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GLOBAL STABILITY ANALYSIS OF AN SEIR EPIDEMIC

MODEL WITH RELAPSE AND GENERAL INCIDENCE RATES

AMINE BERNOUSSI

Abstract. In this paper we propose the global dynamics of an SEIRI epidemic
model with a general nonlinear incidence function. The model is based on the
susceptible-exposed-infective-recovered (SEIR) compartmental structure with
relapse (SEIRI). Sufficient conditions for the local and global stability of equi-

libria (the disease-free equilibrium and the endemic equilibrium) are obtained
by means of Routh-Hurwitz criterion and Lyapunov-LaSalle theorem.
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1. Introduction

Epidemiological modeling has long been an important tool to describe the evolu-
tion of epidemics and infectious diseases. This modeling often provides systems of
ordinary differential equations or delay. The interest of these differential systems is
obvious from the point of view public health (decision-making tools), but also be-
cause of the different possibilities of representation of certain characteristics related
to the process spread of epidemics, namely the incidence, the phenomenon of relapse
and the latency period. These different representations make this topic a popular
research topic for many years (see, for example, [1, 11, 15, 20, 21, 22, 24, 27, 33, 35]
and the references therein).

Recently, considerable attention has been paid to model the relapse phenomenon,
i.e. the return of signs and symptoms of a disease after a remission. Hence, the
recovered individual can return to the infectious class (see, [3, 7, 23, 25, 26, 28, 29,
30, 31, 34]). For the biological explanations of the relapse phenomenon, we cite two
examples:

• For malaria, Bignami [4] proposed that relapses derived from persistence of
small numbers of parasite in the blood. Also, it has been observed that the
proportion of patients who have successive relapses is relatively constant
(see [32] ).

• For tuberculosis, relapse can be caused by incomplete treatment or by latent
infection, being observed that HIV-positive patients are significantly more
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likely to relapse than HIV-negative patients, although it is often difficult to
differentiate relapse from reinfection (see [8]).

On the other hand, the incidence function includes the following forms: The first
one is the saturated incidence βSI

d+S+I [2], where β and d are the positive constants.

The secod one is the bilinear incidence βSI [12, 18, 36, 40, 41]. The third one is

the saturated incidence βSI
1+α1S+α2I

[6, 37, 39, 5, 38, 19], where α1 and α2 are the

positive constants. The effect of the saturation factor (refer to α1 and α2) stems
from epidemic control and the protection measures. The fourth one is the standard
incidence βSI

N [9, 16]. A very general form of incidence rate was considered by
Hattaf and al [14]:

dS

dt
= A− µS − f(S, I)I,

dI

dt
= f(S(t− τ), I(t− τ))I(t− τ)e−µτ − (µ+ γ + α)I

dR

dt
= γI − µR.

(1)

In the present paper, we study the global dynamics of the corresponding SEIR
model of system (1) with relapse effect:

dS

dt
= A− µS − f(S, I)I,

dE

dt
= f(S, I)I − (µ+ σ)E

dI

dt
= σE − (µ+ γ)I + δR,

dR

dt
= γI − (µ+ δ)R.

(2)

The initial condition for the above system is

S(0) = S0 > 0, E(0) = E0 > 0, I(0) = I0 > 0, R(0) = R0 > 0. (3)

Here A = µN, is the recruitment rate, where N = S + E + I + R is the total
number of population, S is the number of susceptible individuals, I is the number
of infectious individuals, E is the number of exposed individuals, R is the number
of recovered individuals, µ is the natural death of the population, f(S, I) is the
incidence function, γ is the recovery rate of the infectious individuals, σ is the rate
at which exposed individuals become infectious and δ is a constant representing the
rate at which an individual in the recovered class reverts to the infective class.

In model (2) the incidence function f(S, I) is a locally Lipschitz continuous dif-
ferentiable function on R+×R+ satisfaying f(0, I) = 0 for I ≥ 0 and the followings
hold:

(H1): f is a strictly monotone increasing function of S ≥ 0, for any fixed
I > 0, and f is a monotone decreasing function of I ≥ 0, for any fixed
S ≥ 0;

(H2): ϕ(S, I) = f(S, I)I is a monotone increasing function of I ≥ 0, for any
fixed S ≥ 0.

