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A NOTE ON SOME GROWTH PROPERTIES OF COMPOSITE

ENTIRE AND MEROMORPHIC FUNCTIONS USING THEIR

RELATIVE (p, q)-TH ORDERS

TANMAY BISWAS

Abstract. In this paper we wish to study some comparative growth prop-
erties of composite entire and meromorphic functions on the basis of relative

(p, q)-th order and relative (p, q)-th lower order of entire and meromorphic
function with respect to another entire function where p and q are any two
positive integers.

1. Introduction, Definitions and Notations

Let f be an entire function defined in the open complex plane C. The
maximum modulus function Mf (r) corresponding to f is defined on |z| = r as
Mf (r) = max|z| = r |f (z)|. If an entire function f is non-constant then Mf (r)
is strictly increasing and continuous and its inverse Mf

−1 : (|f (0)| ,∞) → (0,∞)

exists and is such that lim
s→∞

M−1
f (s) = ∞. In this connection we just recall the

following definition which is relevant:

Definition 1. {[2]} A non-constant entire function f is said have the Property

(A) if for any σ > 1 and for all sufficiently large r, [Mf (r)]
2 ≤ Mf (r

σ) holds. For
examples of functions with or without the Property (A), one may see [2].

When f is meromorphic, one may introduce another function Tf (r) known
as Nevanlinna’s characteristic function of f, playing the same role as Mf (r) . The

integrated counting function Nf (r, a)
(
Nf (r, a)

)
of a-points (distinct a-points) of

f is defined as

Nf (r, a) =

r∫
0

nf (t, a)− nf (0, a)

t
dt+ nf (0, a) log r

Nf (r, a) =

r∫
0

nf (t, a)− nf (r, a)

t
dt+ nf (0, a) log r

 ,
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where we denote by nf (t, a) (nf (t, a)) the number of a-points (distinct a-points)
of f in |z| ≤ t and an ∞ -point is a pole of f . In many occasions Nf (r,∞) and

Nf (r,∞) are denoted by Nf (r) and Nf (r) respectively. The function Nf (r, a)
is called the enumerative function. On the other hand, the function mf (r) ≡
mf (r,∞) known as the proximity function is defined as

mf (r) =
1

2π

2π∫
0

log+
∣∣f (reiθ)∣∣ dθ,

where log+ x = max (log x, 0) for all x > 0

and an ∞ -point is a pole of f .
Analogously, m 1

f−a
(r) ≡ mf (r, a) is defined when a is not an ∞-point of f.

Thus the Nevanlinna’s characteristic function Tf (r) corresponding to f is defined
as

Tf (r) = Nf (r) +mf (r) .

When f is entire, Tf (r) coincides with mf (r) as Nf (r) = 0. Moreover, if f
is non-constant entire then Tf (r) is strictly increasing and continuous functions of r.

Also its inverse T−1
f : (Tf (0) ,∞) → (0,∞) exist and is such that lim

s→∞
T−1
f (s) = ∞.

However let us consider that x ∈ [0,∞) and k ∈ N where N be the set of all

positive integers. We define exp[k] x = exp
(
exp[k−1] x

)
and log[k] x = log

(
log[k−1] x

)
.

We also denote log[0] x = x, log[−1] x = expx, exp[0] x = x and exp[−1] x = log x.
Further we assume that throughout the present paper a, b, d,m, n, p and q always
denote positive integers. Now considering this, we just recall that Shen et al. [14]
defined the (m,n)-φ order and (m,n)-φ lower order of entire functions f which are
as follows:

Definition 2. [14] Let φ : [0,+∞) → (0,+∞) be a non-decreasing unbounded
function and m ≥ n. The (m,n)-φ order ρ(m,n) (f, φ) and (m,n)-φ lower order
λ(m,n) (f, φ) of entire functions f are defined as:

ρ(m,n) (f, φ) = lim
r→∞

log[m] Mf (r)

log[n] φ (r)
and λ(m,n) (f, φ) = lim

r→∞

log[m] Mf (r)

log[n] φ (r)
.

If f is a meromorphic function, then

ρ(m,n) (f, φ) = lim
r→∞

log[m−1] Tf (r)

log[m] φ (r)
and λ(m,n) (f, φ) = lim

r→∞

log[m−1] Tf (r)

log[n] φ (r)
.

Further for any non-decreasing unbounded function φ : [0,+∞) → (0,+∞),

if we assume lim
r→+∞

log[q] φ(ar)

log[q] φ(r)
= 1 for all α > 0, then for any entire function f , using

the inequality Tf (r) ≤ logMf (r) ≤ 3Tf (2r) {cf. [8]}, one can easily verify that
(see [14])

ρ(m,n) (f, φ) = lim
r→∞

log[m] Mf (r)

log[n] φ (r)
= lim

r→∞

log[m−1] Tf (r)

log[n] φ (r)(
λ(m,n) (f, φ) = lim

r→∞

log[m] Mf (r)

log[n] φ (r)
= lim

r→∞

log[m−1] Tf (r)

log[n] φ (r)

)
.



EJMAA-2019/7(2) A NOTE ON SOME GROWTH PROPERTIES 153

If we take m = p, n = 1 and φ (r) = log[q−1] r, then the above definition
reduce to the following definition:

Definition 3. The (p, q)-th order and (p, q)-th lower order of an entire function f
are defined as:

ρ(p,q) (f) = lim
r→∞

log[p] Mf (r)

log[q] r
and λ(p,q) (f) = lim

r→∞

log[p] Mf (r)

log[q] r
.

If f is a meromorphic function, then

ρ(p,q) (f) = lim
r→∞

log[p−1] Tf (r)

log[q] r
and λ(p,q) (f) = lim

r→∞

log[p−1] Tf (r)

log[q] r
.

