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OSCILLATION OF THIRD-ORDER NEUTRAL DYNAMIC

EQUATIONS ON TIME SCALES

MERVE ZINGIL AND FATMA SERAP TOPAL

Abstract. In this paper, some new sufficient conditions for the oscillation of

all solutions of nonlinear third order neutral dynamic equations are established
aiming at extending some well known results in the literature. By using a
generalized Riccati transformation and an integral averaging technique, we
obtain some new results which ensure that every solution of this equation

oscillates or converges to zero. Moreover, an example is given to illustrate the
applicability of these results.

1. Introduction

The theory of measure chains was introduced and developed by Hilger [12]. It
was created in order to unify continuous and discrete analysis, and it allows a simul-
taneous treatment of differential and difference equations, extending those theories
to so-called dynamic equations. A time scale T is an arbitrary nonempty closed
subset of real numbers with the topology and ordering inherited from R, and the
cases when this time scale is equal to the reals or to the integers represent the
classical theories of differential and of difference equations. Of course many other
interesting time scales exist, and they give rise to plenty of applications, for exam-
ple, in the study of insect population models, neural networks, heat transfer and
epidemic models. We refer the reader to the excellent introductory text by Bohner
and Peterson [1] as well as the recent research monograph [2]. In recent years,
there has been much research activity concerning the oscillation and nonoscillation
of solutions of various dynamic equations on time scales, e.g., see [3, 6-10, 13-17]
and the references cited therein.

In [17], Zhang and Wang studied the second-order nonlinear dynamic equation

(r(t)((y(t) + p(t)y(τ(t)))∆)γ)∆ + f1(t, y(δ1(t)) + f2(t, y(δ2(t)) = 0

on a time scale T.
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In [8], Grace et al. considered the following third-order neutral delay dynamic
equation

(r(t)(x(t)− a(t)x(τ(t)))∆∆)∆ + p(t)xγ(δ(t)) = 0.

Recently, some authors studied on oscillation criteria for third order neutral non-
linear dynamic equations on time scales in [4, 5, 11]. Also, in [15], Utku and S. enel
considered the oscillatory behavior of all solutions of the third-order quasilinear
neutral delay dynamic equation

[r(t)([x(t) + p(t)x(τ0(t))]
∆∆)γ ]∆ + q1(t)x

α(τ1(t)) + q2(t)x
α(τ2(t)) = 0

on a time scale T.
Inspired from the above works, in this paper we consider third-order neutral

dynamic equations of the following form:

(r2(t)[(r1(t)[x(t) +

2∑
i=1

pi(t)x(ηi(t))]
∆)∆]γ)∆ +

2∑
i=1

fi(t, x(δi(t))) = 0 (1)

on a time scale T satisfying inf T = t0 and supT = ∞, where γ > 0 is a quotient of
odd positive integers.

Throughout this paper we assume the followings:

(H1) ηi(t), δi(t) ∈ Crd(T,T) such that η1(t) ≤ t, η2(t) ≥ t, δ1(t) ≤ t, δ2(t) ≥ t
and lim

t→∞
ηi(t) = lim

t→∞
δi(t) = ∞, i = 1, 2,

(H2) pi(t) ∈ Crd(T, [0, 1)), ri(t) ∈ Crd(T, (0,∞)) and r∆1 (t) < 0 such that∫ ∞

t0

1

r1(t)
∆t = ∞,

∫ ∞

t0

(
1

r2(t)

) 1
γ

∆t = ∞,

(H3) fi(t, u) : T × R −→ R are continuous functions such that ufi(t, u) > 0 for
all u ̸= 0 and there exist qi(t) ∈ Crd(T, R+) (i = 1, 2) such that |ufi(t, u)| ≥
qi(t)|u|γ+1.

This paper is organized as follows. After this introduction, we introduce some
basic lemmas in Section 2. In Section 3, we present the main results and give an
example to illustrate the main results.

We use the following notations for convenience and for shortening the equations:
z(t) := x(t)+p1(t)x(η1(t))+p2(t)x(η2(t)), z[1] := (r1z

∆)∆, z[2] := r2(z
[1])γ and

z[3] := (z[2])∆.
ForD = {(t, s) ∈ T2 : t ≥ s ≥ 0}, we define the setH = {H(t, s) ∈ C1

rd(D, [0,∞)) :
H(t, t) = 0, H(t, s) > 0 and H∆

s (t, s) ≥ 0 for t > s ≥ 0}, the function α ∈
C1

rd(T, (0,∞)) is to be given Theorem 3.1 and Theorem 3.2 such that α∆
+(t) =

max{α∆(t), 0} and H∆
s is the partial derivative of H with respect to second vari-

able.

2. Some Preliminaries

To establish oscillation criteria of (1.1), we give here some useful lemmas which
will play an important role in the study of the oscillation behavior for the solutions
of (1.1).
Lemma 1 Assume that x is an eventually positive solution of (1.1) holds. Then,
there is a t1 ∈ [t0,∞)T such that either
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(i) z(t) > 0, z∆(t) > 0, z[1](t) > 0, t ∈ [t1,∞)T,
or

(ii) z(t) > 0, z∆(t) < 0, z[1](t) > 0, t ∈ [t1,∞)T.