In the present paper, we extend the local and global stability to the SEIRI
epidemic model with general incidence function (2) satisfies the hypothesis (H1)
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and (H2), we apply Lyapunov-LaSalle invariance principle to prove the global sta-
bility of the disease-free equilibrium and we apply Routh-Hurwitz criterion and
Lyapunov-LaSalle invariance principle to prove the local and the global stability of
endemic equilibrium of the SEIR model with a relapse rate (see (2)). The rest of
the paper is organized as follows: In Section 2, we offer a basic result. In Section
3, we apply Lyapunov-LaSalle invariance principle to prove the global stability of
the disease-free equilibrium and we apply Routh-Hurwitz criterion and Lyapunov-
LaSalle invariance principle to prove the local and the global stability of endemic
equilibrium. In Section 4, we present some concluding remarks.

2. Preliminary

In this section, we prove the following basic result, which guarantees the existence
and uniqueness of the solution (S(t), E(t), I(t), R(t)) for system (2) satisfying initial
conditions (3).

Lemma 2.1. The solution (S(t), E(t), I(t), R(t)) of system (2) with initial condi-
tions (3) uniquely exists and is positive for all t ≥ 0. Furthermore, it holds that

lim
t→+∞

(S(t) + E(t) + I(t) +R(t)) =
A

µ
. (4)

Proof. We notice that the right hand side of system (2) is completely continuous
and locally Lipschitzian on C. Then it follows that the solution of system (2) exists
and is unique on [0, α) for some α > 0. It is easy to prove that S(t) > 0 for all
t ∈ [0, α). Indeed, this follows from that dS

dt = A > 0 for any t ∈ [0, α) when
S(t) = 0. Let us now show that I(t) > 0 for all t ∈ [0, α). Suppose on the contrary
that there exists som t1 ∈ [0, α) such that I(t1) = 0 and I(t) > 0 for t ∈ [0, t1). By
the third equation of system (2) we have I ′(t1) = σE(t1) + δR(t1). Solving E(t)
and R(t) in the second and fourth equation of system (2), we have

E(t1) = E(0)e−(µ+σ)t1 +

∫ t1

0

ϕ(S(θ), I(θ))e−(µ+σ)(t1−θ)dθ > 0

and

R(t1) = R(0)e−(µ+δ)t1 +

∫ t1

0

γI(θ)e−(µ+δ)(t1−θ)dθ > 0.

It follows that I ′(t1) > 0, and hence the I(t) are nonnegative for all t ∈ [0, α). And
for all t ∈ [0, α).

E(t) = E(0)e−(µ+σ)t +

∫ t

0

ϕ(S(θ), I(θ))e−(µ+σ)(t−θ)dθ ≥ 0

and

R(t) = R(0)e−(µ+δ)t +

∫ t

0

γI(θ)e−(µ+δ)(t−θ)dθ ≥ 0.

Furthermore, for t ∈ [0, α), we obtain

dN

dt
= A− µ(S(t) + E(t) + I(t) +R(t)) = A− µN (5)

which implies that (S(t), E(t), I(t), R(t)) is uniformly bounded on [0, α). It follows
that (S(t), E(t), I(t), R(t)) exists and is unique and positive for all t ≥ 0. From (5),
we immediately have (4), which completes the proof. �
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3. Stability Analysis of SEIRI Model

3.1. Local stability of the endemic equilibrium. In this section, we discuss
the local asymptotic stability of the endemic equilibrium of the generalized SEIRI
epidemic model (2). Note that the system (2) always has a disease-free equilibrium
P0 = (N, 0, 0, 0). On the other hand, The existence of endemic equilibrium is
determined by the following proposition:

Proposition 3.1. Under the hypothesis (H1), if R0 > 1, then system (2) admits
a unique endemic equilibrium P ∗ = (S∗, E∗, I∗, R∗), with

I∗ =
A− µS∗

µ(µ+σ)(µ+δ+γ)
σ(µ+δ)

, E∗ = I∗
µ(µ+ δ + γ)

σ(µ+ δ)
, R∗ =

γI∗

µ+ δ
,

and S∗ is the unique solution of the following equation:

f(S,
A− µS

µ(µ+σ)(µ+δ+γ)
σ(µ+δ)

) =
µ(µ+ σ)(µ+ δ + γ)

σ(µ+ δ)
. (6)

with

R0 =
σ

(µ+ σ)

(µ+ δ)f(N, 0)

µ(µ+ δ + γ)
(7)

Proof. We prove the existence and the uniqueness of the endemic equilibrium P ∗.
At a fixed point (S,E, I,R) of system (2), the following equations hold.

