
Electronic Journal of Mathematical Analysis and Applications

Vol. 7(2) July 2019, pp. 138-150.

ISSN: 2090-729X(online)

http://math-frac.org/Journals/EJMAA/

————————————————————————————————

TRANSMISSION DYNAMICS OF CHOLERA EPIDEMIC MODEL

WITH LATENT AND HYGIENE COMPLIANT CLASS

O. M. OGUNMILORO AND T. O. OGUNLADE

Abstract. Cholera is a dreadful disease caused by the intake of food or water
infested with bacterium vibrio cholerae. This disease remains burdensome for

public health practitioners globally to overcome unless drastic measures are

taken to stop the disease spread. In this paper, a non - linear, autonomous,
system of differential equations incorporating important features of cholera

dynamics such as, hygiene, treatment, sanitation, e.t.c. is presented. The

model has a unique positive solution, it exists and its behavior relies on the
initial data. Also, it is realistic in an epidemic sense. A basic threshold known

as the reproduction number is obtained and analyzed. the local and global

analysis is investigated at the cholera free and endemic points obtained when
the model system is time - independent. However if R0 > 1 cholera invades

the population and if R0 ≤ 1 cholera as a disease vanishes out of the host

population. Numerical simulation is performed on the cholera model system
to validate the theoretical results.

1. Introduction

Cholera is a disease which spreads contagiously in an indirect way through reser-
voir to human and human to human contact. It is a gastrointestinal infection ac-
companied by clinical manifestations of severe vomiting and diarrhea, loss of body
fluid and electrolytes, and death. According to WHO fact sheet (2018) [[1], [2]],
between 1.3 to 4 million cases of cholera occurred and between 21, 000 to 143, 000
people died of cholera in the world. Due to the challenge cholera poses to the public
health sector, it still remains the leading cause of death rate, most especially in the
third world countries [[13], [14], [16], [17]]. Highly unsafe areas which cholera thrives
are, slums, refugee camps, people residing on dung hills and riversides. If proper
medical attention is made available to these areas such that water sources are being
treated, then, the disease would be eradicated drastically [[15], [18], [19]].In order to
gain insight and understanding of the epidemiological complexities involved in the
transmission dynamics of cholera, several articles have used mathematical analysis
and techniques to model the cholera epidemic [[3], [4], [5], [12], [20], [23], [22], [24]].
R0 is another important threshold in studying the stabilities of epidemic models. It
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is the average number of secondary cases of cholera disease arising when a cholera
infected individual is introduced into the population of individuals susceptible to
cholera disease during his or her life time of infections [[9], [10], [11]]. [6] proposed
a model describing the concentration of V cholerae in water and incorporating it
into SIR model. Also, [21] in her masters thesis worked on cholera models with fo-
cus on south Sudan where he investigated spatially explicit setting of local human
communities. Bifurcation analysis is used to investigate qualitatively the existence
of endemic equilibrium, and it was shown that the model in this work exhibits
backward bifurcation [[7], [8]]. In this work, a cholera model, including a latent and
hygiene compliant class is studied and analyzed. The paper is organized as follows;
section(2) involves the model formulation, analysis of positivity and boundedness
of the model solutions and obtaining the basic reproduction number. Section (3)
discusses the local and global analysis is investigated at the cholera free equilib-
rium point. Section (4) presents the analysis of the local asymptotic stability of
the cholera endemic equilibrium point by employing the center manifold theory.
In section (5), numerical simulations is carried out and analysed to validate the
results. Also, conclusions and recommendations were made.