Proof. If x(t) is an eventually positive solutions of (1.1), then there exists a
t1 ∈ [t0,∞)T such that

x(t) > 0, x(ηi(t)) > 0, x(δi(t)) > 0, for t ≥ t1, i = 1, 2. (2)

From (2.2), z(t) > 0 eventually. Since (1.1) and (H3), we obtain

z[3](t) ≤ −q1(t)x
γ(δ1(t))− q2(t)x

γ(δ2(t)) < 0, t ∈ [t1,∞)T, (3)

which implies that z[2](t) is a strictly decreasing function on [t1,∞)T. We claim
that z[2](t) > 0 on [t1,∞)T. Assume not, there exists a t2 ∈ [t1,∞)T such that
z[2](t) < 0 on [t2,∞)T. Then, there exist a negative constant c and t3 ∈ [t2,∞)T
such that

z[2](t) ≤ c < 0, t ∈ [t3,∞)T

and it follows that

z[1](t) ≤
(

c

r2(t)

) 1
γ

. (4)

Integrating (2.4) from t3 to t and using (H2), we obtain

r1(t)z
∆(t) ≤ r1(t3)z

∆(t3) + c
1
γ

∫ t

t3

(
1

r2(s)

) 1
γ

∆s,

which implies that r1(t)z
∆(t) → −∞ as t → ∞. Therefore, there exists a t4 ∈

[t3,∞)T such that

r1(t)z
∆(t) ≤ r1(t4)z

∆(t4) < 0, t ∈ [t4,∞)T. (5)

Dividing both sides of (2.5) by r1(t) and integrating it from t4 to t, we obtain

z(t)− z(t4) ≤ r1(t4)z
∆(t4)

∫ t

t4

1

r1(s)
∆s.

Hence, we see from (H2) that z(t) → −∞ as t → ∞, which contradicts the fact
that z(t) > 0 and z[2](t) > 0 for t ∈ [t1,∞)T. Since r2(t) > 0, z[1](t) > 0 for
t ∈ [t1,∞)T it follows that r1(t)z

∆(t) < 0 on [t1,∞)T or r1(t)z
∆(t) > 0 on [t1,∞)T.

From r1(t) > 0, z∆(t) < 0 on [t1,∞)T or z∆(t) > 0 on [t1,∞)T.
The proof is completed. �

Lemma 2 Assume that x is an eventually positive solution of (1.1) and (i) of
Lemma 1 holds. Then, there exists a t1 ∈ [t0,∞)T such that

z(t) ≥ r1(t, t1)[z
[2](t)]

1
γ and z∆(t) ≥ r2(t, t1)

r1(t)
[z[2](t)]

1
γ (6)

for t ∈ [t1,∞)T where r1(t, t1) =
∫ t

t1

r2(s,t1)
r1(s)

∆s and r2(t, t1) =
∫ t

t1
∆s

r
1
γ
2 (s)

.

Proof. Since z[2](t) is strictly decreasing on [t1,∞)T, we have

r1(t)z
∆(t) ≥ r1(t)z

∆(t)− r1(t1)z
∆(t1)

=

∫ t

t1

[z[2](s)]
1
γ

(r2(s))
1
γ

∆s,
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it follows that

z∆(t) ≥ [z[2](t)]
1
γ

r1(t)

∫ t

t1

∆s

(r2(s))
1
γ

and so

z∆(t) ≥ r2(t, t1)

r1(t)
[z[2](t)]

1
γ , t ∈ [t1,∞)T. (7)

Integrating (2.7) from t1 to t, we obtain

z(t) ≥ [z[2](t)]
1
γ

∫ t

t1

r2(s, t1)

r1(s)
∆s

and so

z(t) ≥ r1(t, t1)[z
[2](t)]

1
γ , t ∈ [t1,∞)T.

The proof is completed. �
Lemma 3 Let x be an eventually positive solution of (1.1). Assume that (i) of
Lemma 1 and 0 ≤ p1(t) + p2(t) ≤ p < 1 holds. If

∫ ∞

t0

1

r1(t)

∫ ∞

t

[
1

r2(s)

∫ ∞

s

[q1(u) + q2(u)]∆u

] 1
γ

∆s∆t = ∞ (8)

then lim
t→∞

x(t) = 0.

Proof. Since (i) of Lemma 1 is satisfied,

lim
t→∞

z(t) = l ≥ 0.

We claim that lim
t→∞

z(t) = 0. Assume that l > 0. Then for any ϵ > 0 we have

l < z(t) < l + ϵ for a sufficiently large t ∈ [t1,∞). Choose 0 < ϵ < l(1−p)
p . On the

other hand, since

z(t) = x(t) + p1(t)x(η1(t)) + p2(t)x(η2(t)),

there exists a sufficiently large t2 ∈ [t1,∞), for t ∈ [t2,∞) we have

x(t) = z(t)− p1(t)x(η1(t))− p2(t)x(η2(t))

≥ z(t)− p1(t)z(η1(t))− p2(t)z(η2(t))

> l − p1(t)(l + ϵ)− p2(t)(l + ϵ)

= l − (p1(t) + p2(t))(l + ϵ)

> l − p(l + ϵ)

= k(l + ϵ) > kz(t),

where k = l−p(l+ϵ)
l+ϵ > 0.

Then we get
x(t) ≥ kz(t) ≥ kl > 0. (9)

Substituting (2.9) to (2.3) for t ≥ t3 we obtain

z[3](t) ≤ −q1(t)x
γ(δ1(t))− q2(t)x

γ(δ2(t))

≤ −q1(t)(kl)
γ − q2(kl)

γ

≤ −q1(t)(kl)
γ − q2(kl)

γ

= −(kl)γ [q1(t) + q2(t)]. (10)
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Integrating (2.10) from t to ∞, we get

z[2](t) ≥ (kl)γ
∫ ∞

t

[q1(s) + q2(s)]∆s.

