FIXED POINT THEOREMS SATISFY PROPERTY P IN G_{b}-METRIC SPACES

D. R. NHAVI AND C. T. AAGE

Abstract

In this paper, we prove fixed point theorem for a contractive mapping which satisfy property P in G_{b}-metric space. Our results are supported by an example.

1. Introduction

The metric space is generalized by different authors by various ways. Czerwik [9] introduced b-metric space. Zead Mustafa and Brailey Sims [13] coined the concept of G-metric space. A. Aghajani, M. Abbas and J. R. Roshan [2] extended the Gmetric space with b-metric space and develop the new structure of metric space, which we call G_{b}-metric space. They proved the fixed point theorems in G_{b}-metric spaces. A self map T of the space X with a nonempty fixed point set $F(T)$. Then we say that T has a property P if $F(T)=F\left(T^{n}\right)$ for each $n \in N$ [10]-[3]. We design the fixed point theorems for the self maps which satisfy property P for various contractions in G-metric spaces [10]- [8].
Definition 1 ([9]) Let X be a non empty set and the mapping $d: X \times X \rightarrow[0, \infty)$. The mapping d satisfies
(i) $d(x, y)=0$ if and only if $x=y$ for all $x, y \in X$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) there exists a real number $s \geq 1$ such that $d(x, y) \leq s[d(x, z)+d(z, y)]$ for all $x, y, z \in X$. Then d is called a b-metric on X. The ordered pair (X, d) is called b-metric space with coefficient s.
G-metric space is defined as follows
Definition 2 ([13])Let X be a non empty set and the mapping $G: X \times X \times X \rightarrow$ $[0, \infty)$. The mapping G satisfies
(i) $G(x, y, z)=0$ if and only if $x=y=z$ for all $x, y, z \in X$;
(ii) $0<G(x, x, y)$ for all $x, y \in X$;
(iii) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $z \neq y$;
(iv) $G(x, y, z)=G(x, z, y)=G(y, z, x)=\cdots$ (symmetry in all three variables);

[^0](v) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$ (rectangle inequality). Then G is called a G-metric on X and the ordered pair (X, G) is called G-metric space.
A. Aghajani, M. Abbas and J. R. Roshan [2] introduced $G_{b^{-}}$metric space as follows
Definition 3 ([2]) Let X be a nonempty set and $s \geq 1$ be a given real number. Suppose that a mapping $G_{b}: X \times X \times X \rightarrow R^{+}$satisfies:
(i) $G_{b}(x, y, z)=0$ if $x=y=z$ for all $x, y, z \in X$;
(ii) $0<G_{b}(x, x, y)$ for all $x, y, z \in X$ with $x \neq y$;
(iii) $G_{b}(x, x, y) \leq G_{b}(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$;
(iv) $G_{b}(x, y, z)=G_{b}(p x, z, y)$, where p is a permutation of x, y, z (symmetry);
(v) $G_{b}(x, y, z) \leq s\left[G_{b}(x, a, a)+G_{b}(a, y, z)\right]$.

Then G_{b} is called a generalized b-metric or G_{b} metric on X. The ordered pair $\left(X, G_{b}\right)$ is called generalized b metric or G_{b}-metric space.

Following example shows that a G_{b}-metric on X need not be a G-metric on X. Example 1 ([2]) Let (X, G) be a G-metric space and $G_{*}(x, y, z)=G(x, y, z)^{p}$; where $p>1$ is a real number. Note that G_{*} is a G_{b}-metric with $s=2^{P-1}$. Obviously, G_{*} satisfies conditions (i) to (iv) of the G_{b} metric space. Now it suffices to show that condition (v) of G_{b} metric space to be hold. If $1<p<\infty$, then the convexity of the function $f(x)=x^{p}(x>0)$ implies that $(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right)$. Thus for each $x, y, z, a \in X$ we obtain

$$
\begin{array}{r}
G_{*}(x, y, z)=G(x, y, z)^{p} \leq(G(x, a, a)+G(a, y, z))^{p} \\
\leq 2^{p-1}\left(G(x, a, a)^{p}+G(a, y, z)^{p}\right) \\
=2^{p-1}\left(G_{*}(x, a, a)+G_{*}(a, y, z)\right)
\end{array}
$$