2. Mathematical Model Formulation

In this section, a six dimensional autonomous first order differential equations
is considered. The host population is subdivided into compartmental classes of
state variables of susceptible S(t), individuals who are prone to contacting cholera
through human or environment. Exposed or Latent E(t), individuals who are
infected with cholera but not yet showing clinical manifestation of the disease. In-
fected I(t), are individuals who have shown symptoms of cholera and are able to
transmit the disease. Recovered R(t) are individuals who recovered from cholera
through treatment. Hygiene compliant H(t) are individuals who undergo regu-
lar hygenic practices. While, C(t) denotes the concentration of vibrios in water
reservoir. Thus, the time evolution cholera epidemic model is given by,

Ṡ = A− β1S
C

j + C
− β2SI − µS + ωR+ (1− ρ)R

Ė = β1S
C

j + C
+ β2SI − (k + µ)E

İ = kE − (α+m+ µ)I

Ṙ = αI − µR− ωR

Ḣ = ρR− µH

Ċ = ξI − δC − ηC (1)

Subject to initial conditions S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0,
H(0) = H0, C(0) = C0.

In (1), A is the per capita rate of recruitment of individuals into the susceptible
host population, while β1 and β2 are the rates at which vibrios are being ingested
through contaminated water and human to human contagious interactions respec-
tively. µ, is the natural death rate of humans, j is denoted as the concentration
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of vibrios in contaminated water, while ξ represents the contribution of human to
V.cholerae, δ is the decay or death rate of vibrios. Also, η represents the rate at
which the contaminated water is disinfected with chemicals e.g chlorine. ω repre-
sents the loss of immunity of an individual after recovery by becoming susceptible
again. k is the progression rate of new clinical manifestations and α is the recovery
rate of cholera infected individuals. m is the cholera induced death rate, while ρ
represents individuals compliant to hygiene and (1−ρ) also, represents the fraction
of individuals that are not compliant to hygiene thus being susceptible to cholera
disease. The following assumptions where made in formulating (1)

a. Disinfecting water sources leads to death of V.cholerae
b. Per capita birth rate and natural death rate occurs at different states
c. There is no permanent recovery, recovered individuals becomes susceptible

to the disease
d. The total host population is not constant
e. fraction of individuals not compliant to hygiene are susceptible to cholera.
f. The population is mixed homogenously

Considering the assumptions listed above coupled with the parameters and state
variables involved in the model formulation, (1) is thus established.

2.1. Positivity of Solution.

Theorem 1. Given that S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, H(0) ≥ 0, C(0) ≥
0, the trajectories of (1) is positively invariant.

Proof. Let Ω = Sup{t > 0|S > 0, E > 0, I > 0, R > 0, H > 0, C > 0} �

Considering the first state equation,

Ṡ = A− β1s
C

j + C
− β2SI − µS + ωR+ (1− ρ)R (2)

such that,

Ṡ ≥ A− (β1
C

j + C
+ β2 + µ)S (3)

so that

Ṡ + (β1
C

j + C
+ β2 + µ)S = A (4)

solving (4), we obtain

S(t) =
A

β1
C
j+C + β2I + µ

+ Ce−(β1
C

j+C +β2I+µ)t ≥ 0 (5)

Following the same procedure for the remaining five state equations, it can be shown
that,

E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, H(t) ≥ 0, C(t) ≥ 0
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2.2. Boundedness of (1).

Theorem 2. The solutions of S(t), E(t), I(t), R(t), H(t), C(t) of (1) are bounded

Proof. Adding up the systems of equations in (1) yields,

Ṅ = A− (S + E + I +R+H + C)µ−mI − ξI − δC − ηC (6)

at the absence of infections and mortality, we obtain,

Ṅ = A− µN (7)

integrating both sides of (7) yields,∫
dN

dt
=

∫
A− µN (8)

such that

− 1

µ
ln(A− µN) ≤ t+ c (9)

so that,

N =
A

µ
+ Ce−µt (10)

where C is a constant. Therefore,

lim
x→∞

(
A

µ
+

C

eµt
) =

A

µ
(11)

this shows that A
µ is the upper bound while 0 is the lower bound of (1) therefore,

ξ =
[
(S,E, I,R,H,C) ∈ <+6|S + E + I +R+H + C ≤ A

µ

]
(12)

is positively invariant and the model system (1) is well posed mathematically and
realistic in an epidemic sense. �

2.3. Basic Reproduction Number. The basic reproduction number is a dimen-
sionless rate [10, 11] defined as the average number of secondary cholera cases gen-
erated when a cholera infected individual is introduced into a susceptible host pop-
ulation during his or her life time of infections. However, if R0 < 1, then cholera
dies out in the host population. But, if R0 > 1 cholera as a disease invades the
population which allows for drastic control measures to be put in place by pub-
lic health administrators. The R0 is computed using the next generation matrix
operator approach. see[5, 10, 11].