It follows that

z[1](t) ≥ kl

[
1

r2(t)

∫ ∞

t

[q1(s) + q2(s)]∆s

] 1
γ

. (11)

Integrating (2.11) from t to ∞ and dividing both sides by r1(t), we obtain

− z∆(t) ≥ kl

r1(t)

∫ ∞

t

[
1

r2(u)

∫ ∞

u

[q1(s) + q2(s)]∆s

] 1
γ

∆u. (12)

Integrating (2.12) from t3 to ∞, we get

z(t3) ≥ kl

∫ ∞

t3

1

r1(t)

∫ ∞

t

[
1

r2(s)

∫ ∞

s

[q1(u) + q2(u)]∆u

] 1
γ

∆s∆t,

which contradicts (2.8) and therefore l = 0. By making use of 0 ≤ x(t) ≤ z(t) we
conclude that lim

t→∞
x(t) = 0.

The proof is completed. �
Lemma 4 [17] Let g(u) = Bu − Au

γ+1
γ , where A > 0 and B are constants, γ is a

quotient of odd positive integers. Then g attains its maximum value on R at u∗ =(
Bγ

A(γ+1)

)γ

and

max
u∈R

g(u) =
γγ

(γ + 1)γ+1

Bγ+1

Aγ
. (13)

3. Main Results

In this section, we establish some oscillation criteria for (1.1). Since we are
interested in asymptotic behavior of solutions we will suppose that the time scale
T under consideration is not bounded above, i.e., it is a time scale interval of
the form [t0, ?∞)T. Recall a solution x(t) of (1.1) is said to be oscillatory if it is
neither eventually positive nor eventually negative, otherwise it is nonoscillatory.
The equation itself is called oscillatory if all its solutions are oscillatory.
Theorem 1 Let γ > 0. Assume that m is a positive real valued ∆-differentiable
function such that

m(t)

r1(t, t1)r
1
γ

2 (t)r∆1 (t)
−m∆(t) ≤ 0 (14)

and

1− p1(t)− p2(t)
m(η2(t))

m(t)
> 0. (15)

Furthermore∫ ∞

t0

1

r1(t)

∫ ∞

t

[
1

r2(s)

∫ ∞

s

[q1(u) + q2(u)]∆u

] 1
γ

∆s∆t = ∞ (16)
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and one of the following conditions satisfied for sufficiently large t1 ∈ T:

(i) there exists a function α ∈ C1
rd(T, (0,∞)) for δ1(T ) > t1 such that

lim
t→∞

sup

∫ t

T

[
α(s)Q(s)−

α∆
+(s)

rγ1 (s, t1)

]
∆s = ∞, (17)

where

Q(s) := q1(s)

(
m(δ1(s))

m(s)

)γ(
1− p1(δ1(s))− p2(δ1(s))

m(η2(δ1(s)))

m(δ1(s))

)γ

+q2(s)

(
1− p1(δ2(s))− p2(δ2(s))

m(η2(δ2(s)))

m(δ2(s))

)γ

,

(ii) there exists a function α ∈ C1
rd(T, (0,∞)) for δ1(T ) > t1 such that

lim
t→∞

sup

∫ t

T

[
α(s)Q(s)−

rγ1 (s)(α
∆
+(s))

γ+1

(γ + 1)γ+1αγ(s)r2(s, t1)

]
∆s = ∞, (18)

(iii) there exists a function α ∈ C1
rd(T, (0,∞)) and H ∈ H for δ1(T ) > t1 such that

lim
t→∞

sup
1

H(t, T )

∫ t

T

[
H(t, s)α(s)Q(s)− rγ1 (s)[C(t, s)]γ+1

Hγ(t, s)(γ + 1)γ+1αγ(s)

]
∆s = ∞, (19)

where

C(t, s) := H∆
s (t, s)ασ(s) +H(t, s)α∆(s),

(iv) there exists a function α ∈ C1
rd(T, (0,∞)) and m ≥ 1 for δ1(T ) > t1 such that

lim
t→∞

sup
1

tm

∫ t

T

[
(t− s)mα(s)Q(s)−D(s, t1)

Bγ+1(t, s)

(t− s)mγ

]
∆s = ∞, (20)

where

D(s, t1) :=
rγ1 (s)(α(σ(s)))

γ+1

(γ + 1)γ+1αγ(s)r2(s, t1)

and

B(t, s) := (t− s)m
α∆
+(s)

ασ(s)
−m(t− σ(s))m−1.

Then every solution of (1.1) is either oscillatory or lim
t→∞

x(t) = 0.

Proof. Assume the contrary and let x be a nonoscillatory solution of (1.1). With-
out loss of generality, we may assume that t1 ∈ [t0,∞)T such that

x(t) > 0, x(ηi(t)) > 0, x(δi(t)) > 0, i = 1, 2 for t ≥ t1. (21)

We first consider that x(t) satisfies Case (i) in Lemma 1. From Lemma 1 and (H2),
we have

z∆∆(t) =

(
r1(t)z

∆(t)

r1(t)

)∆

=
(r1(t)z

∆(t))∆r1(t)− r∆1 (t)(r1(t)z
∆(t))

r1(t)r1(σ(t))

>
(r1(t)z

∆(t))∆

r1(σ(t))
=

z[1](t)

r1(σ(t))
> 0. (22)
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Using Lemma 2 and (3.22), we get

z(t) ≥ r1(t, t1)[z
[2](t)]