So G_{*} is a G_{b}-metric with $s=2^{p-1}$.
Also in the above example, $\left(X, G_{*}\right)$ is not necessarily a G-metric space.
Example 2 Let $X=R$ and let

$$
G_{b}(x, y, z)=\max \left\{|x-y|^{2},|y-z|^{2},|x-z|^{2}\right\} .
$$

Then $\left(X, G_{b}\right)$ is a G_{b}-metric space with the coefficient $s=2$.
Definition 4 ([2]) Let X be a G_{b}-metric space. A sequence $\left\{x_{n}\right\}$ in X is said to be :
(i) G_{b}-Cauchy sequence if, for each $\epsilon>0$, there exists a positive integer $n_{0} \in \mathbb{N}$ such that, for all $m, n, l \geq n_{0}, G\left(x_{n}, x_{m}, x_{l}\right)<\epsilon$;
(ii) G_{b}-convergent to a point $x \in X$ if, for each $\epsilon>0$, there exists a positive integer $n_{0} \in \mathbb{N}$ such that, for all $m, n \geq n_{0}, G\left(x_{n}, x_{m}, x\right)<\epsilon$.
Proposition 1 ([2]) Let $\left(X, G_{b}\right)$ be a G_{b}-metric space. Then the following are equivalent:
(i) $\left\{x_{n}\right\}$ is G_{b}-converges to x.
(ii) $G_{b}\left(x_{n}, x_{n}, x\right) \rightarrow 0$, as $n \rightarrow \infty$.
(iii) $G_{b}\left(x_{n}, x, x\right) \rightarrow 0$, as $n \rightarrow \infty$.

Proposition 2 ([2]) Let $\left(X, G_{b}\right)$ be a G_{b}-metric space. Then the following are equivalent:
(i) The sequence $\left\{x_{n}\right\}$ is G_{b}-Cauchy.
(ii) For every $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that $G_{b}\left(x_{n}, x_{m}, x_{l}\right)<\epsilon$, for all $n, m, l \geq n_{0}$.

Definition 5 ([2]) A G_{b}-metric space X is called G_{b}-complete if every G_{b}-Cauchy sequence is G_{b}-convergent in X.

2. Main ReSults

Our first main result is
Theorem 1 Let $\left(X, G_{b}\right)$ be a complete G_{b}-metric space with $s \geq 1$ and let T : $X \rightarrow X$ be a mapping satisfying

$$
\begin{align*}
G_{b}(T x, T y, T z) \leq & k \max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right. \\
& \frac{\left[G_{b}(x, T y, T y)+G_{b}(y, T x, T x)\right]}{2}, \frac{\left[G_{b}(y, T z, T z)+G_{b}(z, T y, T y)\right]}{2} \\
& \left.\frac{\left[G_{b}(x, T z, T z)+G_{b}(z, T x, T x)\right]}{2}\right] \tag{1}
\end{align*}
$$

for all $x, y, z \in X$, where k is such that $s k \in[0,1)$. Then T has a unique fixed point say $p(T p=p)$ in X and T is G_{b}-continuous at p.
Proof. Let $x_{0} \in X$. Since $T: X \rightarrow X$ be a self map, then we get a sequence $\left(x_{n}\right)$ in X such that $x_{n}=T x_{n-1}=T^{n} x_{0}$. Consider

$$
\begin{aligned}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)= & G_{b}\left(T x_{n-1}, T x_{n}, T x_{n}\right) \\
\leq & k \max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right),\right. \\
& G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right), \frac{\left[G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n}, x_{n}, x_{n}\right)\right]}{2} \\
& \frac{\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]}{2} \\
& \left.\frac{\left[G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n}, x_{n}, x_{n}\right)\right]}{2}\right] \\
\leq & k \max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right. \\
& \left.\frac{G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)}{2}\right] .
\end{aligned}
$$

There are three cases:
Case (i) Suppose

$$
\begin{aligned}
\max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right. & \left., \frac{G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)}{2}\right] \\
& =\frac{G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)}{2}
\end{aligned}
$$

Then

$$
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k \frac{G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)}{2} .
$$

By property (v) of G_{b} metric space, we have

$$
G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right) \leq s\left\{G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)+G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\} .
$$