Theorem 3. The basic reproduction number of (1) is given by,

R0 =
1

2

kβ2A+
√
kAβ2(kβ2A+ 4(k + µ)(α+m+ µ)µ)

µ(α+m+ µ)(k + µ)
(13)

Proof. Let FV −1 =
[∂Fi(E

0)
∂xj

][∂V1(E
0)

∂xj

]
Where Fi is the clinical manifestations of

disease symptoms in the ith compartment
V +
i is the rate of transfer of individuals into i by all other means. While V −i is

the rate of transfer of individuals out of compartment associated with i, such that,
V = V −i − V

+
i ; thus, �



142 O. M. OGUNMILORO AND T. O. OGUNLADE EJMAA-2019/7(2)

F =



0 0 0 0 0 0
0 0 β2

A
µ 0 0 0

0 k 0 0 0 0
0 0 α 0 0 0
0 0 0 0 0 0
0 0 ξ 0 0 0


and,

V =


µ 0 β2

A
µ ω + (1− ρ) 0 0

0 k + µ 0 0 0 0
0 −k α+m+ µ 0 0 0
0 0 −α µ+ ω 0 0
0 0 0 −ρ µ 0
0 0 −ξ 0 0 δ


R0(FV −1) as the spectral radius is the dominant eigen value given by,

R0 =
1

2

kβ2A+
√
kAβ2(kβ2A+ 4(k + µ)(α+m+ µ)µ)

µ(α+m+ µ)(k + µ)
(14)

3. Local and Global Stability Analysis of Cholera Free Equilibrium
Point

3.1. Local Analysis. In order to analyze the local asymptotic stability of the
cholera free equilibrium solutions, we make the model system (1) static by obtaining
the time independent solutions of the model, at when I = E = C = 0 i.e No cholera
disease in the system. Then,

E0 = (S,E, I,R,H,C) = (
A

µ
, 0, 0, 0, 0, 0) (15)

Theorem 4. The cholera free equilibrium E0 of (1) is locally asymptotically stable
if R0 < 1 and unstable, if R0 > 1

Proof. The Jacobian matrix at cholera free equilibrium is given by,

J(E0) =


−µ 0 β2

A
µ ω + (1− ρ) 0 0

0 −(k + µ) 0 0 0 0
0 k −(α+m+ µ) 0 0 0
0 0 α −(µ+ ω) 0 0
0 0 0 ρ −µ 0
0 0 ξ 0 0 −(δ + η)

 (16)

The characteristics polynomial of (16) is given as

(µ+ λ)2(µ+ ω + λ)(η + δ + λ)(m+ µ+ α+ λ)(k + µ+ λ)(1−R0) (17)

where,

λ6 + d1λ
5 + d2λ

4 + d3λ
3 + d4λ

2 + d5λ+ d6 = 0 (18)

employing the Routh - Hurwitz theorem on stability [22], the cholera free equilib-
rium point associated with (16) is stable if and only if all the determinants of all
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the Hurwitz matrices are positive. That is, Det(Zj) > 0, j = 1, 2, ...k and the
trace −(5µ+ k + α+m+ ω + δ + η) < 0. The Hurwitz matrix are given by