1
γ

= r1(t, t1)r
1
γ

2 (t)z[1](t)

= r1(t, t1)r
1
γ

2 (t)r∆1 (t)z∆(t) + r1(t, t1)r
1
γ

2 (t)rσ1 (t)z
∆∆(t)

> r1(t, t1)r
1
γ

2 (t)r∆1 (t)z∆(t). (23)

It follows from (3.23) that

z∆(t) ≤ z(t)

r1(t, t1)r
1
γ

2 (t)r∆1 (t)
. (24)

Since (3.24), we have(
z(t)

m(t)

)∆

=
z∆(t)m(t)− z(t)m∆(t)

m(t)mσ(t)

≤ z(t)

m(t)mσ(t)

[
m(t)

r1(t, t1)r
1
γ

2 (t)r∆1 (t)
−m∆(t)

]
≤ 0

and so z(t)
m(t) is decreasing. Since z∆(t) > 0 and η1(t) ≤ t, we get

− z(η1(t)) ≥ −z(t). (25)

Also, from z(t)
m(t) is decreasing and η2(t) ≥ t, we get

− z(η2(t)) ≥ −m(η2(t))

m(t)
z(t). (26)

Since z(t) ≥ x(t) and using (3.25)-(3.26), we obtain

x(t) = z(t)− p1(t)x(η1(t))− p2(t)x(η2(t))

≥ z(t)− p1(t)z(η1(t))− p2(t)z(η2(t))

≥
(
1− p1(t)− p2(t)

m(η2(t))

m(t)

)
z(t). (27)

Since z(t)
m(t) is decreasing, δ1(t) ≤ t and γ > 0, we have

− zγ(δ1(t)) ≤ −
(
m(δ1(t))

m(t)

)γ

zγ(t). (28)

Also, from z∆(t) > 0, δ2(t) ≥ t and γ > 0, we get

− zγ(δ2(t)) ≤ −zγ(t). (29)

By virtue of (3.27)-(3.29), (1.1) and (H3), we obtain
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z[3](t) = −f1(t, x(δ1(t))− f2(t, x(δ2(t))

≤ −q1(t)x
γ(δ1(t))− q2(t)x

γ(δ2(t))

≤ −q1(t)

(
1− p1(δ1(t))− p2(δ1(t))

m(η2(δ1(t)))

m(δ1(t))

)γ

zγ(δ1(t))

−q2(t)

(
1− p1(δ2(t))− p2(δ2(t))

m(η2(δ2(t)))

m(δ2(t))

)γ

zγ(δ2(t))

≤ −
[
q1(t)

(
1− p1(δ1(t))− p2(δ1(t))

m(η2(δ1(t)))

m(δ1(t))

)γ(
m(δ1(t))

m(t)

)γ

+q2(t)

(
1− p1(δ2(t))− p2(δ2(t))

m(η2(δ2(t)))

m(δ2(t))

)γ]
zγ(t)

= −Q(t)zγ(t).

It follows that

z[3](t) +Q(t)zα(t) ≤ 0. (30)

(i) Let we define

w(t) := α(t)
z[2](t)

zγ(t)
, for t ≥ t1. (31)

Then w(t) > 0 for t ≥ t1. From (3.31), we have

w∆(t) = (z[2](t))∆
(

α(t)

zγ(t)

)
+ (z[2](t))σ

(
α∆(t)zγ(t)− α(t)(zγ(t))∆

zγ(t)(zγ(t))σ

)
≤ −α(t)Q(t) +

(z[2](t))σ

zγ(σ(t))
α∆
+(t)−

(z[2](t))σα(t)(zγ(t))∆

zγ(t)(zγ(t))σ
. (32)

By the P?tzsche chain rule, if z∆(t) > 0 and γ ≥ 1, then

(zγ(t))∆ = γ

∫ 1

0

[z(t) + µ(t)hz∆(t)]γ−1z∆(t)dh

= γ

∫ 1

0

[(1− h)z(t) + hzσ(t)]γ−1z∆(t)dh

≥ γ

∫ 1

0

(z(t))γ−1z∆(t)dh

= γ(z(t))γ−1z∆(t). (33)

Also again by the P?tzsche chain rule, if z∆(t) > 0 and 0 < γ < 1, then

(zγ(t))∆ = γ

∫ 1

0

[z(t) + µ(t)hz∆(t)]γ−1z∆(t)dh

= γ

∫ 1

0

[(1− h)z(t) + hzσ(t)]γ−1z∆(t)dh

≥ γ

∫ 1

0

(zσ(t))γ−1z∆(t)dh

= γ(zσ(t))γ−1z∆(t). (34)
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Since z[2](t) > 0 and using (3.33)-(3.34), we get

(z[2](t))σα(t)(zγ(t))∆

zγ(t)(zγ(t))σ
≥ 0.

In view of z[2](t) is decreasing and t ≤ σ(t), we have

(z[2](t))σ ≤ z[2](t). (35)

Therefore, from (3.35), Lemma 2 and z∆(t) > 0, we obtain

w∆(t) ≤ −α(t)Q(t) +
α∆
+(t)

rγ1 (t, t1)
.

Integrating the above inequality from T to t for t ≥ T , we get∫ t

T

[
α(s)Q(s)−

α∆
+(s)

rγ1 (s, t1)

]
∆s ≤ w(t1)− w(t) < w(t1). (36)

Taking lim sup on both sides as t → ∞, we obtain a contradiction with (3.17).
Therefore, every solution x(t) of (1.1) is oscillatory. When (ii) of Lemma 1 holds,
we can conclude from Lemma 3 that lim

t→∞
x(t) = 0.