Then, we get

$$
\begin{aligned}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) & \leq s k\left[\frac{G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)+G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)}{2}\right] \\
& \leq \frac{s k}{(2-s k)} G_{b}\left(x_{n-1}, x_{n}, x_{n}\right) \\
& =\lambda G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)
\end{aligned}
$$

where $\lambda=\frac{s k}{(2-s k)}$. Therefore by continuing in this way, we get

$$
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)
$$

As $n \rightarrow \infty, G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \rightarrow 0$, since $\lambda<1$. Moreover for all $n, m \in \mathbb{N}, n<m$, and by (v) the property of G_{b}-metric space.

$$
\begin{aligned}
G_{b}\left(x_{n}, x_{m}, x_{m}\right) \leq & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, x_{m}, x_{m}\right)\right] \\
\leq & s\left[\lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+G_{b}\left(x_{n+1}, x_{m}, x_{m}\right)\right] \\
\leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{2}\left[G_{b}\left(x_{n+1}, x_{n+2}, x_{n+2}\right)+G_{b}\left(x_{n+2}, x_{m}, x_{m}\right)\right] \\
\leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{2} \lambda^{n+1} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{3}\left[G_{b}\left(x_{n+2}, x_{n+3}, x_{n+3}\right)\right. \\
& \left.+G_{b}\left(x_{n+3}, x_{m}, x_{m}\right)\right] \\
= & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{2} \lambda^{n+1} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{3} \lambda^{n+2} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+ \\
& s^{3} G_{b}\left(x_{n+3}, x_{m}, x_{m}\right) \\
\leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{2} \lambda^{n+1} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{3} \lambda^{n+2} G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
& +\cdots+s^{m-1} \lambda^{n+m-2} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{m-1} \lambda^{n+m-1} G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
= & s \lambda^{n}\left[\left(1+s \lambda+(s \lambda)^{2}+(s \lambda)^{3}+\ldots .+(s \lambda)^{m-2}\right)+(s \lambda)^{m-2} \lambda\right] \\
& G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
= & s \lambda^{n}\left[\frac{1-(s \lambda)^{n-(m-2)}}{(1-s \lambda)}+(s \lambda)^{m-2} \lambda\right] G_{b}\left(x_{0}, x_{1}, x_{1}\right) .
\end{aligned}
$$

Letting $m, n \rightarrow \infty$, we get

$$
\lim _{n, m \rightarrow \infty} G_{b}\left(x_{n}, x_{m}, x_{m}\right)=0
$$

Case (ii) Suppose

$$
\begin{array}{r}
\max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right),\right. \\
=G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right) \\
\left.=x_{n+1}\right)
\end{array}
$$

Then

$$
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)
$$

which is contradiction, since $k<1$.
Case (iii) Suppose

$$
\begin{array}{r}
\max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right), \frac{G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)}{2}\right] \\
=G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)
\end{array}
$$

Then

$$
\begin{aligned}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) & \leq k G_{b}\left(x_{n-1}, x_{n}, x_{n}\right) \\
& \leq k^{2} G_{b}\left(x_{n-2}, x_{n-1}, x_{n-1}\right) \leq \cdots \leq k^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)
\end{aligned}
$$

As $n \rightarrow \infty, G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \rightarrow 0$, since $k<1$. Also Since $s k<1$ and by case(i) $\left\{x_{n}\right\}$ is a G_{b}-Cauchy sequence in X. Since X is G_{b}-complete, then there exists $p \in X$ such that $\left\{x_{n}\right\}$ is G_{b}-converges to $p \in X$. Now we claim that p is fixed point of T. Suppose that $T p \neq p$.

$$
\begin{aligned}
G_{b}\left(x_{n}, T p, T p\right) \leq & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, T p, T p\right)\right] \\
\leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s k \max \left[G_{b}\left(x_{n}, p, p\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right),\right. \\
& G_{b}(p, T p, T p), G_{b}(p, T p, T p), \frac{\left[G_{b}\left(x_{n}, T p, T p\right)+G_{b}\left(T p, x_{n+1}, x_{n+1}\right)\right]}{2}, \\
& \frac{\left[G_{b}(p, T p, T p)+G_{b}(p, T p, T p)\right]}{2}, \\
& \left.\frac{\left[G_{b}\left(x_{n}, T p, T p\right)+G_{b}\left(T p, x_{n+1}, x_{n+1}\right)\right]}{2}\right] .
\end{aligned}
$$