Z1 = (d1) > 0 Z2 =

(
d1 1
d3 d2

)
(19)

d1 1 0
d3 d2 d1
d5 d4 d3

 > 0


d1 1 0 0
d3 d2 d1 1
d5 d4 d3 d2
0 d6 d5 d4

 > 0 (20)


d1 1 0 0 0 0
d3 d2 d1 0 0
d5 d4 d3 d2 d1
0 d6 d5 d4 d3
0 0 0 d6 d5

 > 0


d1 1 0 0 0 0
d3 d2 d1 1 0 0
d5 d4 d3 d2 0 0
0 d6 d5 d4 d3 0
0 0 0 d6 d5 0
0 0 0 0 0 d6

 > 0 (21)

since all the characteristics polynomials requires that all di > 0 for i = 1, 2, ..6,
and all the eigenvalues are negative shows that R0 < 1. Hence, the cholera free
equilibrium is locally asymptotically stable. �

3.2. Global Analysis.

Theorem 5. According to Castillo - Chavez et al [11, 23], the following two condi-
tions must be satisfied. given

dP

dt
= Q(P,Q)

dQ

dt
= R(P,Q) (22)

such that R(P, 0) = 0

Proof. Let P = (S,R,H) and Q = (E, I, C). Where P ∈ <3 represents the number
of individuals who are not infected with cholera, and Q ∈ <3 represents the number
of individuals who are infected with cholera, such that the cholera free equilibrium
can be written as

E0 = (P ∗, Q∗) = (P ∗, 0)

i if for dP
dt = Q(P, 0), P ∗ is locally asymptotically stable.

ii for R(P,Q) = GZ − R̂(P,Q), R̂(P,Q) ≥ 0 for (P,Q) ∈ ξ
G = DzR(P ∗, 0) is a Metzler matrix, since all the diagonal elements are non nega-
tive and ξ is the domain where the model is realistic in an epidemic sense,

Q(P, 0) =

A+ ωR+ (1− ρ)R− µS
−(µ+ ω)R
ρR− µH

 , R(P,Q) =

β1S C
j+C + βSI − (k + µ)E

kE − (α+m+ µ)I
ξI − δC − ηC


(23)

Clearly when E = I = C = 0, then, R(P, 0) = 0. Also,

G =

−(k + µ) β2S β1S
C

(j+C)2

k −(α+m+ µ) 0
0 ξ −(δ + η)

 (24)
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and,

R̂(P,Q) =

β1(S∗ − S) C
j+C + β(S∗ − S)I − (k + µ)E

kE − (α+m+ µ)I
ξI − (δ + η)C

 (25)

since S∗ > S, it is clear that R̂(P,Q) ≤ 0, which proves, that the cholera free
equilibrium is globally asymptotically stable. �

4. Local Stability Analysis of Cholera Endemic Equilibrium

4.1. Local Analysis. In order to analyze the local asymptotic stability of the
cholera endemic equilibrium, we make the model system (1) static by obtaining
the time independent solutions of the model, at when I = E = C 6= 0 i.e cholera
disease is present in the system. Then,

S∗∗ =
R∗∗((ω − ρ+ 1) +A)(j + C∗∗)

C∗∗(I∗∗β2 + µ+ β1) + j(I∗∗β2 + µ)

E∗∗ =
S∗∗(I∗∗β2 + I∗∗C∗∗β2 + C∗∗β1)

(j + C∗∗)(k + µ)

I∗∗ =
kE∗∗

α+m+ µ

R∗∗ =
I∗∗α

µ+ ω

H∗∗ =
ρR∗∗

µ

C∗∗ =
ξI∗∗

δ + η
(26)

The asymptotic stability of the cholera endemic equilibrium analyzed at each eigen-
values gotten from the Jacobian matrix of (1) at each equilibrium points (26). The
center manifold theory [11, 23] is applied and the following representations where
made by changing the variables of (1), such that;