(ii) From (3.32), we have

w∆(t) ≤ −α(t)Q(t) + wσ(t)
α∆(t)

ασ(t)
− (z[2](t))σα(t)(zγ(t))∆

zγ(t)(zγ(t))σ
.

Since z(t) is increasing, z[2](t) is decreasing and using Lemma 2, for γ > 1, we get

(z[2](t))σα(t)(zγ(t))∆

zγ(t)(zγ(t))σ
≥ γ(z(t))γ−1z∆(t)α(t)(z[2](t))σ

zγ(t)(zγ(t))σ

≥ γz∆(t)α(t)(z[2](t))σ

zγ+1(σ(t))

≥ γr2(t, t1)[z
[2](t)]

1
γ α(t)(z[2](t))σ

r1(t)zγ+1(σ(t))

≥ γ
r2(t, t1)α(t)

r1(t)α
γ+1
γ (σ(t))

(wσ(t))
γ+1
γ . (37)

From z(t) is increasing, z[2](t) is decreasing and Lemma 2, for 0 < γ ≤ 1, we get

(z[2](t))σα(t)(zγ(t))∆

zγ(t)(zγ(t))σ
≥ γ(zσ(t))γ−1z∆(t)α(t)(z[2](t))σ

zγ(t)(zγ(t))σ

≥ γz∆(t)α(t)(z[2](t))σ

zγ+1(σ(t))

≥ γr2(t, t1)[z
[2](t)]

1
γ α(t)(z[2](t))σ

r1(t)zγ+1(σ(t))

≥ γ
r2(t, t1)α(t)

r1(t)α
γ+1
γ (σ(t))

(wσ(t))
γ+1
γ . (38)

From (3.37) and (3.38), we obtain

w∆(t) ≤ −α(t)Q(t) + wσ(t)
α∆(t)

ασ(t)
− γ

r2(t, t1)α(t)

r1(t)α
γ+1
γ (σ(t))

(wσ(t))
γ+1
γ . (39)
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Setting

B =
α∆(t)

ασ(t)
, A = γ

r2(t, t1)α(t)

r1(t)α
γ+1
γ (σ(t))

, u = wσ(t)

and using Lemma 4, we obtain

w∆(t) ≤ −
[
α(t)Q(t) +

rγ1 (s)(α
∆
+(s))

γ+1

(γ + 1)γ+1αγ(s)r2(t, t1)

]
.

Integrating the above inequality from T to t for t ≥ T , we obtain∫ t

T

[
α(s)Q(s)−

rγ1 (s)(α
∆
+(s))

γ+1

(γ + 1)γ+1αγ(s)r2(s, t1)

]
∆s ≤ w(t1)− w(t) < w(t1). (40)

Taking lim sup on both sides as t → ∞, we obtain a contradiction with (3.18).
Therefore, every solution x(t) of (1.1) is oscillatory. When Case (ii) of Lemma 1
holds, we can conclude from Lemma 3 that lim

t→∞
x(t) = 0.

(iii) Since (3.39), we have that for H ∈ H and t ≥ T∫ t

T

H(t, s)α(s)Q(s)∆s ≤ −
∫ t

T

H(t, s)w∆(s)∆s+

∫ t

T

H(t, s)wσ(s)
α∆(s)

ασ(s)
∆s

−
∫ t

T

γ
H(t, s)r2(s, t1)α(s)

r1(s)α
γ+1
γ (σ(s))

(wσ(s))
γ+1
γ ∆s.

By integration by parts we obtain

−
∫ t

T

H(t, s)w∆(s)∆s = H(t, T )w(T ) +

∫ t

T

H∆
s (t, s)wσ(s)∆s.

It follows that∫ t

T

H(t, s)α(s)Q(s)∆s ≤ H(t, t1)w(t1) +

∫ t

T

[
H∆

s (t, s) +H(t, s)
α∆(s)

ασ(s)

]
wσ(s)∆s

−
∫ t

T

γ
H(t, s)r2(s, t1)α(s)

r1(s)α
γ+1
γ (σ(s))

(wσ(s))
γ+1
γ ∆s.

Let

B =
C(t, s)

ασ(s)
, A =

γH(t, s)r2(s, t1)α(s)

r1(s)α
γ+1
γ (σ(s))

, u = wσ(s).

From Lemma 4, we obtain that for all t ≥ T ,∫ t

T

H(t, s)α(s)Q(s)∆s ≤ H(t, T )w(T ) +

∫ t

T

[C(t, s)]γ+1rγ1 (s)

Hγ(t, s)(γ + 1)γ+1αγ(s)
∆s.

That is,

1

H(t, T )

∫ t

T

[
H(t, s)α(s)Q(s)− rγ1 (s)[C(t, s)]γ+1

Hγ(t, s)(γ + 1)γ+1αγ(s)

]
∆s ≤ w(T ).

Taking lim sup on both sides as t → ∞, we obtain a contradiction with (3.19).
Therefore, every solution x(t) of (1.1) is oscillatory. When (ii) of Lemma 1 holds,
we can conclude from Lemma 3 that lim

t→∞
x(t) = 0.