A− µS − f(S, I)I = 0,

f(S, I)I − (µ+ σ)E = 0,

σE − (µ+ γ)I + δR = 0,

γI − (µ+ δ)R = 0.

(8)

A simple calculation gives the following system:

f(S, I)I − µ(µ+ σ)(µ+ δ + γ)

σ(µ+ δ)
I = 0,

E = I
µ(µ+ δ + γ)

σ(µ+ δ)
,

I =
A− µS

µ(µ+σ)(µ+δ+γ)
σ(µ+δ)

,

R =
γI

µ+ δ
.

(9)

From the first equation of (9) we get I = 0 or f(S, I) = µ(µ+σ)(µ+δ+γ)
σ(µ+δ) .

If I = 0, we obtain the disease-free equilibrium point P0 = (Aµ , 0, 0, 0).

If I ̸= 0, then using the (9) we get the following equation

f(S,
A− µS

µ(µ+σ)(µ+δ+γ)
σ(µ+δ)

) =
µ(µ+ σ)(µ+ δ + γ)

σ(µ+ δ)
(10)

we have I = A−µS
µ(µ+σ)(µ+δ+γ)

σ(µ+δ)

≥ 0 implies that S ≤ A
µ . Hence, there is no positive

equilibrium point if S > A
µ . Now, we consider the following function g defined on
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the interval [0, A
µ ]

g(S) := f(S,
A− µS

µ(µ+σ)(µ+δ+γ)
σ(µ+δ)

)− µ(µ+ σ)(µ+ δ + γ)

σ(µ+ δ)

Since,

g(
A

µ
) = f(

A

µ
, 0)− µ(µ+ σ)(µ+ δ + γ)

σ(µ+ δ)

=
µ(µ+ σ)(µ+ δ + γ)

σ(µ+ δ)
(

f(Aµ , 0)

µ(µ+σ)(µ+δ+γ)
σ(µ+δ)

− 1)

=
µ(µ+ σ)(µ+ δ + γ)

σ(µ+ δ)
(R0 − 1) > 0 for R0 > 1

and

g(0) = −µ(µ+ σ)(µ+ δ + γ)

σ(µ+ δ)
< 0

Further

g
′
(S) =

∂f

∂S
− µ

µ(µ+σ)(µ+δ+γ)
σ(µ+δ)

∂f

∂I

bay the hypothesis (H1), we have g
′
(S) > 0.

Hence, there exists a unique endemic equilibrium P ∗ = (S∗, E∗, I∗, R∗) with S∗ ∈
]0, A

µ [ and E∗ > 0, I∗ > 0, R∗ > 0 satisfies the equations I = A−µS
µ(µ+σ)(µ+δ+γ)

σ(µ+δ)

,

E = I µ(µ+δ+γ)
σ(µ+δ) and R = γI

µ+δ . Hence, we conclude the existence and uniqueness of

the endemic equilibrium P ∗. �

The total population size N satisfies the equation N = S + E + I + R, which
reduces the system (2) to the following system:

dS

dt
= A− µS − f(S, I)I,

dE

dt
= f(S, I)I − (µ+ σ)E

dI

dt
= σE − (µ+ γ)I + δN − δS − δE − δI.

(11)

In the next, we will study the local stability of the positive equilibrium P ∗
1 =

(S∗, E∗, I∗) of the system (11), with S∗, E∗ et I∗ are defined in Proposition 3.1.

Theorem 3.1. Suppose the hypothesis (H1) hold.
If R0 > 1, then the endemic equilibrium P ∗

1 of system (11) is locally asymptotically
stable.

Proof. Let x = S − S∗, y = E − E∗ and z = I − I∗. Then by linearizing system
(11) around P ∗

1 , we have

dx

dt
= (−µ− ∂f(S∗, I∗)

∂S
I∗)x(t)− (

∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))z(t),

dy

dt
=

∂f(S∗, I∗)

∂S
I∗x(t) + (

∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))z(t)− (µ+ σ)y(t),

dz

dt
= −δx(t) + (σ − δ)y(t)− (µ+ γ + δ)z(t).