S = x1, E = x2, I = x3, R = x4, H = x5, C = x6 (27)

the cholera epidemic model is written as a vector as dx
dt = U = (u1, u2, ....., un),

where,

f1 =
dx1
dt

= A− β1
x1x6
j + x6

− β2x1x3 − µx1 + ωx4 + (1− ρ)x4

f2 =
dx2
dt

= β1
x1x6
j + x6

− β2x1x3 − (k + µ)x2

f3 =
dx3
dt

= kx2 − (α+m+ µ)x3

f4 =
dx4
dt

= αx3 − (µ+ ω)x3

f5 =
dx5
dt

= ρx4 − µx5
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f6 =
dx6
dt

= ξx3 − (δ + η)x6 (28)

choosing β2 = β∗2 as a bifurcation parameter and R0 = 1 as the bifurcation point,
then, the center manifold theory can be applied to study the dynamics of (28) near
β2 = β∗2 . The Jacobian of (1) has a right eigen vector associated with the zero eigen
values given by v = [v1, v2, v3, v4, v5, v6] and where,

v =
[ kβ2A

µ(α+m+ µ)
v2, 0,

k

α+m+ µ
v2 ≥ 0,

α

(µ+ ω)
v3,

ρ

µ
v4,

ξ

δ + η
v3

]
(29)

and w = [w1, w2, w3, w4, w5, w6]T is the left eigen vector of the Jacobian of cholera
free equilibrium associated with the non zero eigenvalue at β2 = β∗2 , such that,

w =
[
0, w2 > 0,

(α+m+ µ)

α
w4, w4 =

k + µ

k
w5, w5 > w4, 0

]
(30)

Theorem 6. [8] Consider the general system of differential equations with a pa-
rameter υ such that

dx

dt
= g(x, υ), g : <n ×<+ → <+

and g ∈ C2(<n ×<), and 0 is an equilibrium point of the system for all µ and

H1 B = Dxg(0, 0) = ∂gi(0,0)
∂xj

is the linearization matrix of the system around

the equilibrium 0 with θ evaluated at 0
H2 Zero is a simple eigenvalue of B and all other eigenvalues of B have negative

real parts
H3 Matrix B has a right eigenvectors y and left eigenvectors z corresponding

to zero eigenvalues

if gk be the kth component of g then,

i a =
∑n
k,i,j=1 wk vi vj

∂2gk(0,0)
∂xi∂xj

ii b =
∑n
k,i,j=1 wk vi vj

∂2gk(0,0)
∂xi∂β2

the local dynamics of the system (1) at the equilibrium solutions is deter-
mined by the signs of a and b especially if a > 0 and b > 0 then a subcritical
(or backward) bifurcation occurs at µ = 0.

i a > 0, b > 0 when µ < 0 with |µ| << 1; 0 is locally asymptotically stable and
there exists a positive unstable equilibrium; when 0 < µ << 1; 0 is unstable
and there exist a negative and locally asymptotically stable equilibrium.

ii a < 0, b < 0 when µ < 0 with |µ| << 1; 0 is unstable when 0 < µ << 1; 0 is
unstable and there exist a positive and unstable equilibrium.

iii a > 0, b < 0 when µ < 0 with |µ| << 1; 0 is stable when a locally asymptot-
ically stable negative equilibrium when 0 < µ << 1; 0 is unstable and there
exist a positive and unstable equilibrium occurs.

iv a < 0, b > 0 when µ < 0 if µ changes from negative to positive and 0 changes
from stable to unstable there exist a positive and unstable equilibrium. Also,
a negative unstable equilibrium becomes a positive and locally asymptotically
stable if a > 0 and b > 0 then backward bifurcation occurs at µ = 0
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4.1.1. Computations of Bifurcation Signs a and b. The signs and values of a and
b is determined using the center manifold theorem. since v1 = v6 = 0, for k =
1, 6 then, the values for k = 2, 3, 4, 5 is obtained. After some simplifications and
arrangements, the associated non zero second order partial derivatives at cholera
free points are given by;

a = v2(β1w1w6 + β2w1w2 + w6β1) > 0 (31)

and
b = v2(β1w1 + β2w3) + v6(β1w2 + ξw3) + v3(kw2) > 0 (32)

since a > 0 and b > 0, going by the statement of theorem (6), [[11], [8]] it guarantees
that the local asymptotic stability of the unique cholera endemic equilibrium is
established, if R0 > 1. But close to one, the cholera model (1) undergoes backward
bifurcation, otherwise it will undergo forward bifurcation.