(iv) Multiplying (3.39) by (t− s)m and integrating from T to t, we have
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∫ t

T

(t− s)mα(s)Q(s)∆s ≤ −
∫ t

T

(t− s)mw∆(s)∆s+

∫ t

T

(t− s)mwσ(s)
α∆(s)

ασ(s)
∆s

−
∫ t

T

γ
(t− s)mr2(s, t1)α(s)

r1(s)α
γ+1
γ (σ(s))

(wσ(s))
γ+1
γ ∆s. (41)

By integration by parts we obtain

−
∫ t

T

(t− s)mw∆(s)∆s = (t− T )mw(T ) +

∫ t

T

((t− s)m)∆swσ(s)∆s. (42)

Next, we show that if t ≥ σ(s) and m ≥ 1, then

((t− s)m)∆s ≤ −m(t− σ(s))m−1. (43)

If µ(s) = 0 then we have

((t− s)m)∆s = −m(t− s)m−1.

If µ(s) ̸= 0 then we have

((t− s)m)∆s =
1

µ(s)
[(t− σ(s))m − (t− s)m]

= − 1

σ(s)− s
[(t− s)m − (t− σ(s))m].

Using inequality

Aγ −Bγ ≥ γBγ−1(A−B),

where A and B are nonnegative constants and γ ≥ 1, we have

[(t− s)m − (t− σ(s))m] ≥ m(t− σ(s))m−1(σ(s)− s)

so we see that (3.43) holds.
From (3.41)-(3.43), we obtain∫ t

T

(t− s)mα(s)Q(s)∆s ≤ (t− T )w(T )

+

∫ t

T

[
(t− s)m

α∆(s)

ασ(s)
−m(t− σ(s))m−1

]
wσ(s)∆s

−
∫ t

T

γ
(t− s)mr2(s, t1)α(s)

r1(s)α
γ+1
γ (σ(s))

(wσ(s))
γ+1
γ ∆s.

Let

u := wσ(s), B := (t−s)m
α∆(s)

ασ(s)
−m(t−σ(s))m−1, A := γ

(t− s)mr2(s, t1)α(s)

r1(s)α
γ+1
γ (σ(s))

.

From Lemma 4, we obtain that for all t ≥ T ,∫ t

T

(t− s)mα(s)Q(s)∆s ≤ (t− T )mw(T )

+

∫ t

T

[B(t, s)]γ+1rγ1 (s)

(t− s)mγ(γ + 1)γ+1αγ(s)r2(s, t1)
∆s,
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that is,

1

tm

∫ t

T

[
(t− s)mα(s)Q(s)−D(s, t1)

Bγ+1(t, s)

(t− s)mγ

]
∆s ≤ w(T ). (44)

Taking lim sup on both sides as t → ∞, we obtain a contradiction with (3.20).
Therefore, every solution x(t) of (1.1) is oscillatory. When Case (ii) of Lemma 1
holds, we can conclude from Lemma 3 that lim

t→∞
x(t) = 0.

The proof is completed. �
Theorem 2 Let γ ≥ 1. Assume that m is a positive real valued ∆-differentiable
function such that

m(t)

r1(t, t1)r
1
γ

2 (t)r∆1 (t)
−m∆(t) ≤ 0 (45)

and

1− p1(t)− p2(t)
m(η2(t))

m(t)
> 0. (46)

Furthermore

∫ ∞

t0

1

r1(t)

∫ ∞

t

[
1

r2(s)

∫ ∞

s

[q1(u) + q2(u)]∆u

] 1
γ

∆s∆t = ∞ (47)

and one of the following conditions satisfied for sufficiently large t1 ∈ T:
(i) there exists a function α ∈ C1

rd(T, (0,∞)) for δ1(T ) > t1 such that

lim
t→∞

sup

∫ t

T

[
α(s)Q(s)−

rγ1 (s)(α
∆
+(s))

2

23−γ(µ(s))γ−1α(s)rγ2 (s, t1)

]
∆s = ∞, (48)

where

Q(s) := q1(s)

(
m(δ1(s))

m(s)

)γ(
1− p1(δ1(s))− p2(δ1(s))

m(η2(δ1(s)))

m(δ1(s))

)γ

+q2(s)

(
1− p1(δ2(s))− p2(δ2(s))

m(η2(δ2(s)))

m(δ2(s))

)γ

,

(ii) there exists a function α ∈ C1
rd(T, (0,∞)) for δ1(T ) > t1 such that

lim
t→∞

sup
1

H(t, T )

∫ t

T

[
D(t, s)− [C(t, s)]2rγ1 (s)

H(t, s)23−γα(s)(µ(s))γ−1rγ2 (s, t1)

]
∆s = ∞, (49)

where

C(t, s) := H∆
s (t, s)ασ(s) +H(t, s)α∆(s), D(t, s) := H(t, s)α(s)Q(s),

(iii) there exists a function α ∈ C1
rd(T, (0,∞)) and H ∈ H for δ1(T ) > t1 such that

lim
t→∞

sup
1

tm

∫ t

T

[
(t− s)mα(s)Q(s)− E(s, t1)

[F (t, s)]2

(t− s)m

]
∆s = ∞, (50)

where

E(s, t1) :=
rγ1 (s)

23−γα(s)(µ(s))γ−1rγ2 (s, t1)

and
F (t, s) := (t− s)mα∆(s)−m(t− σ(s))m−1ασ(s).

Then every solution of (1.1) is either oscillatory or lim
t→∞

x(t) = 0.
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Proof. Assume the contrary and let x be a nonoscillatory solution of (1.1). With-
out loss of generality, we may assume that t1 ∈ [t0,∞)T such that

x(t) > 0, x(ηi(t)) > 0, x(δi(t)) > 0, i = 1, 2 for t ≥ t1.

