of semi-norms (2) defines on L1

loc(R+) a metrizable topology and so
L1
loc(R+) can be considered as a Fréchet space with the distance

d(x, y) =
∞∑
j=1

1

2j
∥x− y∥j

1 + ∥x− y∥j

or equivalently

d1(x, y) = sup{2−T ∥x− y∥T : T > 0}.
A subsetX ⊂ L1

loc(R+) is said to be bounded ifX is bounded for every semi-norm
∥.∥T , T > 0. Two topologies can be defined on the space L1

loc(R+): the Fréchet
topology and the weak topology. Recall that the weak topology on a topological
space E is the weakest topology (with the fewest open sets) such that all elements
of E′ (the topological dual of E) remain continuous; it comprises more compact

sets. Krein-S̆mulian Theorem (see [5]) states that, in a Banach space, the closed
convex hull of a weakly compact set is weakly compact.

Let us recall the characterization of the convergence and the relative compactness
in the topology of L1

loc(R+) as a Fréchet space (see [6]).

Proposition 2.1. (1) A sequence (xn)n∈N ⊂ L1
loc(R+) is convergent to x ∈

L1
loc(R+) if and only if limn→∞∥xn − x∥T = 0, for T ≥ 0.
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(2) A set X ⊂ L1
loc(R+) is relatively compact in L1

loc(R+) if and only if πT (X)
is relatively compact in the Banach space L1[0, T ] for T ≥ 0, where πT :
L1
loc(R+) → L1[0, T ] refers to the restriction mapping.

A similar result can be obtained in the weak topology.

Corollary 2.2. [12] Assume that M is a nonempty subset of L1
loc(R+). M is

relatively weakly compact in L1
loc(R+) if and only if πT (M) is relatively weakly

compact in Banach space L1[0, T ], for each T > 0.

The compactness of πT (X) can be dealt with by the Dunford-Pettis compactness
criterion that we state when the image space is reflexive, which is the case of our
purpose:

Theorem 2.3. [5] Let (Ω,Σ, µ) be a finite measure space and X a reflexive Banach
space. A bounded subset K ⊂ L1(Ω, X) is relatively weakly compact if and only if
K is equi-integrable, that is

lim
µ(A)→0

sup
f∈K

∫
A

|f |dµ = 0.

Also we will make use of the classical Scorza Dragoni theorem:

Theorem 2.4. [11] Let J ⊂ R be a measurable subset and f : J × R → R a
function satisfying Carathéodory conditions. Then for each ε > 0, there exists a
closed subset Dε of the set J such that m (J\Dε) < ε and f|Dε×R is continuous.

We end these preliminaries with two fixed point results. Let X be a Hausdorff
locally convex space with a topology generated by a family of semi-norms P. We
have (see, e.g., [9]).

Definition 2.1. Let C ⊂ X and p ∈ P. A mapping A : C → C is said to be p-
contraction if there exists αp, 0 ≤ αp < 1 such that for all x, y ∈ C, p(Ax−Ay) ≤
αpp(x− y).

Theorem 2.5. Suppose C is a sequentially complete subset of X and the mapping
A : C → C is a p-contraction, for every p ∈ P. Then A has a unique fixed point
x̄ ∈ C and, for every x ∈ C, the iterate Akx converges to x̄, as k → ∞.

The Schauder-Tychonoff fixed point theorem (see e.g., [1]) reads:

Lemma 2.6. Let E be a Hausdorff locally convex linear topological space, C a
convex subset of E, and F : C → E a continuous mapping such that

F (C) ⊂ A ⊂ C

where A is compact. Then F has at least one fixed point.