Definition 3 avoids the restriction p ≥ q of the original definition of (p, q)-th
order (respectively (p, q)-th lower order) of entire functions introduced by Juneja
et al. [9].

The above definition extend the generalized order ρ(l) (f) and generalized
lower order λ(l) (f) of an entire or meromorphic function f considered in [13] for
each integer l ≥ 2 since these correspond to the particular case ρ(l,1) (f) = ρ(l) (f)
and λ(l,1) (f) = λ(l) (f) . Clearly, ρ(2,1) (f) = ρ (f) and λ(2,1) (f) = λ (f) .

In this connection we just recall the following definition of index-pair where
we will give a minor modification to the original definition (see e.g. [9]) :

Definition 4. An entire function f is said to have index-pair (p, q) if b < ρ(p,q) (f) <
∞ and ρ(p−1,q−1) (f) is not a nonzero finite number, where b = 1 if p = q and b = 0
for otherwise. Moreover if 0 < ρ(p,q) (f) < ∞, then

ρ(p−n,q) (f) = ∞ for n < p,
ρ(p,q−n) (f) = 0 for n < q,
ρ(p+n,q+n) (f) = 1 for n = 1, 2, · · · .

Similarly for 0 < λ(p,q) (f) < ∞, one can easily verify that
λ(p−n,q) (f) = ∞ for n < p,
λ(p,q−n) (f) = 0 for n < q,
λ(p+n,q+n) (f) = 1 for n = 1, 2, · · · .

Analogously one can easily verify that the Definition 4 of index-pair can also
be applicable for a meromorphic function f .

L. Bernal [1, 2] introduced the relative order between two entire functions to
avoid comparing growth just with exp z. In the case of relative order, Sánchez Ruiz
et al. [12] gave the definitions of relative (p, q)-th order and relative (p, q)-th lower
order of an entire function with respect to another entire function and Debnath
et al. [6] introduced the definitions of relative (p, q)-th order and relative (p, q)-th
lower order of a meromorphic function with respect to another entire function in
the light of index-pair. In order to keep accordance with Definition 2 and Definition
3, we will give a minor modification to the original definition of relative (p, q)-th
order and relative (p, q)-th lower order of entire and meromorphic function (see e.g.
[6, 12]).

Definition 5. Let f and g be any two entire functions with index-pairs (m, q)
and (m, p) respectively. Then the relative (p, q)-th order and relative (p, q)-th lower



154 T. BISWAS EJMAA-2019/7(2)

order of f with respect to g are defined as

ρ(p,q)g (f) = lim
r→∞

log[p] M−1
g (Mf (r))

log[q] r
and λ(p,q)

g (f) = lim
r→∞

log[p] M−1
g (Mf (r))

log[q] r
.

If f is a meromorphic and g is entire, then

ρ(p,q)g (f) = lim
r→∞

log[p] T−1
g (Tf (r))

log[q] r
and λ(p,q)

g (f) = lim
r→∞

log[p] T−1
g (Tf (r))

log[q] r
.

If f and g have got index-pair (m, 1) and (m, k) , respectively, then Definition
5 reduces to generalized relative order of f with respect to g. If f and g have the
same index-pair (p, 1) where p is any positive integer, we get the definition of relative
order introduced by Bernal [1, 2] and Lahiri et al. [11]. Further if g = exp[m−1] z,

then ρg (f) = ρ(m) (f) and ρ
(p,q)
g (f) = ρ(m,q) (f) . Further if f have index-pair (2, 1)

and g = exp z, then Definition 5 become the classical definitions of order and lower
order.

An entire or meromorphic function f for which relative (p, q)-th order and
relative (p, q)-th lower order with respect to another entire function g are the same
is called a function of regular relative (p, q) growth with respect to g. Otherwise, f
is said to be irregular relative (p, q) growth with respect to g.

For entire or meromorphic functions, the notions of their growth indicators
such as order is classical in complex analysis and during the past decades, several
researchers have already been exploring their studies in the area of comparative
growth properties of composite entire functions in different directions using the
classical growth indicators. But at that time, the concepts of relative orders of
entire or meromorphic functions and as well as their technical advantages of not
comparing with the growths of exp z are not at all known to the researchers of this
area. Therefore the studies of the growths of composite entire and meromorphic
functions in the light of their relative orders are the prime concern of this paper.
Actually in this paper we establish some newly developed results related to the
growth rates of composite entire and meromorphic functions on the basis of relative
(p, q)-th order and relative (p, q)-th lower order where p, q are any two positive
integers. We use the standard notations and definitions of the theory of entire and
meromorphic functions which are available in [8, 10, 15, 16, 17].

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [5] If f and g are any two entire functions then for all sufficiently large
values of r,

Mf◦g(r) ≥ Mf

(
1

16
Mg

(r
2

))
.

Lemma 2. [3] Let f be meromorphic and g be entire then for all sufficiently large
values of r,

Tf◦g (r) 6 {1 + o(1)} Tg (r)

logMg (r)
Tf (Mg (r)) .
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Lemma 3. [4] Suppose that f is a meromorphic function and g be an entire function
and suppose that 0 < µ < ρg ≤ ∞.Then for a sequence of values of r tending to
infinity,

Tf◦g(r) ≥ Tf (exp (r
µ)) .

Lemma 4. [7] Let f be an entire function which satisfies the Property (A), β > 0,
δ > 1 and α > 2. Then

βTf (r) < Tf

(
αrδ
)
.

3. Main Results

In this section we present the main results of the paper.

Theorem 1. Let f be a meromorphic function and g, h be an entire functions such

that ρ
(p,q)
h (f) < ∞ and λ

(p,q)
h (f ◦ g) = ∞. Then for every A (> 0) ,

lim
r→∞

log[p] T−1
h (Tf◦g (r))

log[p] T−1
h (Tf (rA))

= ∞ .