As $n \rightarrow \infty,\left\{x_{n}\right\} \rightarrow p$ and above inequality terns into

$$
G_{b}(p, T p, T p) \leq s k G_{b}(p, T p, T p)
$$

It is contradiction, since $s k<1$. Thus $T p=p$. Therefore p is a fixed point of T. For uniqueness suppose $q \neq p$ and q is another fixed point of T, i.e. $T q=q$. By (v) the property of G_{b}-metric space

$$
G_{b}\left(x_{n}, T q, T q\right) \leq s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, T q, T q\right)\right]
$$

Therefore

$$
\begin{aligned}
G_{b}\left(x_{n}, q, q\right) \leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s k \max \left[G_{b}\left(x_{n}, q, q\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right. \\
& G_{b}(q, T q, T q), G_{b}(q, T q, T q), \frac{\left[G_{b}\left(x_{n}, T q, T q\right)+G_{b}\left(q, x_{n+1}, x_{n+1}\right)\right]}{2} \\
& \left.\frac{\left[G_{b}(q, T q, T q)+G_{b}(q, T q, T q)\right]}{2}, \frac{\left[G_{b}\left(x_{n}, T q, T q\right)+G_{b}\left(q, x_{n+1}, x_{n+1}\right)\right]}{2}\right] .
\end{aligned}
$$

As $\lambda<1$, we extend $n \rightarrow \infty$, so $\left\{x_{n}\right\} \rightarrow p$. Thus we get

$$
G_{b}(p, q, q) \leq s k \max \left[\frac{\left[G_{b}(p, q, q)+G_{b}(q, p, p)\right]}{2}, G_{b}(p, q, q)\right]
$$

There are two cases

Case (i) Suppose

$$
\max \left[\frac{\left[G_{b}(p, q, q)+G_{b}(q, p, p)\right]}{2}, G_{b}(p, q, q)\right]=G_{b}(p, q, q)
$$

Then

$$
G_{b}(p, q, q) \leq s k G_{b}(p, q, q)
$$

which is contradiction, since $s k<1$.

Case (ii) Suppose

$$
\max \left[\frac{\left[G_{b}(p, q, q)+G_{b}(q, p, p)\right]}{2}, G_{b}(p, q, q)\right]=\frac{\left[G_{b}(p, q, q)+G_{b}(q, p, p)\right]}{2} .
$$

Then

$$
G_{b}(p, q, q) \leq s k\left[\frac{G_{b}(p, q, q)+G_{b}(q, p, p)}{2}\right]
$$

It implies that

$$
\begin{equation*}
G_{b}(p, q, q) \leq \frac{s k}{2-s k} G_{b}(q, p, p) \tag{2}
\end{equation*}
$$

Also consider,

$$
\begin{aligned}
G_{b}\left(T q, x_{n}, x_{n}\right) \leq & k \max \left[G_{b}\left(q, x_{n-1}, x_{n-1}\right), G_{b}(q, T q, T q), G_{b}\left(x_{n-1}, x_{n}, x_{n}\right),\right. \\
& G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), \frac{\left[G_{b}\left(q, x_{n}, x_{n}\right)+G_{b}\left(x_{n-1}, T q, T q\right)\right]}{2}, \\
& \frac{\left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)+G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)\right]}{2} \\
& \left.\frac{\left[G_{b}\left(q, x_{n}, x_{n}\right)+G_{b}\left(x_{n}, q, q\right)\right]}{2}\right] .
\end{aligned}
$$

As $n \rightarrow \infty$, we get

$$
G_{b}(q, p, p) \leq k \max \left[G_{b}(q, p, p), \frac{\left[G_{b}(q, p, p)+G_{b}(p, q, q)\right]}{2}\right]
$$

There are two cases:
Case (i)Suppose

$$
\max \left[G_{b}(q, p, p), \frac{\left[G_{b}(q, p, p)+G_{b}(p, q, q)\right]}{2}\right]=G_{b}(q, p, p)
$$