3. Main Existence Result

In this section, we will study the existence of locally integrable solutions of
Equation (1), assuming that the following conditions hold true:

(H1): The function f : R+ × R2 → R is a Carathéodory function and there
exist two measurable and essentially bounded functions a and b : R+ → R+

such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ a(t)|x1 − x2|+ b(t)|y1 − y2|,
for t ∈ R+ and xi, yi ∈ R with i = 1, 2. Also c(t) = |f(t, 0, 0)| ∈ L1

loc(R+).
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(H2): The function g : R+ × R → R is a Carathéodory function and there
exists a measurable essentially bounded function q : R+ → R+

|g(t, x1)− g(t, x2)| ≤ q(t)|x1 − x2|,

with p(t) = |g(t, 0)| ∈ L1
loc(R+)

(H3): The function h : R+×R → R is a Carathéodory function and there exist
a measurable essentially bounded function β : R+ → R+ and a nonnegative
function α ∈ L1

loc(R+) such that

|h(t, x)| ≤ α(t) + β(t)|x|,

for (t, x) ∈ R+ × R.
(H4): The function k : R+ × R+ → R+ is a Carathéodory function such that

the linear Volterra integral operator K generated by k that is

Kx(t) =

∫ t

0

k(t, s)x(s)ds, t > 0

transforms L1
loc(R+) into L∞

loc(R+) continuously.
(H5): For all T > 0

ā(T ) + b̄(T )∥K∥T q̄(T )∥α∥T + b̄(T )∥K∥T ∥p∥T β̄(T )+

2
√(

∥c∥T + b̄(T )∥K∥T ∥p∥T ∥α∥T
)
b̄(T )∥K∥T q̄(T )β̄(T ) < 1,

where ā(T ) = ess sup
t∈[0,T ]

a(t), b̄(T ) = ess sup
t∈[0,T ]

b(t), q̄(T ) = ess sup
t∈[0,T ]

q(t),

β̄(T ) = ess sup
t∈[0,T ]

β(t), and ∥K∥T is the norm of the restriction of the oper-

ator K, namely KT : L1[0, T ] → L∞[0, T ], for T > 0.

Assumption (H5) allows us to define the following convex closed subset of L1
loc(R+):

M = {x ∈ L1
loc(R+) : ∥x∥T ≤ r(T ), ∀T > 0}, (3)

where the function r : R+ → R+ is given by:

r(T ) =
η −

√
η2 − 4

(
∥c∥T + b̄(T )∥K∥∥p∥T ∥α∥T

)
b̄(T )∥K∥T q̄(T )β̄(T )

2b̄(T )∥K∥T q̄(T )β̄(T )
(4)

with

η = 1− ā(T )− b̄(T )∥K∥T q̄(T )∥α∥T − b̄(T )∥K∥T ∥p∥T β̄(T ) > 0. (5)

We start with a technical result:

Lemma 3.1. Under Assumptions (H1)-(H5), for each y in M , there is a unique
fixed point ψy ∈M which verifies:

ψy(t) = f

(
t, ψy(t), g(t, ψy(t))

∫ t

0

k(t, s)h(s, y(s))ds

)
, ∀ t > 0.

Proof. For y ∈ L1
loc(R+), let Ty be the mapping defined by

Ty(x)(t) = f

(
t, x(t), g(t, x(t))

∫ t

0

k(t, s)h(s, y(s))ds

)
, t > 0.
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Claim 1. Ty :M →M . The invariance of M is in fact ensured by the choice of the
function r in (4). Indeed, by (H1) and (H2) we have

|Ty(x)(t)| ≤ |f(t, 0, 0)|+ a(t)|x(t)|+ b(t)|g(t, x(t))||
∫ t

0
k(t, s)h(s, y(s))ds|

≤ |f(t, 0, 0)|+ a(t)|x(t)|
+b(t) (|g(t, 0)|+ q(t)|x(t)|) |

∫ t

0
k(t, s)h(s, y(s))ds|.

Hence
∥Ty(x)∥T ≤ ∥c∥T + ā(T )∥x∥T

+b̄(T ) (∥p∥T + q̄(T )∥x∥T ) ∥K∥T ∥Nh(y)∥T ,
where Nh denotes the Nemytskii operator associated to h:

Nh(y)(t) = h (t, y(t)) . (6)

Thus, by (H3)

∥Ty(x)∥T ≤ ∥c∥T + ā(T )∥x∥T
+b̄(T )∥K∥T (∥p∥T + q̄(T )∥x∥T )

(
∥α∥T + β̄(T )∥y∥T

)
because by (H3), we have that

∥Nh(y)∥T≤ ∥α∥T + β̄(T )∥y∥T .