(12)
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The Jacobian matrix M(λ) of equation (12) is defined as follows:

M(λ) =

 λ+ (µ+ ∂f(S∗,I∗)
∂S I∗) 0 (∂f(S

∗,I∗)
∂I I∗ + f(S∗, I∗))

−∂f(S∗,I∗)
∂S I∗ λ+ (µ+ σ) −(∂f(S

∗,I∗)
∂I I∗ + f(S∗, I∗))

δ −(σ − δ) λ+ (µ+ γ + δ)


The characteristic equation associated to system (12) is given by

λ3 +Aλ2 +Bλ+ C = 0 (13)

where

A = (µ+ γ + δ) + (µ+ σ) + (µ+
∂f(S∗, I∗)

∂S
I∗),

B = (µ+σ)(µ+γ+δ)−σ(
∂f(S∗, I∗)

∂I
I∗+f(S∗, I∗))+(µ+

∂f(S∗, I∗)

∂S
I∗)((µ+γ+δ)+(µ+σ)),

and

C = (µ+ σ)(µ+ γ + δ)(µ+
∂f(S∗, I∗)

∂S
I∗)− σ(µ+ δ)(

∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗)).

Firstly, form hypothesis (H1), we have ∂f(S∗,I∗)
∂S I∗ ≥ 0, which implies that A > 0.

Secondly, by using the first and the second and the third equation in system (11),
we find that

f(S∗, I∗) =
(µ+ σ)(µ+ γ + δ)

(µ+ δ)

µ

σ
. (14)

Hence, the hypothesis (H1) and equation (14) we have:

C = (µ+ σ)(µ+ γ + δ)µ+ (µ+ σ)(µ+ γ + δ)
∂f(S∗, I∗)

∂S
I∗

− σ(µ+ δ)f(S∗, I∗)− σ(µ+ δ)
∂f(S∗, I∗)

∂I
I∗

= σ(µ+ δ)
( (µ+ σ)(µ+ γ + δ)

(µ+ δ)

µ

σ
− f(S∗, I∗)

)
+ (µ+ σ)(µ+ γ + δ)

∂f(S∗, I∗)

∂S
I∗ − σ(µ+ δ)

∂f(S∗, I∗)

∂I
I∗

= (µ+ σ)(µ+ γ + δ)
∂f(S∗, I∗)

∂S
I∗ − σ(µ+ δ)

∂f(S∗, I∗)

∂I
I∗ ≥ 0.

and
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AB − C =
(
(µ+ γ + δ) + (µ+ σ) + (µ+

∂f(S∗, I∗)

∂S
I∗)

)
×(

(µ+ σ)(µ+ γ + δ)− σ(
∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))

+ (µ+
∂f(S∗, I∗)

∂S
I∗)((µ+ γ + δ) + (µ+ σ))

)
− (µ+ σ)(µ+ γ + δ)(µ+

∂f(S∗, I∗)

∂S
I∗) + σ(µ+ δ)(

∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))

= (µ+ δ)(µ+ σ)(µ+ γ + δ)− σ(µ+ δ)(
∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))

+ (γ + (µ+ σ))
(
(µ+ σ)(µ+ γ + δ)− σ(

∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))

)
+ (µ+ σ)(µ+ γ + δ)(µ+

∂f(S∗, I∗)

∂S
I∗)− σ(µ+

∂f(S∗, I∗)

∂S
I∗)(

∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))

− (µ+ σ)(µ+ γ + δ)(µ+
∂f(S∗, I∗)

∂S
I∗) + σ(µ+ δ)(

∂f(S∗, I∗)

∂I
I∗ + f(S∗, I∗))

+ (µ+
∂f(S∗, I∗)

∂S
I∗)(µ+ σ)

(
(µ+ γ + δ) + (µ+ σ) + (µ+

∂f(S∗, I∗)

∂S
I∗)

)
+ (µ+

∂f(S∗, I∗)

∂S
I∗)(µ+ γ + δ)

(
(µ+ γ + δ) + (µ+

∂f(S∗, I∗)

∂S
I∗)

)
+ (µ+ σ)(µ+ γ + δ)(µ+

∂f(S∗, I∗)

∂S
I∗)

= (µ+ δ)(µ+ σ)(µ+ γ + δ) + σ(γ + (µ+ σ))
( (µ+ σ)(µ+ γ + δ)