Proof. If possible, let there exists a constant β such that for a sequence of values
of r tending to infinity we have

log[p] T−1
h (Tf◦g (r)) ≤ β · log[p] T−1

h

(
Tf

(
rA
))

. (1)

Again from the definition of ρ
(p,q)
h (f), it follows for all sufficiently large

values of r that

log[p] T−1
h

(
Tf

(
rA
))

≤
(
ρ
(p,q)
h (f) + ε

)
log[q] r +O(1) . (2)

Now combining (1) and (2) we obtain for a sequence of values of r tending
to infinity that

log[p] T−1
h (Tf◦g (r)) ≤ β ·

(
ρ
(p,q)
h (f) + ε

)
log[q] r +O(1)

i.e., λ
(p,q)
h (f ◦ g) ≤ β ·

(
ρ
(p,q)
h (f) + ε

)
,

which contradicts the condition λ
(p,q)
h (f ◦ g) = ∞. So for any positive integer q and

for all sufficiently large values of r we get that

log[p] T−1
h (Tf◦g (r)) ≥ β · log[p] T−1

h Tf

(
rA
)
,

from which the theorem follows. �

In the line of Theorem 1, one can easily prove the following theorem and
therefore its proof is omitted.

Theorem 2. Let f be a meromorphic function and g, h be an entire functions such

that ρ
(p,q)
h (g) < ∞ and λ

(p,q)
h (f ◦ g) = ∞. Then for every A (> 0) ,

lim
r→∞

log[p] T−1
h (Tf◦g (r))

log[p] T−1
h (Tg (rA))

= ∞ .

Remark 1. Theorem 1 is also valid with “limit superior” instead of “limit” if

λ
(p,q)
h (f ◦ g) = ∞ is replaced by ρ

(p,q)
h (f ◦ g) = ∞ and the other conditions remain

the same.
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Remark 2. Theorem 2 is also valid with “limit superior” instead of “limit” if

λ
(p,q)
h (f ◦ g) = ∞ is replaced by ρ

(p,q)
h (f ◦ g) = ∞ and the other conditions remain

the same.

Corollary 1. Under the assumptions of Theorem 1 and Remark 1,

lim
r→∞

log[p−1] T−1
h (Tf◦g (r))

log[p−1] T−1
h (Tf (rA))

= ∞ and lim
r→∞

log[p−1] T−1
h (Tf◦g (r))

log[p−1] T−1
h (Tf (rA))

= ∞

respectively.

Proof. By Theorem 1 we obtain for all sufficiently large values of r and for K > 1,

log[p] T−1
h (Tf◦g (r)) ≥ K · log[p] T−1

h

(
Tf

(
rA
))

i.e., log[p−1] T−1
h (Tf◦g (r)) ≥

{
log[p−1] T−1

h

(
Tf

(
rA
))}K

,

from which the first part of the corollary follows.
Similarly using Remark 1, we obtain the second part of the corollary. �

Corollary 2. Under the assumptions of Theorem 2 and Remark 2,

lim
r→∞

log[p−1] T−1
h (Tf◦g (r))

log[p−1] T−1
h (Tg (rA))

= ∞ and lim
r→∞

log[p−1] T−1
h (Tf◦g (r))

log[p−1] T−1
h (Tg (rA))

= ∞

respectively.

In the line of Corollary 1, one can easily verify Corollary 2 with the help of
Theorem 2 and Remark 2 respectively and therefore its proof is omitted.

Theorem 3. Let f be a meromorphic function and g, h be any two entire functions

such that ρ(m,n) (g) < λ
(p,q)
h (f) ≤ ρ

(p,q)
h (f) < ∞. If h satisfies the Property (A),

then

(i) lim
r→∞

log[p] T−1
h (Tf◦g (r))

log[p−1] T−1
h Tf

(
exp[q−1] r

) = 0 if q > m

and

(ii) lim
r→∞

log[p+m−q−1] T−1
h (Tf◦g (r))

log[p−1] T−1
h Tf

(
exp[q−1] r

) = 0 if q < m.

Proof. Let us suppose that α > 2 and δ → 1+ in Lemma 4. Since T−1
h (r) is an

increasing function of r, it follows from Lemma 2, Lemma 4 and the inequality
Tg(r) ≤ logMg(r) {cf. [8] } for all sufficiently large values of r that

T−1
h (Tf◦g (r)) 6 T−1

h ({1 + o(1)}Tf (Mg (r)))

i.e., T−1
h (Tf◦g (r)) 6 β

[
T−1
h (Tf (Mg (r)))

]δ
i.e., log[p] T−1

h (Tf◦g (r)) 6 log[p] T−1
h (Tf (Mg (r))) +O(1)

i.e., log[p] T−1
h (Tf◦g (r)) 6

(
ρ
(p,q)
h (f) + ε

)
log[q] Mg (r) +O(1) . (3)

Now the following cases may arise :
Case I. Let q > m. Then we have from (3) for all sufficiently large values of r that

log[p] T−1
h (Tf◦g (r)) 6

(
ρ
(p,q)
h (f) + ε

)
log[m−1] Mg (r) +O(1) . (4)
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Now from the definition of (m,n)-th order of g in terms of maximum mod-
ulus, we get for arbitrary positive ε and for all sufficiently large values of r that

log[m] Mg (r) 6
(
ρ(m,n) (g) + ε

)
log[n] r

i.e., log[m] Mg (r) 6
(
ρ(m,n) (g) + ε

)
log r . (5)

So for all sufficiently large values of r it follows from (5) that

log[m−1] Mg (r) 6 r(ρ
(m,n)(g)+ε) . (6)