Then, we get

$$
G_{b}(q, p, p) \leq k G_{b}(q, p, p)
$$

which is contradiction, since $k<1$.
Case (ii) Suppose

$$
\begin{gathered}
\max \left[G_{b}(q, p, p), \frac{\left[G_{b}(q, p, p)+G_{b}(p, q, q)\right]}{2}\right]=\frac{\left[G_{b}(q, p, p)+G_{b}(p, q, q)\right]}{2} \\
G_{b}(q, p, p) \leq k\left[G_{b}(q, p, p)+\frac{G_{b}(p, q, q)}{2}\right]
\end{gathered}
$$

It implies that

$$
\begin{equation*}
G_{b}(q, p, p) \leq\left(\frac{k}{2-k}\right) G_{b}(p, q, q) \tag{3}
\end{equation*}
$$

Therefore from (2) and (3), we get

$$
\begin{equation*}
G_{b}(p, q, q) \leq\left(\frac{s k}{2-s k}\right)\left(\frac{k}{2-k}\right) G_{b}(p, q, q) \tag{4}
\end{equation*}
$$

Since $\left(\frac{s k}{2-s k}\right)\left(\frac{k}{2-k}\right)<1$. So (2.4) is possible only when $G_{b}(p, q, q)=0$. Thus $p=q$. Now we claim that T is G_{b}-continuous at p. Let $\left(y_{n}\right)$ be a sequence in X such that $\lim _{n \rightarrow \infty} y_{n}=p$. Consider

$$
\begin{aligned}
G_{b}\left(p, T y_{n}, T y_{n}\right) \leq & k \max \left[G_{b}\left(p, y_{n}, y_{n}\right), G_{b}(p, p, p), G_{b}\left(y_{n}, T y_{n}, T y_{n}\right)\right. \\
& G_{b}\left(y_{n}, T y_{n}, T y_{n}\right), \frac{\left[G_{b}\left(p, T y_{n}, T y_{n}\right)+G_{b}\left(y_{n}, p, p\right)\right]}{2} \\
& \frac{\left[G_{b}\left(y_{n}, T y_{n}, T y_{n}\right)+G_{b}\left(y_{n}, T y_{n}, T y_{n}\right)\right]}{2} \\
& \left.\frac{\left[G_{b}\left(p, T y_{n}, T y_{n}\right)+G_{b}\left(y_{n}, p, p\right)\right]}{2}\right]
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get

$$
\begin{aligned}
G_{b}\left(p, T y_{n}, T y_{n}\right) & \leq k \max \left[G_{b}\left(p, T y_{n}, T y_{n}\right), \frac{G_{b}\left(p, T y_{n}, T y_{n}\right)}{2}\right] \\
& =k G_{b}\left(p, T y_{n}, T y_{n}\right)
\end{aligned}
$$

Since $k<1$, It is possible only when $G_{b}\left(p, T y_{n}, T y_{n}\right)=0$ i.e. $T y_{n}=p=T p$. Therefore T is G_{b}-continuous at p.
Theorem 2 Let $\left(X, G_{b}\right)$ be a complete G_{b}-metric space with $s \geq 1$ and let T : $X \rightarrow X$ be a mapping satisfying

$$
\begin{gather*}
G_{b}(T x, T y, T z) \leq k \max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(x, T y, T y)\right. \\
\left.G_{b}(y, T x, T x), G_{b}(z, T z, T z),\right] \tag{5}
\end{gather*}
$$

for all $x, y, z \in X$ and where k is such that $s k \in\left[0, \frac{1}{2}\right)$. Then T has a unique fixed point say p in X (i.e. $T p=p$) and T is G_{b}-continuous at p.
Proof. Let $x_{0} \in X$ and $T: X \rightarrow X$ be a self map. Then, we get a sequence $\left\{x_{n}\right\}$ in X such that $x_{n}=T x_{n-1}=T^{n} x_{0}$. Consider

$$
\begin{aligned}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)= & G_{b}\left(T x_{n-1}, T x_{n}, T x_{n}\right) \\
\leq & k \max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right),\right. \\
& \left.G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right), G_{b}\left(x_{n}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right] \\
= & k \max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right),\right. \\
& \left.G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)\right] .
\end{aligned}
$$

There are three cases:
Case (i) Suppose

$$
\begin{array}{r}
\max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right), G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)\right] \\
=G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)
\end{array}
$$