We first consider that x(t) satisfies Case (i) in Lemma 1.
(i) Using the inequality

xγ − yγ ≥ 21−γ(x− y)γ , γ ≥ 1

we have

(zγ(t))∆ =
zγ(σ(t))− zγ(t)

µ(t)
≥ 21−γ 1

µ(t)
(zγ(σ(t))− zγ(t))γ

= 21−γ(µ(t))γ−1

(
zγ(σ(t))− zγ(t)

µ(t)

)γ

= 21−γ(µ(t))γ−1(z∆(t))γ .

From (3.33), (3.39), z∆(t) > 0, Lemma 2 and using the fact that u−mu2 ≤ 1
4m

for every u, we obtain

w∆(t) ≤ −α(t)Q(t) + wσ(t)
α∆(t)

ασ(t)
− (z[2](t))σα(t)21−γ(µ(t))γ−1(z∆(t))γ

zγ(t)(zγ(t))σ

≤ −α(t)Q(t) + wσ(t)
α∆(t)

ασ(t)
− 21−γ(µ(t))γ−1(z∆(t))γ

(z[2](t))σ(ασ(t))2
(wσ(t))2

≤ −α(t)Q(t) + wσ(t)
α∆(t)

ασ(t)
− α(t)21−γ(µ(t))γ−1rγ2 (t, t1)

(ασ(t))2rγ1 (t)
(wσ(t))2

≤ −α(t)Q(t) +
α∆(t)

ασ(t)

[
wσ(t)− α(t)21−γ(µ(t))γ−1rγ2 (t, t1)

(ασ(t)rγ1 (t)α
∆(t)

(wσ(t))2
]

≤ −α(t)Q(t) +
rγ1 (t)(α

∆(t))2

23−γ(µ(t))γ−1α(t)rγ2 (t, t1)
.

Integrating the last inequality from T to t, we obtain∫ t

T

[
α(s)Q(s)−

rγ1 (s)(α
∆
+(s))

2

23−γ(µ(s))γ−1α(s)rγ2 (s, t1)

]
∆s ≤ w(t1).

Taking lim sup on both sides as t → ∞, we obtain a contradiction with (3.48).
Therefore, every solution x(t) of (1.1) is oscillatory. When Case (ii) of Lemma 1
holds, we can conclude from Lemma 3 that lim

t→∞
x(t) = 0.

(ii) From (3.39), we have that for H ∈ H and t ≥ t1∫ t

T

H(t, s)α(s)Q(s)∆s ≤ −
∫ t

T

H(t, s)w∆(s)∆s+

∫ t

T

H(t, s)
α∆(s)

ασ(s)
wσ(s)

−
∫ t

T

H(t, s)α(s)21−γ(µ(s))γ−1rγ2 (s, t1)

(ασ(s))2rγ1 (s)
(wσ(s))2∆s.

By integration by parts we obtain

−
∫ t

T

H(t, s)w∆(s)∆s = H(t, T )w(T ) +

∫ t

T

H∆
s (t, s)wσ(s)∆s.
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Using the fact that u−mu2 ≤ 1
4m , we obtain∫ t

T

H(t, s)α(s)Q(s)∆s ≤ H(t, T )w(T ) +

∫ t

T

[H∆
s (t, s) +H(t, s)

α∆(s)

ασ(s)
]wσ(s)∆s

−
∫ t

T

H(t, s)α(s)21−γ(µ(s))γ−1rγ2 (s, t1)

(ασ(s))2rγ1 (s)
(wσ(s))2∆s

≤ H(t, T )w(T ) +

∫ t

T

[C(t, s)]2rγ1 (s)

H(t, s)23−γα(s)(µ(s))γ−1rγ2 (s, t1)
∆s.

It follows that

1

H(t, T )

∫ t

T

[
H(t, s)α(s)Q(s)− [C(t, s)]2rγ1 (s)

H(t, s)23−γα(s)(µ(s))γ−1rγ2 (s, t1)

]
∆s ≤ w(T ).

Taking lim sup on both sides as t → ∞, we obtain a contradiction with (3.49).
Therefore, every solution x(t) of (1.1) is oscillatory. When Case (ii) of Lemma 1
holds, we can conclude from Lemma 3 that lim

t→∞
x(t) = 0.

(iii) Multiplying (3.39) by (t− s)m and integrating from T to t, we have

∫ t

T

(t− s)mα(s)Q(s)∆s ≤ −
∫ t

T

(t− s)mw∆(s)∆s+

∫ t

T

(t− s)m
α∆(s)

ασ(s)
wσ(s)

−
∫ t

T

(t− s)mα(s)21−γ(µ(s))γ−1rγ2 (s, t1)

(ασ(s))2rγ1 (s)
(wσ(s))2∆s.

Since (3.42), (3.43) and the fact that u−mu2 ≤ 1
4m , we obtain∫ t

T

(t− s)mα(s)Q(s)∆s ≤ (t− T )mw(T )

+

∫ t

T

[(t− s)m
α∆(s)

ασ(s)
−m(t− σ(s))m−1]wσ(s)∆s

−
∫ t

T

(t− s)mα(s)21−γ(µ(s))γ−1rγ2 (s, t1)

(ασ(s))2rγ1 (s)
(wσ(s))2∆s

≤H(t, T )w(T ) +

∫ t

T

[B(t, s)]2rγ1 (s)

(t− s)m23−γα(s)(µ(s))γ−1rγ2 (s, t1)
∆s.