Therefore from (4) and (6) it follows for all sufficiently large values of r that

log[p] T−1
h (Tf◦g (r)) 6

(
ρ
(p,q)
h (f) + ε

)
r(ρ

(m,n)(g)+ε) +O(1) . (7)

Case II. Let q < m. Then we get from(3) for all sufficiently large values of r that

log[p] T−1
h (Tf◦g (r)) 6

(
ρ
(p,q)
h (f) + ε

)
exp[m−q] log[m] Mg (r) +O(1). (8)

Also we obtain from (5) for all sufficiently large values of r that

exp[m−q] log[m] Mg (r) 6 exp[m−q] log r(ρ
(m,n)(g)+ε)

i.e., exp[m−q] log[m] Mg (r) 6 exp[m−q−1] r(ρ
(m,n)(g)+ε). (9)

Now from (8) and (9) we obtain for all sufficiently large values of r that

log[p] T−1
h (Tf◦g (r)) 6

(
ρ
(p,q)
h (f) + ε

)
exp[m−q−1] r(ρ

(m,n)(g)+ε) +O(1)

i.e., log[p+m−q−1] T−1
h (Tf◦g (r)) 6 r(ρ

(m,n)(g)+ε) +O(1) . (10)

From the definition of relative (p, q)-th order, we obtain for all sufficiently large
values of r that

log[p] T−1
h

(
Tf

(
exp[q−1] r

))
>

(
λ
(p,q)
h (f)− ε

)
log[q] exp[q−1] r

i.e., log[p−1] T−1
h

(
Tf

(
exp[q−1] r

))
> r

(
λ
(p,q)
h (f)−ε

)
. (11)

As ρ(m,n) (g) < λ
(p,q)
h (f) , we can choose ε (> 0) in such a way that

ρ(m,n) (g) + ε < λ
(p,q)
h (f)− ε . (12)

Now if q > m, combining (7) , (11) and in view of (12) we have for all
sufficiently large values of r that

log[p] T−1
h (Tf◦g (r))

log[p−1] T−1
h

(
Tf

(
exp[q−1] r

)) 6

(
ρ
(p,q)
h (f) + ε

)
r(ρ

(m,n)(g)+ε) +O(1)

r

(
λ
(p,q)
h (f)−ε

)

i.e., lim
r→∞

log[p] T−1
h (Tf◦g (r))

log[p−1] T−1
h

(
Tf

(
exp[q−1] r

)) = 0 .

This proves the first part of the theorem.
When q < m, combining (10) and (11) it follows for all sufficiently large

values of r that

log[p+m−q−1] T−1
h (Tf◦g (r))

log[p−1] T−1
h

(
Tf

(
exp[q−1] r

)) 6 r(ρ
(m,n)(g)+ε) +O(1)

r

(
λ
(p,q)
h (f)−ε

) .
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Since ρ(m,n) (g) < λ
(p,q)
h (f) and ε (> 0) is arbitrary, we get from above

lim
r→∞

log[p+m−q−1] T−1
h (Tf◦g (r))

log[p−1] T−1
h

(
Tf

(
exp[q−1] r

)) = 0,

which is the second part of the theorem. �

Theorem 4. Let f be a meromorphic function and g, h be any two entire functions

such that λg (m,n) < λ
(p,q)
h (f) ≤ ρ

(p,q)
h (f) < ∞. If h satisfies the Property (A),

then

(i) lim
r→∞

log[p] T−1
h (Tf◦g (r))

log[p−1] T−1
h

(
Tf

(
exp[q−1] r

)) = 0 if q > m

and

(ii) lim
r→∞

log[p+m−q−1] T−1
h (Tf◦g (r))

log[p−1] T−1
h

(
Tf

(
exp[q−1] r

)) = 0 if q < m.

Proof of Theorem 4 is omitted as it can be carried out in the line of Theorem
3.

Theorem 5. Let f be a meromorphic function and h be an entire function such

that 0 < λ
(p,q)
h (f) ≤ ρ

(p,q)
h (f) < ∞. Also let g be an entire function with finite

(m, q)-th order where q < m. If h satisfies the Property (A), then

lim
r→∞

log[p+m−q] T−1
h (Tf◦g (r))

log[p] T−1
h (Tf (r))

≤ ρ(m,q) (g)

λ
(p,q)
h (f)

,

Proof. Since q < m, we get from(8) for all sufficiently large values of r that

log[p+m−q] T−1
h (Tf◦g (r)) 6 log[m] Mg (r) +O(1)

i.e.,
log[p+m−q] T−1

h (Tf◦g (r))

log[p] T−1
h (Tf (r))

≤ log[m] Mg (r) +O(1)

log[q] r
· log[q] r

log[p] T−1
h (Tf (r))

i.e., lim
r→∞

log[p+m−q] T−1
h (Tf◦g (r))

log[p] T−1
h (Tf (r))

≤ lim
r→∞

log[m] Mg (r) +O(1)

log[q] r
· lim
r→∞

log[q] r

log[p] T−1
h (Tf (r))

i.e., lim
r→∞

log[p+m−q] T−1
h (Tf◦g (r))

log[p] T−1
h (Tf (r))

≤ ρ(m,q) (g) · 1

λ
(p,q)
h (f)

=
ρ(m,q) (g)

λ
(p,q)
h (f)

.

This proves the theorem. �

In the line of Theorem 5 we may state the following theorem without proof.