Assuming x and y both in M , we get

∥Ty(x)∥T ≤ ∥c∥T + ā(T )r(T )
+b̄(T )∥K∥T (∥p∥T + q̄(T )r(T ))

(
∥α∥T + β̄(T )r(T )

)
≤ r(T ).

The last inequality is a quadratic algebraic equation:

∥c∥T + b̄(T )∥K∥T ∥p∥T ∥α∥T − ηr(T ) + b̄(T )∥K∥T q̄(T )β̄(T )r2(T ) ≤ 0,

where η is given by (5). Notice that the discriminant

∆ = η2 − 4
(
∥c∥T + b̄(T )∥K∥T ∥p∥T ∥α∥T

)
b̄(T )∥K∥T q̄(T )β̄(T )

is positive due to (H5) and thus one positive root is precisely given by (4).
We deduce that Ty self-maps M , as claimed.

Claim 2. Ty is a T -contraction for each T > 0. Making use of (H1) and (H2)
for each x1, x2 ∈M and for all t ∈ [0, T ] (T > 0), we have the estimates:

|Ty(x1)(t)− Ty(x2)(t)| ≤ a(t)|x1(t)− x2(t)|
+b(t)|g(t, x1(t))− g(t, x2(t))|

∣∣∣∫ t

0
k(t, s)h(s, y(s))ds

∣∣∣
≤ a(t)|x1(t)− x2(t)|

+b(t)q(t)|x1(t)− x2(t)|
∣∣∣∫ t

0
k(t, s)h(s, y(s))ds

∣∣∣ .
By integration, we have

∥Ty(x1)− Ty(x2)∥T ≤ ā(T )∥x1 − x2∥T + b̄(T )q̄(T )∥K∥T ∥Nh(y)∥T ∥x1 − x2∥T .

This means that whenever y ∈M we have

∥Ty(x1)− Ty(x2)∥T ≤
(
ā(T ) + b̄(T )q̄(T )∥K∥T

(
∥α∥T + β̄(T )r(T )

))
∥x1 − x2∥T .

It is easy to check that

νT = ā(T ) + b̄(T )∥K∥T q̄(T )
(
∥α∥T + β̄(T )r(T )

)
< 1
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which implies that Ty is a T -contraction for each T > 0. Applying Theorem 2.5 we
conclude that Ty has a unique fixed point ψy ∈M such that:

ψy(t) = f

(
t, ψy(t), g(t, ψy(t))

∫ t

0

k(t, s)h(s, y(s))ds

)
, t > 0.

�
Now we are able to state and prove our main existence result:

Theorem 3.2. Under Assumptions (H1)-(H5), Equation (1) has at least one so-
lution in the space L1

loc(R+).

Proof. Using Lemma 3.1, we can define the operator A which associates to each
y ∈M , the unique function ψy ∈M satisfying

ψy(t) = f

(
t, ψy(t), g(t, ψy(t))

∫ t

0

k(t, s)h(s, y(s))ds

)
, t > 0.

Claim 1. The operator A is continuous on M with the respect of the
topology of the Fréchet space L1

loc(R+). Let T > 0 and x1, x2 ∈ M . For
t ∈ [0, T ], we have the estimates:

|A(x1)(t)−A(x2)(t)| ≤ a(t)|A(x1)(t)−A(x2)(t)|
+b(t)

∣∣∣g (t,A(x1)(t))
∫ t

0
k(t, s)h(s, x1(s))ds

−g (t,A(x2)(t))
∫ t

0
k(t, s)h(s, x2(s))ds

∣∣∣ .
Then

|A(x1)(t)−A(x2)(t)| ≤ a(t)|A(x1)(t)−A(x2)(t)|
+b(t)