σ
− f(S∗, I∗)

)
− σ(γ + (µ+ σ))

∂f(S∗, I∗)

∂I
I∗ − σ(µ+

∂f(S∗, I∗)

∂S
I∗)

∂f(S∗, I∗)

∂I
I∗

+ σ(µ+
∂f(S∗, I∗)

∂S
I∗)

( (µ+ σ)(µ+ γ + δ)

σ
− f(S∗, I∗)

)
+ (µ+

∂f(S∗, I∗)

∂S
I∗)(µ+ σ)

(
(µ+ γ + δ) + (µ+ σ) + (µ+

∂f(S∗, I∗)

∂S
I∗)

)
+ (µ+

∂f(S∗, I∗)

∂S
I∗)(µ+ γ + δ)

(
(µ+ γ + δ) + (µ+

∂f(S∗, I∗)

∂S
I∗)

)
= (µ+ δ)(µ+ σ)(µ+ γ + δ) + σ(γ + (µ+ σ))

δ

µ
f(S∗, I∗)

− σ(γ + (µ+ σ))
∂f(S∗, I∗)

∂I
I∗ − σ(µ+

∂f(S∗, I∗)

∂S
I∗)

∂f(S∗, I∗)

∂I
I∗

+ σ(µ+
∂f(S∗, I∗)

∂S
I∗)

δ

µ
f(S∗, I∗)

+ (µ+
∂f(S∗, I∗)

∂S
I∗)(µ+ σ)

(
(µ+ γ + δ) + (µ+ σ) + (µ+

∂f(S∗, I∗)

∂S
I∗)

)
+ (µ+

∂f(S∗, I∗)

∂S
I∗)(µ+ γ + δ)

(
(µ+ γ + δ) + (µ+

∂f(S∗, I∗)

∂S
I∗)

)
≥ 0.

So, by the Routh-Hurwitz criterion, we obtain the local stability of P ∗
1 . This con-

cludes the proof. �
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By Theorem 3.1 and N = S + E + I +R we have the following corollary.

Corollary 3.1. Suppose the hypothesis (H1) hold.
If R0 > 1, then the endemic equilibrium P ∗ of system (2) is locally asymptotically
stable.

3.2. Global stability of the disease-free equilibrium and the endemic equi-
librium. Now, we discuss the global stability of the disease-free equilibrium P0 and
the endemic equilibrium P ∗ of system (2).

Proposition 3.2. Suppose the hypothesis (H1) hold.
If R0 ≤ 1, then the disease-free equilibrium P0 is globally asymptotically stable.

Proof. Define a Lyapunov functional

W0(t) = V0(t) + U0(t),

where

V0(t) =

∫ S

A
µ

(1−
f(Aµ , 0)

f(u, 0)
)du,

and

U0(t) = E +
σ + µ

σ
I +

σ + µ

σ

δ

µ+ δ
R

We will show that dW0(t)
dt ≤ 0 for all t ≥ 0. We have :

dV0(t)

dt
= (1−

f(Aµ , 0)

f(S, 0)
)Ṡ

= (1−
f(Aµ , 0)

f(S, 0)
)(A− µS − f(S, I)I)

= µ(1−
f(Aµ , 0)

f(S, 0)
)(
A

µ
− S)− f(S, I)I +

f(Aµ , 0)

f(S, 0)
f(S, I)I

and

dU0(t)

dt
= f(S, I)I − (µ+ σ)E + (µ+ σ)E − (µ+ γ)(µ+ σ)

σ
I

+
(σ + µ)δ

σ
R+

(σ + µ)

σ

δγ

(µ+ δ)
I − (σ + µ)δ

σ
R

= f(S, I)I − (σ + µ)

σ(µ+ δ)
µ(µ+ δ + γ)I

Then:
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dW0(t)

dt
= µ(1−

f(Aµ , 0)

f(S, 0)
)(
A

µ
− S)

+
f(Aµ , 0)

f(S, 0)
f(S, I)I − (σ + µ)

σ(µ+ δ)
µ(µ+ δ + γ)I

= µ(1−
f(Aµ , 0)

f(S, 0)
)(
A

µ
− S)

+
(σ + µ)

σ(µ+ δ)
µ(µ+ δ + γ)I(

f(Aµ , 0)

(σ+µ)
σ(µ+δ)µ(µ+ δ + γ)

f(S, I)

f(S, 0)
− 1)

= µ(1−
f(Aµ , 0)

f(S, 0)
)(
A

µ
− S)

+
(σ + µ)

σ(µ+ δ)
µ(µ+ δ + γ)I(R0

f(S, I)

f(S, 0)
− 1)

By the hypothesis (H1), we obtain that

(1−
f(Aµ , 0)

f(S, 0)
)(
A

µ
− S) ≤ 0

Where equality holds if and only if S = A
µ .