Theorem 6. Let f be a meromorphic function and g, h be an two entire functions

satisfying (i) ρ
(p,q)
h (f) < ∞, (ii) λ

(p,n)
h (g) > 0 and (iii) ρ(m,n) (g) < ∞ where

q < m. If h satisfies the Property (A), then

lim
r→∞

log[p+m−q] T−1
h (Tf◦g (r))

log[p] T−1
h (Tg (r))

≤ ρ(m,n) (g)

λ
(p,n)
h (g)

.
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Theorem 7. Let f be a meromorphic function and h be an entire function such

that 0 < λ
(p,q)
h (f) ≤ ρ

(p,q)
h (f) < ∞ and g be an entire function with finite (m,n)-th

lower order. If h satisfies the Property (A), then

(i) lim
r→∞

log[p] T−1
h

(
Tf (exp

[q]
(
rA
)
)
)

log[p] T−1
h

(
Tf◦g

(
exp[n] r

)) = ∞ if q ≥ m and A > 1,

(ii) lim
r→∞

log[p] T−1
h

(
Tf (exp

[q]
(
rA
)
)
)

log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

)) = ∞ if q ≥ m

or q = m ( ̸= 1)− 1 and λ(m,n) (g) < A

and

(iii) lim
r→∞

log[p] T−1
h

(
Tf (exp

[q]
(
rA
)
)
)

log[p+m−q−1] T−1
h

(
Tf◦g(exp[n−1] r)

) = ∞ if m > q + 1 and

A > λ(m,n) (g) .

Proof. From the definition of λ
(p,q)
h (f), we obtain for arbitrary positive ε (> 0) and

for all sufficiently large values of r that

log[p] T−1
h

(
Tf (exp

[q]
(
rA
)
)
)
≥
(
λ
(p,q)
h (f)− ε

)
rA . (13)

Also from the definition of (m,n)-th lower order of g, we get for a sequence
of values of r tending to infinity that

log[m] Mg

(
exp[n−1] r

)
≤ (λ(m,n) (g) + ε) log[n](exp[n−1] r)

i.e., log[m] Mg

(
exp[n−1] r

)
≤

(
λ(m,n) (g) + ε

)
log r

i.e., log[m] Mg

(
exp[n−1] r

)
≤ log r(λ

(m,n)(g)+ε) (14)

i.e., log[m−1] Mg

(
exp[n−1] r

)
≤ r(λ

(m,n)(g)+ε) . (15)

Case I. Let q ≥ m. Then it follows from (3) for a sequence of values of r tending
to infinity that

log[p] T−1
h

(
Tf◦g

(
exp[n] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
log[q] Mg(exp

[n] r) +O(1)

i.e., log[p] T−1
h

(
Tf◦g

(
exp[n] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
log[m] Mg(exp

[n] r) +O(1)

i.e., log[p] T−1
h

(
Tf◦g

(
exp[n] r

))
≤
(
ρ
(p,q)
h (f) + ε

)(
λ(m,n) (g) + ε

)
r+O(1) . (16)

Case II. Also let q ≥ m or q = m (̸= 1) − 1. Then also we obtain from (15) and
(3) for a sequence of values of r tending to infinity that

i.e., log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
log[q] Mg(exp

[n−1] r) +O(1)

i.e., log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
log[m−1] µg(exp

[n−1] r)+O(1)

i.e., log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
r(λ

(m,n)(g)+ε) +O(1) . (17)
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Case III. Again let m > q + 1. Then we get from (14) and (3) for a sequence of
values of r tending to infinity that

log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
log[q] Mg(exp

[n−1] r) +O(1)

i.e., log[p] T−1
h

(
Tf◦g

(
exp[n] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
log[q−m] log[m] Mg(exp

[n−1] r)+O(1)

i.e., log[p] T−1
h

(
Tf◦g

(
exp[n] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
exp[m−q] log[m] Mg(exp

[n−1] r)+O(1)

i.e., log[p] T−1
h

(
Tf◦g(exp

[n−1] r)
)
≤
(
ρ
(p,q)
h (f) + ε

)
exp[m−q] log r(λ

(m,n)(g)+ε)+O(1)

i.e., log[p] T−1
h

(
Tf◦g(exp

[n−1] r)
)
≤
(
ρ
(p,q)
h (f) + ε

)
exp[m−q−1] r(λ

(m,n)(g)+ε)+O(1)

i.e., log[p+m−q−1] T−1
h

(
Tf◦g(exp

[n−1] r)
)
≤ r(λ

(m,n)(g)+ε) +O(1) . (18)

Now if q ≥ m and µ > 1, we get from (13) and (16) of Case I for a sequence
of values of r tending to infinity that

log[p] T−1
h

(
Tf (exp

[q]
(
rA
)
)
)

log[p] T−1
h

(
Tf◦g

(
exp[n] r

)) ≥

(
λ
(p,q)
h (f)− ε

)
rA(

ρ
(p,q)
h (f) + ε

) (
λ(m,n) (g) + ε

)
r +O(1)

,

from which the first part of the theorem follows.
Again combining (13) and (17) of Case II we obtain for a sequence of values

of r tending to infinity when q ≥ m or q = m (̸= 1)− 1

log[p] T−1
h

(
Tf (exp

[q]
(
rA
)
)
)

log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

)) ≥

(
λ
(p,q)
h (f)− ε

)
rA(

ρ
(p,q)
h (f) + ε

)
r(λ(m,n)(g)+ε) +O(1)

. (19)

As A > λ(m,n) (g) we can choose ε (> 0) in such a way that

λ(m,n) (g) + ε < A . (20)

Thus from (19) and (20) we get that

lim
r→∞

log[p] T−1
h

(
Tf (exp

[q]
(
rA
)
)
)

log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

)) = ∞ .

This establishes the second part of the theorem .
When m > q+1, it follows from (13) and (18) of Case III for a sequence of

values of r tending to infinity that

log[p] T−1
h

(
Tf (exp

[q]
(
rA
)
)
)

log[p+m−q−1] T−1
h

(
Tf◦g(exp[n−1] r)

) ≥

(
λ
(p,q)
h (f)− ε

)
rA

r(λ
(m,n)(g)+ε) +O(1)

. (21)

Now from (20) and (21) we obtain that

lim
r→∞

log[p] T−1
h

(
Tf (exp

[q]
(
rA
)
)
)

log[p+m−q−1] T−1
h

(
Tf◦g(exp[n−1] r)

) = ∞ .