∣∣∣∫ t

0
k(t, s)h(s, x1(s))ds

∣∣∣
× |g (t,A(x1)(t))− g (t,A(x2)(t))|
+b(t) |g (t,A(x2)(t))|
×
∣∣∣∫ t

0
k(t, s) (h(s, x1(s)− h(s, x2(s)) ds

∣∣∣ .
Hence

|A(x1)(t)−A(x2)(t)| ≤ a(t)|A(x1)(t)−A(x2)(t)|
+b(t)

∣∣∣∫ t

0
k(t, s)h(s, x1(s))ds

∣∣∣× q(t)|A(x1)(t)−A(x2)(t)|
+b(t) (p(t) + q(t)|A(x2(t))|)
×
∣∣∣∫ t

0
k(t, s) (h(s, x1(s)− h(s, x2(s)) ds

∣∣∣ .
Integrating both sides from 0 to T , we get

∥A(x1)−A(x2)∥T ≤ ā(T )∥A(x1)−A(x2)∥T
+b̄(T )q̄(T )∥K∥T ∥Nh(x1)∥T ∥A(x1)−A(x2)∥T
+b̄(T ) (∥p∥T + q̄(T )∥A(x2)∥T ) ∥K∥T ∥Nh(x1)−Nh(x2)∥T

i.e.,

∥A(x1)−A(x2)∥T ≤ ā(T )∥A(x1)−A(x2)∥T
+b̄(T )q̄(T )∥K∥T

(
∥α∥T + β̄(T )∥x1∥T

)
∥A(x1)−A(x2)∥T

+b̄(T ) (∥p∥T + q̄(T )∥A(x2)∥T ) ∥K∥T ∥Nh(x1)−Nh(x2)∥T .
Therefore

∥A(x1)−A(x2)∥T ≤
(
ā(T ) + b̄(T )q̄(T )∥K∥T (∥α∥T + β̄(T )r(T ))

)
∥A(x1)−A(x2)∥T

+b̄(T ) (∥p∥T + q̄(T )r(T )) ∥K∥T ∥Nh(x1)−Nh(x2)∥T .
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Consequently

∥A(x1)−A(x2)∥T ≤ b̄(T ) (∥p∥T + q̄(T )r(T )) ∥K∥T
1− νT

∥Nh(x1)−Nh(x2)∥T ,

where

νT = ā(T ) + b̄(T )q̄(T )∥K∥T (∥α∥T + β̄(T )r(T )).

The continuity of A is then derived from the continuity of the Nemytskii operator
Nh in (6) which is guaranteed by (H3). Indeed, the superposition operator Nh

transforms L1[0, T ] into itself continuously (see [7]). By the way, we point out here
that the sub-linear growth condition in (H3) is optimal.

Claim 2. A(M) is relatively weakly compact in L1
loc(R+).

Let T > 0, ε > 0, and Dε ⊂ [0, T ] be such that Dε is nonempty and measurable
with m(Dε) < ε. For x ∈M , we have

A(x)(t) = f

(
t,A(x)(t), g(t,A(x)(t))

∫ t

0

k(t, s)h(s, x(s))ds

)
, t > 0.

With |f(t, 0, 0)| = c(t) and |g(t, 0)| = p(t), we get

|A(x)(t)| ≤ c(t) + a(t)|A(x)(t)|
+b(t)|g(t,A(x)(t))||

∫ t

0
k(t, s)h(s, x(s))ds|

≤ |c(t)|+ a(t)|A(x)(t)|
+b(t) (p(t) + q(t)|A(x)(t)|) |

∫ t

0
k(t, s)h(s, x(s))ds|.

Thus∫
Dε

|A(x)(t)|dt ≤
∫
Dε
c(t)dt+ b̄(T )∥K∥∥Nh(x)∥

∫
Dε
p(t)dt

+
(
ā(T ) + b̄(T )q̄(T )∥K∥(∥α∥T + β̄(T )r(T ))

) ∫
Dε

|A(x)(t)|dt.