That is,

1

tm

∫ t

T

[
(t− s)mα(s)Q(s)− E(s, t1)

[F (t, s)]2

(t− s)m

]
∆s ≤ w(T ).

Taking lim sup on both sides as t → ∞, we obtain a contradiction with (3.50).
Therefore, every solution x(t) of (1.1) is oscillatory. When Case (ii) of Lemma 1
holds, we can conclude from Lemma 3 that lim

t→∞
x(t) = 0.

The proof is completed. �
Example 1 Let T = Z and we consider the following third order neutral dynamic
equation:(((

1

t
(x(t)+

1

2
x(t−1)+

t

3(t+ 1)
x(t+1)

)∆)∆)3)∆

+
8

t
1
3

x3

(
t

2

)
+

2

t
1
3

x3(2t) = 0,

t ∈ [2,∞)T.
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(H1) η1(t) = t− 1 ≤ t, η1(t) = t+ 1 ≥ t, δ1(t) =
t
2 ≤ t, δ2(t) = 2t ≥ t,

lim
t→∞

ηi(t) = lim
t→∞

δi(t) = ∞,

(H2) r1(t) =
1
t ∈ Crd(T,R+), r∆1 (t) = − 1

t(t+1) < 0, r2(t) = 1 ∈ Crd(T,R+),∫∞
2

(
1

r2(t)

) 1
γ

∆t = lim
a→∞

∫ a

2

∆t = lim
a→∞

a − 2 = ∞,

∫ ∞

2

1
1
t

∆t =

∫ ∞

2

t∆t =

lim
a→∞

a∑
2

k = lim
a→∞

a(a+ 1)

2
− 1 = ∞, p1(t) =

1

2
∈ Crd(T, [0, 1)), p2(t) =

t

3(t+ 1)
∈ Crd(T, [0, 1)), 0 < p1(t) + p2(t) <

1

2
+

1

3
< 1,

(H3) q1(t) =
8

t
1
3
∈ Crd(T,R+), q2(t) =

2

t
1
3
∈ Crd(T,R+), r2(t, t1) =

∫ t

t1
∆s = t− t1,

r1(t, t1) =

∫ t

t1

s− t1
1
s

∆s =

∫ t

t1

(s2 − t1s)∆s =

t−1∑
1

s2 − t1s−
t1−1∑
1

s2 − t1s

=
(t− 1)t(2t− 1)

6
− t1(t− 1)t

2
− (t1 − 1)t1(2t1 − 1)

6
+

t1(t1 − 1)t1
2

=
t(t− 1)(2t− 1− 3t1) + t1(t1 − 1)(t1 + 1)

6

and so

r1(t, t1)r
1
3
2 (t)r

∆
1 (t) =

(
t(t− 1)(2t− 1− 3t1) + t1(t1 − 1)(t1 + 1)

6

)(
− 1

t(t+ 1)

)
.

Let m(t) = t, thus

1− p1(t)− p2(t)
m(η2(t))

m(t)
= 1− 1

2
− t

3(t+ 1)

t+ 1

t
=

1

6
> 0.

Let we define,

h(t) = t(t− 1)(2t− 1− 3t1) + t1(t1 − 1)(t1 + 1).

For t > t1, we get

h∆(t) = (t− 1)(2t− 1− 3t1) + (t+ 1)[1.(2t− 1− 3t1) + t.2]

= (t− 1)(2t− 1− 3t1) + (t+ 1)[4t− 1− 3t1]

= 2t2 − t− 3tt1 − 2t+ 1 + 3t1 + 4t2 − 3tt1 − t+ 4t− 3t1 − 1

= 6t2 − 6tt1 = 6t(t− t1) > 0,

so the function h(t) is increasing.
Since

h(t1) = t1(t1 − 1)(2t1 − 1− 3t1) + t1(t1 − 1)(t1 + 1)

= t1(t1 − 1)(2t1 − 1− 3t1 + t1 + 1) = 0,

we have

h(t) > h(t1) = 0.

It follows that

− 6t2(t+ 1)

t(t− 1)(2t− 1− 3t1) + t1(t1 − 1)(t1 + 1)
≤ 0.
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So we have

m(t)

r1(t, t1)r
1
3
2 (t)r

∆
1 (t)

−m∆(t) = − 6t2(t+ 1)

t(t− 1)(2t− 1− 3t1) + t1(t1 − 1)(t1 + 1)
− 1 ≤ 0

and

Q(s) := q1(s)

(
m(δ1(s))

m(s)

)γ(
1− p1(δ1(s))− p2(δ1(s))

m(η2(δ1(s)))

m(δ1(s))

)γ

+q2(s)

(
1− p1(δ2(s))− p2(δ2(s))

m(η2(δ2(s)))

m(δ2(s))

)γ

=
8

s
1
3

( s
2

s

)3(
1− 1

2
−

t
2

3( t2 + 1)

t
2 + 1

t
2

)3

+
2

s
1
3

(
1− 1

2
− 2t

3(2t+ 1)

2t+ 1

2t

)3

=
1

108s
1
3

.

Let α(s) = 1 in (ii) of Theorem 3.1, δ1(T ) =
T
2 > t1 and we obtain

lim
t→∞

sup

∫ t

T

Q(s)∆s = lim
t→∞

sup

∫ t

T

[
1

108s
1
3

]
∆s =

1

108
lim
t→∞

sup
t−1∑
T

1

k
1
3

= ∞.

Since Theorem 1, every solution of the neutral dynamic equation is oscillatory
or lim

t→∞
x(t) = 0.
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