This proves the third part of the theorem.
Thus the theorem follows . �

In the line of Theorem 7 we may state the following theorem without proof.
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Theorem 8. Let f be a meromorphic function and h be an entire function such

that ρ
(p,q)
h (f) is finite and g be a entire function with (m,n)-th lower order and

non zero (p, n)-th relative lower order with respect to h. If h satisfies the Property
(A), then

(i) lim
r→∞

log[p] T−1
h

(
Tg(exp

[n]
(
rA
)
)
)

log[p] T−1
h

(
Tf◦g

(
exp[n] r

)) = ∞ if q ≥ m and A > 1,

(ii) lim
r→∞

log[p] T−1
h

(
Tg(exp

[n]
(
rA
)
)
)

log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

)) = ∞ if q ≥ m

or q = m (̸= 1)− 1 and λ(m,n) (g) < A

and

(iii) lim
r→∞

log[p] T−1
h

(
Tg(exp

[n]
(
rA
)
)
)

log[p+m−q−1] T−1
h

(
Tf◦g(exp[n−1] r)

) = ∞ if m > q + 1 and

A > λ(m,n) (g) .

Theorem 9. Let f be a meromorphic function and h be an entire function such

that 0 < λ
(p,q)
h (f) ≤ ρ

(p,q)
h (f) < ∞ and g be an entire function with finite (m,n)-th

order. If h satisfies the Property (A), then

(i) lim
r→∞

log[p] T−1
h

(
Tf (exp

[q]
(
rA
)
)
)

log[p] T−1
h

(
Tf◦g

(
exp[n] r

)) = ∞ if q ≥ m and A > 1,

(ii) lim
r→∞

log[p] T−1
h

(
Tf (exp

[q]
(
rA
)
)
)

log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

)) = ∞ if q ≥ m

or q = m (̸= 1)− 1 and ρ(m,n) (g) < A

and

(iii) lim
r→∞

log[p] T−1
h

(
Tf (exp

[q]
(
rA
)
)
)

log[p+m−q−1] T−1
h

(
Tf◦g(exp[n−1] r)

) = ∞ if m > q + 1 and

A > ρ(m,n) (g) .

Theorem 10. Let f be a meromorphic function and h be an entire function such

that ρ
(p,q)
h (f) is finite and g be a entire function with (m,n)-th order and non zero

(p, n)-th relative lower order with respect to h. If h satisfies the Property (A), then

(i) lim
r→∞

log[p] T−1
h

(
Tg(exp

[n]
(
rA
)
)
)

log[p] T−1
h

(
Tf◦g

(
exp[n] r

)) = ∞ if q ≥ m and A > 1,

(ii) lim
r→∞

log[p] T−1
h

(
Tg(exp

[n]
(
rA
)
)
)

log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

)) = ∞ if q ≥ m

or q = m (̸= 1)− 1 and ρ(m,n) (g) < A

and

(iii) lim
r→∞

log[p] T−1
h

(
Tg(exp

[n]
(
rA
)
)
)

log[p+m−q−1] T−1
h

(
Tf◦g(exp[n−1] r)

) = ∞ if m > q + 1 and

A > ρ(m,n) (g) .
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We omit the proof of Theorem 9 and Theorem 10 as those can be carried
out in the line of Theorem 7 and Theorem 8 respectively.

Theorem 11. Let f be a meromorphic and h be an entire function such that

0 < λ
(p,q)
h (f) ≤ ρ

(p,q)
h (f) < ∞. Also let g be an entire function with non zero finite

order. Then for every positive constant A and real number α,

lim
r→∞

log[p] T−1
h Tf◦g(exp

[n−1] r){
log[p] T−1

h Tf (rA)
}1+α = ∞ .

Proof. If α be such that 1 + α ≤ 0 then the theorem is trivial. So we suppose that

1 + α > 0. Now from the definition of ρ
(p,q)
h (f), it follows for all sufficiently large

values of r that

log[p] T−1
h

(
Tf (r

A)
)
≤
(
ρ
(p,q)
h (f) + ε

)
log[q] r +O(1)

log[p] T−1
h

(
Tf (r

A)
)
≤
(
ρ
(p,q)
h (f) + ε

)
log[q] r

1 +
O(1)(

ρ
(p,q)
h (f) + ε

)
log[q] r


i.e.,

{
log[p] T−1

h

(
Tf (r

A)
)}1+α

≤

(
ρ
(p,q)
h (f) + ε

)1+α (
log[q] r

)1+α

1 +
O(1)(

ρ
(p,q)
h (f) + ε

)
log[q] r

1+α

. (22)

Now from Lemma 3 we get a sequence of values of r tending to infinity that

log[p] T−1
h

(
Tf◦g(exp

[n−1] r)
)
≥
(
λ
(p,q)
h (f)− ε

)
log[q−1]

(
exp[n−1] r

)µ
. (23)

Now from (22) and (23) we have for a sequence of values of r tending to
infinity that

log[p] T−1
h

(
Tf◦g(exp

[n−1] r)
){

log[p] T−1
h (Tf (rA))

}1+α ≥

(
λ
(p,q)
h (f)− ε

)
log[q−1]

(
exp[n−1] r

)µ
(
ρ
(p,q)
h (f) + ε

)1+α (
log[q] r

)1+α
(
1 + O(1)(

ρ
(p,q)
h (f)+ε

)
log[q] r

)1+α .