Since by (H5)

νT = ā(T ) + b̄(T )q̄(T )∥K∥(∥α∥T + β̄(T )r(T )) < 1

and by (H3)

∥Nh(x)∥T ≤ ∥α∥T + β̄(T )∥x∥T ,
we deduce that∫
Dε

|A(x)(t)|dt ≤ 1

1− νT

(∫
Dε

c(t)dt+ b̄(T )∥K∥T (∥α∥T + β̄(T )r(T )))

∫
Dε

p(t)dt

)
.

Taking the supremum over all elements x ∈ M and all subsets Dε ⊂ [0, T ] with
m(Dε) < ε, passing to the limit when ε→ 0, and using the fact that a set consisting
of one element is weakly compact, we derive from the above estimate that A(M)
equi-integrable hence, by Dunford-Pettis Theorem 2.3, A(M) is relatively weakly
compact in L1[0, T ] for all T > 0. By Corollary 2.2, we conclude that A(M) is
relatively weakly compact in L1

loc(R
+), as desired.

Claim 3. A(Y ) is strongly compact, where Y = convA(M). First it is easy

to show that A(Y ) ⊂ Y and Y is weakly compact by Krein-S̆mulian Theorem. In
addition A(Y ) is relatively weakly compact for it is a subset of Y . Denote H the
operator KNh:

Hy(t) =
∫ t

0

k(t, s)h(s, y(s))ds.
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Applying the Scorza-Dragoni theorem, for ε > 0, we can find some subset Dε ⊂
[0, T ] such that m(D′

ε) < ε, where D′
ε = [0, T ]\Dε such that the function k is

continuous on Dε. Let y ∈ Y and t1, t2 ∈ Dε. We have the estimates:

|Hy(t1)−Hy(t2)| = |
∫ t1
0
k(t1, s)h(s, y(s))ds−

∫ t2
0
k(t2, s)h(s, y(s))ds|

≤ |
∫ t1
0
(k(t1, s)− k(t2, s))h(s, y(s))ds|

+|
∫ t2
t1
k(t2, s)h(s, y(s))ds|

≤ ωT (k, |t1 − t2|)
∫ t1
0
α(s) + β(s)|y(s)|ds

+k̄
∫ t2
t1
(α(s) + β(s)|y(s)|)ds

≤ ωT (k, |t1 − t2|)(∥α∥T + β̄(T )r(T ))

+k̄
∫ t2
t1
α(s)ds+ k̄β̄(T )

∫ t2
t1
|y(s)|ds,

where ωT (k, .) denotes the modulus of continuity of the function k on the set Dε ×
[0, T ] and k̄ = max{k(t, s), (t, s) ∈ Dε × [0, T ]}.

Taking into account the uniform continuity of k on Dε × [0, T ], the weak com-
pactness of the set Y , the equi-integrability of Y , and the fact that a one element
set is weakly compact we infer the equi-continuity of the set H(Y ) in the space of
continuous functions C(Dε).
Moreover for all y ∈ Y and t ∈ Dε, we have

|H(y)(t)| = |
∫ t

0
k(t, s)h(s, y(s))ds|

≤ ∥K∥T ∥Nh(y)∥T
≤ ∥K∥T (∥α∥T + β̄(T )r(T ))

which means that the set H(Y ) is equi-bounded in the space C(Dε). By Ascoli-
Arzela Lemma, we obtain that H(Y ) is relatively compact in C(Dε), for each ε > 0.

Claim 4. AY is relatively strongly compact in L1
loc(R+). For this, consider

an arbitrary sequence {yn} ⊂ Y and let ε > 0 (we can assume that {yn} is a
Cauchy sequence C(Dε)). Using the same arguments as in the first step, we obtain
for n,m ∈ N

∥A(yn)−A(ym)∥T
≤ ā(T )∥A(yn)−A(ym)∥T

+b̄(T )q̄(T )∥K∥T ∥Nh(yn)∥T ∥A(yn)−A(ym)∥T
+
∫ T

0
b(t) (p(t) + q(t)|A(ym(t))|) |H(yn)(t)−H(ym)(t)|dt.