4.2. Numerical Simulations. Table 1: Variables in Model (1) and their
Meanings

Variable Descriptions Values Source
S(0) Susceptible individuals 50 Assumed
E(0) Exposed or Latent individuals 30 Assumed
I(0) Infected individuals 10 Assumed
R(0) Recovered individuals 20 Assumed
H(0) Hygiene Compliant Individuals 15 Assumed
C(0) Concentration of Vibrios 10 Assumed

Table 1: Parameters in Model (1) and their Meanings

Variable Descriptions Values Source
A Per capita recruitment rate 10 persons/day−1 [24]
µ Natural death rate 0.15 persons/day−1 Estimated
ω Loss of immunity 0.22 persons/day−1 [6]
ρ Rate of compliance to hygiene 0.31 persons/day−1 Estimated

(1− ρ) Fraction of individuals not compliant to hygiene 0.41 persons/day Estimated
k Progression rate 0.11 persons/day−1 [4,5]
α Recovery rate 0.0125 persons/day−1 [6, 4]
m Cholera induced death rate 0.03 persons/day−1 [6, 20]
ξ Rate of human contribution to V.cholerae 0.512 persons/day−1 [6, 4]
δ Death rate of vibrios 0.0012 persons/day−1 Estimated
η Rate of treatment of water reservoir 0.014/day−1 [6]
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Figure (1) describes the disease profile of fraction of individuals that are not
compliant to hygiene varied at different parameter values. The sharp rise in the
profile depicts that more susceptible individuals will be exposed or infected without
proper hygiene thereby leading to hospitalization or death.

chl.png

Figure 1. Graph of S(t) against time t varying (1− ρ)

Figure (2) shows the gradual rise of cholera induced death rate when there are no
proper control measures to curtail the spread of cholera disease in the susceptible
host population which portends danger to the host population

lch.png

Figure 2. Graph of I(t) against time t varying m

Figure (3) describes the decline of the rate at which individuals exposed or
infected with cholera recovers from the disease when proper treatment strategies
are put in place, which reduces mortality in the host population.
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aaa.png

Figure 3. Graph of I(t) against time t varying α

Figure (4) depicts the gradual decline of pathogens in infested water reservoir
when proper disinfectants e.g. chlorine are applied to treat the water thereby
leading to death of vibrios.

ccc.png

Figure 4. Graph of C(t) against time t varying η

Figure (5) shows the class of individuals who are hygiene compliant. The sharp
rise and decline in the profile shows that cholera disease infections will be reduced
if a consistent hygenic practice is followed.
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hhh.png

Figure 5. Graph of H(t) against time t

Figure(6) describes the interaction between the susceptible and infected class.
the disease profile is stable and non periodic.

pph.png

Figure 6. Phase diagram of S(t) against I(t)

4.3. Conclusion and Recommendations. We have presented a mathematical
model of cholera by incorporating latency and hygiene compliant class with all
other important features describing the dynamics of cholera transmission. The
model is analyzed in a region where it is well posed and epidemiologically realistic.
We showed that when R0 < 1, the cholera free equilibrium solution is locally and
globally asymptotically stable, thereby leading to an extinction of the disease from
the system. Also, if R0 > 1, a unique unstable endemic equilibrium is established,
leading to the persistence of the disease. The center manifold theory is used to
analyze the endemic equilibrium and the model is shown to exhibit backward bifur-
cation. However, the impact of climatic factors, like, rainfall, temperature, flood,
age structure, prevention and intervention strategies as well as bringing about opti-
mal control measures can be used in extending this work further to forestall lasting
solutions to curtail cholera spread.
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