Since
log[q−1](exp[n−1] r)

µ

(log[q] r)
1+α → ∞ as r → ∞, then the theorem follows from

above. �

Theorem 12. Let f be a meromorphic function and l, h be any two entire functions

such that λ
(p,d)
h (l) > 0 and ρ

(p,q)
h (f) < ∞ .Also let g and k are two entire function

with ρ(m,n) (g) < λ(a,b) (k). If h satisfies the Property (A), then

(i) lim
r→∞

log[p−1] T−1
h

(
Tl◦k

(
exp[b−1] r

))
log[p−1] T−1

h

(
Tf◦g

(
exp[n−1] r

))
· log[p−1] T−1

h

(
Tf

(
exp[q−1] r

)) = ∞,

if d ≤ a−1 and q ≥ m−1,



EJMAA-2019/7(2) A NOTE ON SOME GROWTH PROPERTIES 163

(ii) lim
r→∞

log[p−1] T−1
h

(
Tl◦k

(
exp[b−1] r

))
log[p] T−1

h

(
Tf◦g

(
exp[n−1] r

))
· log[p−1] T−1

h

(
Tf

(
exp[q−1] r

)) = ∞,

if d ≤ a−1 and m−q = 2,

and

(iii) lim
r→∞

log[p−1] T−1
h

(
Tl◦k

(
exp[b−1] r

))
log[p+m−q−2] T−1

h

(
Tf◦g

(
exp[n−1] r

))
· log[p−1] T−1

h

(
Tf

(
exp[q−1] r

)) = ∞,

if d ≤ a−1 and m−q > 2.

Proof. From the definition of (m,n)-th order of g, we get for arbitrary positive ε
and for all sufficiently large values of r that

log[m] Mg

(
exp[n−1] r

)
≤ (ρ(m,n) (g) + ε) log[n] exp[n−1] r

i.e., log[m] Mg

(
exp[n−1] r

)
≤

(
ρ(m,n) (g) + ε

)
log r

i.e., log[m] Mg

(
exp[n−1] r

)
≤ log r(ρ

(m,n)(g)+ε) (24)

i.e., log[m−1] Mg

(
exp[n−1] r

)
≤ r(ρ

(m,n)(g)+ε) . (25)

Also from the definition of (a, b)-th lower order of k, we get for all sufficiently
large values of r that

log[a] Mk

(
exp[b−1] r

2

)
> (λ(a,b) (k)− ε) log[b]

(
exp[b−1] r

2

)
i.e., log[a] Mk

(
exp[b−1] r

2

)
> log r(λ

(a,b)(k)−ε) +O(1) (26)

i.e., log[a−1] Mk

(
exp[b−1] r

2

)
> r(λ

(a,b)(k)−ε) +O(1) . (27)

Again from the definition of (p, q)-th relative order of f with respect to h,
we have for all sufficiently large values of r that

log[p] T−1
h

(
Tf

(
exp[q−1] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
log r

i.e., log[p−1] T−1
h

(
Tf

(
exp[q−1] r

))
≤ r

(
ρ
(p,q)
h (f)+ε

)
. (28)

Now in view of Lemma 1, and the inequality Tf (r) ≤ logMf (r) ≤ 3Tf (2r)
{cf. [8]}for any entire f , we get for all sufficiently large values of r that

Ml◦k (r) > Ml

(
1

16
Mk

(r
2

))
i.e., 3Tl◦k (r) > Tl

(
1

32
Mk

(r
2

))
.

Since T−1
h (r) is an increasing function of r, we obtain from above and in

view of Lemma 4, for any β > 2, δ → 1+ and for all sufficiently large values of r
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that

T−1
h (3Tl◦k (r)) > T−1

h

(
Tl

(
1

32
Mk

(r
2

)))
i.e., T−1

h (Tl◦k (r)) > 1

β

[
T−1
h

(
Tl

(
1

32
Mk

(r
2

)))] 1
δ

i.e., log[p] T−1
h (Tl◦k (r)) > log[p] T−1

h

(
Tl

(
1

32
Mk

(r
2

)))
+O(1)

i.e., log[p] T−1
h (Tl◦k (r)) >

(
λ
(p,d)
h (l)− ε

)
log[d] Mk

(r
2

)
+O(1) . (29)

Case I. Let d ≤ a − 1. Then we get from (27) and (29) for all sufficiently large
values of r that

log[p] T−1
h

(
Tl◦k

(
exp[b−1] r

))
>
(
λ
(p,d)
h (l)− ε

)
log[a−1] Mk

(
exp[b−1] r

2

)
+O(1)

i.e., log[p] T−1
h

(
Tl◦k

(
exp[b−1] r

))
>
(
λ
(p,d)
h (l)− ε

)
r(λ

(a,b)(k)−ε) +O(1)

i.e., log[p−1] T−1
h

(
Tl◦k

(
exp[b−1] r

))
>

exp
{(

λ
(p,d)
h (l)− ε

)
r(λ

(a,b)(k)−ε) +O(1)
}

. (30)

Case II. Again let q ≥ m − 1 . Then we obtain from (3) and (25) for all
sufficiently large values of r that

log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
log[m−1] Mg

(
exp[n−1] r

)
+O(1)

i.e., log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
r(ρ

(m,n)(g)+ε) +O(1)

i.e., log[p−1] T−1
h

(
Tf◦g

(
exp[n−1] r

))
≤

exp
{(

ρ
(p,q)
h (f) + ε

)
r(ρ

(m,n)(g)+ε) +O(1)
}

. (31)

Case III. Also let q < m . Then it follows from (3) and (24) for all sufficiently
large values of r that

log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
exp[m−q] log[m] Mg(exp

[n−1] r)+O(1)

i.e., log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

))
≤(

ρ
(p,q)
h (f) + ε

)
exp[m−q−1] r(ρ

(m,n)(g)+ε)+O(1) . (32)