Then, we get

$$
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)
$$

Then by property (v) of G_{b} metric space, we have

$$
G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right) \leq s\left\{G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)+G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right\} .
$$

Thus

$$
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq \operatorname{sk}\left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)+G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]
$$

It gives that

$$
\begin{aligned}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) & \leq \frac{s k}{(1-s k)} G_{b}\left(x_{n-1}, x_{n}, x_{n}\right) \\
& =\lambda G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)
\end{aligned}
$$

where $\lambda=\frac{s k}{1-s k}$. Therefore by continuing in this way, we get

$$
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)
$$

Since $k<1$, letting $n \rightarrow \infty$, we have $n \rightarrow \infty, G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \rightarrow 0$. Moreover for all $n, m \in \mathbb{N}, n<m$, since $k<\lambda<1$ and by (v) the property of G_{b} metric space, we have

$$
\begin{aligned}
G_{b}\left(x_{n}, x_{m}, x_{m}\right) \leq & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, x_{m}, x_{m}\right)\right] \\
\leq & s\left[\lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+G_{b}\left(x_{n+1}, x_{m}, x_{m}\right)\right] \\
\leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{2}\left[G_{b}\left(x_{n+1}, x_{n+2}, x_{n+2}\right)+G_{b}\left(x_{n+2}, x_{m}, x_{m}\right)\right] \\
\leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{2} \lambda^{n+1} G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
& +s^{3}\left[G_{b}\left(x_{n+2}, x_{n+3}, x_{n+3}\right)+G_{b}\left(x_{n+3}, x_{m}, x_{m}\right)\right] \\
\leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{2} \lambda^{n+1} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{3} \lambda^{n+2} G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
& +\cdots+s^{m-1} \lambda^{n+m-2} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{m-1} \lambda^{n+m-1} G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
= & s \lambda^{n}\left[\left(1+s \lambda+(s \lambda)^{2}+(s \lambda)^{3}+\cdots+(s \lambda)^{m-2}\right)+(s \lambda)^{m-2} \lambda\right] \\
& G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
= & s \lambda^{n}\left[\frac{1-(s \lambda)^{n-(m-2)}}{(1-s \lambda)}+(s \lambda)^{m-2} \lambda\right] G_{b}\left(x_{0}, x_{1}, x_{1}\right)
\end{aligned}
$$

Letting $m, n \rightarrow \infty$, we get, $\lim _{n, m \rightarrow \infty} G_{b}\left(x_{n}, x_{m}, x_{m}\right)=0$, since $s k<1$. This show that $\left\{x_{n}\right\}$ is a G_{b}-Cauchy sequence in X.
Case (ii) Suppose

$$
\begin{array}{r}
\max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right), G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)\right] \\
=G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)
\end{array}
$$

Then

$$
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)
$$

which is a contradiction, since $k<1$.
Case (iii) Suppose

$$
\begin{array}{r}
\max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right), G_{b}\left(x_{n-1}, x_{n+1}, x_{n+1}\right)\right] \\
=G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)
\end{array}
$$

Then

$$
\begin{aligned}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) & \leq k G_{b}\left(x_{n-1}, x_{n}, x_{n}\right) \\
& \leq k^{2} G_{b}\left(x_{n-2}, x_{n-1}, x_{n-1}\right) \leq \cdots \leq k^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)
\end{aligned}
$$

Since $k<1$, as $n \rightarrow \infty$, we have $G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \rightarrow 0$. Thus in this case also $\left\{x_{n}\right\}$ is a G_{b}-Cauchy sequence in X. Since X is G_{b}-complete, then there exists $p \in X$ such that $\left\{x_{n}\right\} \rightarrow p$. Now, we claim that p is fixed point of T. Suppose that $T p \neq p$, by (v) the property of G_{b}-metric space and by (2.5), we get

$$
\begin{aligned}
G_{b}\left(x_{n}, T p, T p\right) \leq & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, T p, T p\right)\right] \\
\leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s k \max \left[G_{b}\left(x_{n}, p, p\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right. \\
& \left.G_{b}(p, T p, T p), G_{b}\left(x_{n}, T p, T p\right), G_{b}\left(p, x_{n+1}, x_{n+1}\right), G_{b}(p, T p, T p)\right] .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have $\left\{x_{n}\right\} \rightarrow p$. Then

$$
G_{b}(p, T p, T p) \leq s k G_{b}(p, T p, T p)
$$

Since $s k<1$, the above inequality is true only if $G_{b}(p, T p, T p)=0$. Thus $p=T p$. Therefore p is a fixed point of T. For uniqueness, suppose $q \neq p$ and q is another fixed point of T i.e. $T q=q$. Consider

$$
G_{b}\left(x_{n}, T q, T q\right) \leq s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, T q, T q\right)\right]
$$