Furthermore, it follows from the hypothesis (H1) that

R0
f(S, I)

f(S, 0)
≤ R0

f(S, 0)

f(S, 0)

≤ R0

Therefore, R0 ≤ 1 ensures that dW0(t)
dt ≤ 0 for all t ≥ 0, where dW0(t)

dt = 0 holds if

(S,E, I,R) = (Aµ , 0, 0, 0). Hence, it follows from system (2) that {P0} is the largest

invariant set in
{
(S,E, I,R)|dW0(t)

dt = 0
}
. From the Lyapunov-LaSalle asymptotic

stability, we obtain that P0 is globally asymptotically stable. This completes the
proof. �
Theorem 3.2. Suppose the hypotheses (H1) and (H2) hold.
If R0 > 1, then the endemic equilibrium P ∗ is globally asymptotically stable.

Proof. To prove global stability of the endemic equilibrium, we define a Lyapunov
functional

W (t) = V1(t) + V2(t) + V3(t), with

V1(t) =

∫ S

S∗
(1− f(S∗, I∗)

f(u, I∗)
)du,

V2(t) = (E − E∗ − E∗ ln
E

E∗ ) +
σ + µ

σ
(I − I∗ − I∗ ln

I

I∗
),

and

V3(t) =
(σ + µ)δ

σ
[
R∗

γI∗
(R−R∗ −R∗ ln

R

R∗ )].

Using the relations

A = µS∗ + f(S∗, I∗)I∗ and (µ+ σ)E∗ = f(S∗, I∗)I∗,
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a simple calculation gives:

dV1(t)

dt
=

(
1− f(S∗, I∗)

f(S, I∗)

)(
A− µS − f(S, I)I

)
= µ

(
1− f(S∗, I∗)

f(S, I∗)

)
(S∗ − S) +

(
1− f(S∗, I∗)

f(S, I∗)

)
(f(S∗, I∗)I∗ − f(S, I)I)

= µ
(
1− f(S∗, I∗)

f(S, I∗)

)
(S∗ − S) + (σ + µ)E∗

(
1− f(S∗, I∗)

f(S, I∗)

)(
1− f(S, I)I

f(S∗, I∗)I∗

)
,

dV2(t)

dt
= (1− E∗

E
)(f(S, I)I − (σ + µ)E) +

(σ + µ)

σ
(1− I∗

I
)(σE − (µ+ γ)I + δR)

= (σ + µ)E∗(1− E∗

E
)(

f(S, I)I

f(S∗, I∗)I∗
− E

E∗ ) + (σ + µ)E∗(1− I∗

I
)(

E

E∗ − (µ+ γ)

σE∗ I +
δR

σE∗ )

Moreover, the two relationships:

(σE∗ + δR∗)I

I∗
= (µ+ γ)I and R∗ =

γI∗

µ+ δ

are used to find:

dV2(t)

dt
= (σ + µ)E∗(1− E∗

E
)(

f(S, I)I

f(S∗, I∗)I∗
− E

E∗ ) + (σ + µ)E∗(1− I∗

I
)(

E

E∗ − I

I∗
)

+ (σ + µ)E∗(1− I∗

I
)(

δR

σE∗ − δR∗

σE∗
I

I∗
)

= (σ + µ)E∗[(1− E∗

E
)(

f(S, I)I

f(S∗, I∗)I∗
− E

E∗ ) + (1− I∗

I
)(

E

E∗ − I

I∗
)]

+
(σ + µ)δ

σ
[R− R∗I

I∗
− RI∗

I
+R∗]

= (σ + µ)E∗[(1− E∗

E
)(

f(S, I)I

f(S∗, I∗)I∗
− E

E∗ ) + (1− I∗

I
)(

E

E∗ − I

I∗
)]