So

∥A(yn)−A(ym)∥T
≤ 1

1−νT

∫ T

0
b(t) (p(t) + q(t)|A(ym(t))|) |H(yn)(t)−H(ym)(t)| dt.

Hence

∥A(yn)−A(ym)∥T
≤ 1

1−νT

∫
Dε
b(t) (p(t) + q(t)|A(ym(t))|) |H(yn)(t)−H(ym)(t)| dt

+ 1
1−νT

∫
[0,T ]\Dε

b(t) (p(t) + q(t)|A(ym(t))|) |H(yn)(t)−H(ym)(t)| dt.

As a consequence, we derive

∥A(yn)−A(ym)∥T
≤ 1

1−νT
b̄(T )(∥p∥T + q̄(T )r(T )) supt∈Dε

|H(yn)(t)−H(ym)(t)|
+ 2

1−νT
∥K∥T (∥α∥T + β̄(T )r(T ))

∫
[0,T ]\Dε

b(t) (p(t) + q(t)|A(ym(t))|) .
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From the last estimate, it follows that (A(yn))n∈N is a Cauchy sequence in the
Banach space L1[0, T ] and thus it is convergent in this space, for each T ≥ 0, i.e.,
AY is relatively strongly compact in L1

loc(R+) for it is relatively strongly compact
in L1[0, T ] for each T > 0 (see Proposition 2.1, part 2). Appealing to Schauder-
Tychonoff Theorem 2.6, we conclude the existence of at least a fixed point in Y ,
that is a solution to Equation (1), which completes the proof of Theorem 3.2. �

4. Examples

Example 4.1. Consider the following quadratic integral equation which generalizes
the one discussed in [4] for it is set over the real half axis:

x(t) = φ(t) + x(t)

∫ t

0

t

t+ s
ψ(s)x(s)ds, t > 0, (7)

where φ ∈ L1
loc(R+) and ψ ∈ L∞

loc(R+).
In order to prove the existence of solutions to Equation (7), which is a particular

case of (1), let us put for all t, s ∈ R+ and x, y ∈ R:

f(t, x, y) = φ(t) + y, g(t, x) = x, h(t, x) = ψ(t)x, k(t, s) =
t

t+ s
.

Let a = 0, b = 1, q = 1, p = 0, α = 0, β = ψ, and ∥K∥T ≤ 1, for all T > 0.
Condition (H5) then reduces to ∥φ∥T ∥ψ∥L∞[0,T ] <

1
4 which is satisfied for example

when φ(t) = 1
4π(1+t2) and ψ(s) = 1

1+s . Since all assumptions in Theorem 3.2 are

satisfied, we deduce that Equation (7) has at least one solution in the space L1
loc(R+)

provided that ∥φ∥T ∥ψ∥L∞[0,T ] <
1
4 .

Example 4.2. Consider the following equation which cannot be covered by the
existence result given in [13] for it is quadratic and does not verify Hypothesis (H3)
in [13]:

x(t) =
1

2π(1 + t2)
+ ζ(t) + x(t)

∫ t

0

ts

t2 + 1
ln(1 + x2(s))ds, t > 0, (8)

where the function ζ : R+ → R+ is defined by the identity map on the set N
of natural numbers and by zero elsewhere. Obviously ζ is neither continuous nor
bounded. To get the existence of solutions to Equation (8), which is a particular
case of (1), we set

f(t, x, y) =
1

2π(1 + t2)
+ ζ(t)+y, g(t, x) = x, h(t, x) = ln(1+x2), k(t, s) =

ts

t2 + 1
.

All assumptions of Theorem 3.2 are satisfied with a(t) = 0, b(t) = 1, p(t) = 0,

q(t) = 1, α(t) = 0, β(t) = 1, and ∥K∥T ≤ T 2

T 2+1 for all T > 0. Consequently,

Equation (8) has at least one solution in the space L1
loc(R+). Notice that this

solution is neither continuous nor bounded on R+.
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