Now if m− q = 2, then we get from (32) for all sufficiently large values of r
that

log[p] T−1
h

(
Tf◦g

(
exp[n−1] r

))
≤
(
ρ
(p,q)
h (f) + ε

)
exp r(ρ

(m,n)(g)+ε) +O(1) . (33)

Also if m− q > 2, then we get from (32) for all sufficiently large values of r
that

log[m−q−2]
[
log[p] T−1

h

(
Tf◦g

(
exp[n−1] r

))]
≤ log[m−q−2]

[(
ρ
(p,q)
h (f) + ε

)
exp[m−q−1] r(ρ

(m,n)(g)+ε) +O(1)
]

i.e., log[p+m−q−2] T−1
h

(
Tf◦g

(
exp[n−1] r

))
≤ exp r(ρ

(m,n)(g)+ε) +O(1) . (34)
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Now as ρ(m,n) (g) < λ(a,b) (k) , we can choose ε (> 0) in such a manner that

ρ(m,n) (g) + ε < λ(a,b) (k)− ε . (35)

Therefore combining (28) , (30) of Case I and (31) of Case II it follows for
all sufficiently large values of r that

log[p−1] T−1
h

(
Tl◦k

(
exp[b−1] r

))
log[p−1] T−1

h

(
Tf◦g

(
exp[n−1] r

))
· log[p−1] T−1

h

(
Tf

(
exp[q−1] r

))
>

exp
{(

λ
(p,d)
h (l)− ε

)
r(λ

(a,b)(k)−ε) +O(1)
}

r

(
ρ
(p,q)
h (f)+ε

)
· exp

{(
ρ
(p,q)
h (f) + ε

)
r(ρ(m,n)(g)+ε) +O(1)

} .

Thus in view of (35) first part of the theorem follows from above.
Again combining (28) , (30) of Case I, (33) of Case III and (35) we obtain

for all sufficiently large values of r that

log[p−1] T−1
h

(
Tl◦k

(
exp[b−1] r

))
log[p] T−1

h

(
Tf◦g

(
exp[n−1] r

))
· log[p−1] T−1

h

(
Tf

(
exp[q−1] r

))
>

exp
{(

λ
(p,d)
h (l)− ε

)
r(λ

(a,b)(k)−ε) +O(1)
}

r

(
ρ
(p,q)
h (f)+ε

)
·
[(

ρ
(p,q)
h (f) + ε

)
exp r(ρ(m,n)(g)+ε) +O(1)

]
i.e., lim

r→∞

log[p−1] T−1
h

(
Tl◦k

(
exp[b−1] r

))
log[p] T−1

h

(
Tf◦g

(
exp[n−1] r

))
· log[p−1] T−1

h

(
Tf

(
exp[q−1] r

)) = ∞,

which is the second part of the theorem.
Similarly combining (28) , (30) of Case I, (34) of Case III and (35) we get

for all sufficiently large values of r that

log[p−1] T−1
h

(
Tl◦k

(
exp[b−1] r

))
log[p+m−q−2] T−1

h

(
Tf◦g

(
exp[n−1] r

))
· log[p−1] T−1

h

(
Tf

(
exp[q−1] r

))
>

exp
{(

λ
(p,d)
h (l)− ε

)
r(λ

(a,b)(k)−ε) +O(1)
}

r

(
ρ
(p,q)
h (f)+ε

)
·
[
exp r(ρ(m,n)(g)+ε) +O(1)

]
i.e., lim

r→∞

log[p−1] T
(−1
h Tl◦k

(
exp[b−1] r

))
log[p+m−q−2] T−1

h

(
Tf◦g

(
exp[n−1] r

))
· log[p−1] T−1

h

(
Tf

(
exp[q−1] r

)) = ∞ .

This proves the third part of the theorem.
Thus the theorem follows . �

Remark 3. If we consider ρ(m,n) (g) < ρ(a,b) (k) instead of ρ(m,n) (g) < λ(a,b) (k)
and the other conditions remain the same, the conclusion of Theorem 12 remains
valid with “limit superior ” replaced by “ limit ”

In the line of Theorem 12, one can easily prove the following theorem and
therefore its proof is omitted.
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Theorem 13. Let f be a meromorphic function and l, h be any two entire functions

such that λ
(p,d)
h (l) > 0, ρ

(p,q)
h (f) < ∞. Also let g and k are two entire function

with ρ(m,n) (g) < λ(a,b) (k) and ρ
(p,n)
h (g) < ∞. If h satisfies the Property (A), then

(i) lim
r→∞

log[p−1] T−1
h Tl◦k

(
exp[b−1] r

)
log[p−1] T−1

h Tf◦g
(
exp[n−1] r

)
· log[p−1] T−1

h Tg

(
exp[n−1] r

) = ∞,

if d ≤ a−1 and q ≥ m−1,

(ii) lim
r→∞

log[p−1] T−1
h Tl◦k

(
exp[b−1] r

)
log[p] T−1

h Tf◦g
(
exp[n−1] r

)
· log[p−1] T−1

h Tg

(
exp[n−1] r

) = ∞,

if d ≤ a−1 and m−q = 2,

and

(iii) lim
r→∞

log[p−1] T−1
h Tl◦k

(
exp[b−1] r

)
log[p+m−q−2] T−1

h Tf◦g
(
exp[n−1] r

)
· log[p−1] T−1

h Tg

(
exp[n−1] r

) = ∞,

if d ≤ a−1 and m−q > 2.

Remark 4. If we consider ρ(m,n) (g) < ρ(a,b) (k) instead of ρρ(m,n) (g) < λ(a,b) (k)
and the other conditions remain the same, the conclusion of Theorem 13 remains
valid with “limit superior ” replaced by “ limit ”
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