− (σ + µ)δ

σ
R∗(

√
RI∗

IR∗ −
√

IR∗

RI∗
)2

+
(σ + µ)δ

σ
[R− R∗I

I∗
+

I(R∗)2

RI∗
−R∗],

and

dV3(t)

dt
=

(σ + µ)δ

σ
[
R∗

γI∗
(1− R∗

R
)(γI − (µ+ δ)R)]

=
(σ + µ)δ

σ
[
IR∗

I∗
− (µ+ δ)

γ

RR∗

I∗
− (R∗)2I

I∗R
+

(µ+ δ)

γ

(R∗)2

I∗
]

=
(σ + µ)δ

σ
[−R+

R∗I

I∗
− I(R∗)2

RI∗
+R∗]
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Then, the time derivative of the function W (t) along the positive solution of system
(2) is :

d(W (t))

dt
= µ(1− f(S∗, I∗)

f(S, I∗)
)(S∗ − S)

+ (σ + µ)E∗(4− f(S, I∗)

f(S, I)
− f(S∗, I∗)

f(S, I∗)
− E∗

E

f(S, I)I

f(S∗, I∗)I∗
− I∗

I

E

E∗ )

+ (σ + µ)E∗(−1 +
f(S, I∗)

f(S, I)
+

f(S, I)I

f(S, I∗)I∗
− I

I∗
)

− (σ + µ)δ

σ
R∗(

√
RI∗

IR∗ −
√

IR∗

RI∗
)2

= µ(1− f(S∗, I∗)

f(S, I∗)
)(S∗ − S)

+ (σ + µ)E∗(4− f(S, I∗)

f(S, I)
− f(S∗, I∗)

f(S, I∗)
− E∗

E

f(S, I)I

f(S∗, I∗)I∗
− I∗

I

E

E∗ )

+ (σ + µ)E∗ I

I∗
(1− f(S, I)

f(S, I∗)
)(
ϕ(S, I∗)

ϕ(S, I)
− 1)

− (σ + µ)δ

σ
R∗(

√
RI∗

IR∗ −
√

IR∗

RI∗
)2

Now, according to the assumptions (H1) and (H2), we have

(1− f(S∗, I∗)

f(S, I∗)
)µ(S∗ − S) ≤ 0

and

(1− f(S, I)

f(S, I∗)
)(
ϕ(S, I∗)

ϕ(S, I)
− 1) ≤ 0

Moreover, since the arithmetic mean is greater than or equal to the geometric mean,
we obtain that

(4− f(S, I∗)

f(S, I)
− f(S∗, I∗)

f(S, I∗)
− E∗

E

f(S, I)I

f(S∗, I∗)I∗
− I∗

I

E

E∗ ) ≤ 0

Therefore, dW (t)
dt ≤ 0 for all t ≥ 0, where the equality holds only at the equilibrium

point (S∗, E∗, I∗, R∗). It follows from system (2) that {P ∗} is the largest invariant

set in
{
(S,E, I,R)|dW (t)

dt = 0
}
.

Consequently, we obtain, by the Lyapunov-LaSalle asymptotic stability theorem,
that P ∗ is globally asymptotically stable. This completes the proof. �

4. Concluding Remarks

In this paper we propose an SEIRI epidemic model with a general incidence
function, latent period and a relapse rate, (see system (2)).

We found the local stability of the endemic equilibrium and the global stability
for the disease-free and endemic equilibrium, by Routh-Hurwitz criterion and by
constructing Lyapunov functionals. When R0 ≤ 1, the disease-free steady state
is globally asymptotically stable, and no other equilibria exist. When R0 > 1, a
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unique endemic equilibrium P ∗ appears. Using Routh-Hurwitz criterion and Lya-
punov functional technique, the endemic equilibrium is locally and globally asymp-
totically stable.

Note that the basic reproduction number written as R0 = σ
(µ+σ)

(µ+δ)f(A
µ ,0)

µ(µ+δ+γ) , where
σ

(µ+σ), is the probability of survival of the exposed class, A
µ represents the number

of susceptible individuals at the beginning of the infectious process and f(Aµ , 0)

represents the value of the function f when all individuals are susceptible, µ is the
natural death rate, and the constant rate δ at which an individual in the recovered
class reverts to the infective class, the recovery rate γ of infectious individuals and
the latent period.
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