It gives that

$$
\begin{aligned}
G_{b}\left(x_{n}, q, q\right) \leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s k \max \left[G_{b}\left(x_{n}, q, q\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right. \\
& \left.G_{b}(q, T q, T q), G_{b}\left(x_{n}, T q, T q\right), G_{b}\left(q, x_{n+1}, x_{n+1}\right), G_{b}(q, T q, T q)\right] .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have $\left\{x_{n}\right\} \rightarrow p$ with $T q=q$. Then, we get

$$
G_{b}(p, q, q) \leq s k \max \left[G_{b}(p, q, q), G_{b}(q, p, p)\right]
$$

There are two cases:
Case (a) Suppose max $\left[G_{b}(p, q, q), G_{b}(q, p, p)\right]=G_{b}(p, q, q)$. Then

$$
G_{b}(p, q, q) \leq s k G_{b}(p, q, q)
$$

which is contradiction, since $s k<1$.
Case (b) Suppose max $\left[G_{b}(p, q, q), G_{b}(q, p, p)\right]=G_{b}(q, p, p)$. Then

$$
\begin{equation*}
G_{b}(p, q, q) \leq s k G_{b}(q, p, p) \tag{6}
\end{equation*}
$$

Now, consider

$$
\begin{aligned}
G_{b}\left(T q, x_{n}, x_{n}\right) \leq & k \max \left[G_{b}\left(q, x_{n-1}, x_{n-1}\right), G_{b}(q, T q, T q), G_{b}\left(x_{n-1}, x_{n}, x_{n}\right),\right. \\
& \left.G_{b}\left(q, x_{n}, x_{n}\right), G_{b}\left(x_{n-1}, T q, T q\right), G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)\right]
\end{aligned}
$$

Letting $n \rightarrow \infty$, it implies that

$$
G_{b}(q, p, p) \leq k \max \left[G_{b}(q, p, p), G_{b}(p, q, q)\right]
$$

There are two cases:

Case (c) Suppose $\max \left[G_{b}(q, p, p), G_{b}(p, q, q)\right]=G_{b}(q, p, p)$. Then

$$
G_{b}(q, p, p) \leq k G_{b}(q, p, p)
$$

which is contradiction, since $k<1$.
Case (d) Suppose max $\left[G_{b}(q, p, p), G_{b}(p, q, q)\right]=G_{b}(p, q, q)$. Then

$$
\begin{equation*}
G_{b}(q, p, p) \leq k G_{b}(p, q, q) \tag{7}
\end{equation*}
$$

Using inequality (7) in (6), we have

$$
\begin{equation*}
G_{b}(p, q, q) \leq s k^{2} G_{b}(p, q, q) \tag{8}
\end{equation*}
$$

Since $s k<1$. Thus (8) is true only if $G_{b}(p, q, q)=0$. Thus $p=q$. Therefore p is a fixed point of T in X.

To show that T is G_{b}-continuous at p, let $\left\{y_{n}\right\}$ be a sequence in X such that $\lim _{n \rightarrow \infty} y_{n}=p$. Consider

$$
\begin{aligned}
G_{b}\left(p, T y_{n}, T y_{n}\right) \leq & k \max \left[G_{b}\left(p, y_{n}, y_{n}\right), G_{b}(p, p, p), G_{b}\left(y_{n}, T y_{n}, T y_{n}\right),\right. \\
& \left.G_{b}\left(p, T y_{n}, T y_{n}\right), G_{b}\left(y_{n}, p, p\right), G_{b}\left(y_{n}, T y_{n}, T y_{n}\right)\right]
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get

$$
\begin{aligned}
G_{b}\left(p, T y_{n}, T y_{n}\right) \leq & \max \left[G_{b}(p, p, p), G_{b}(p, p, p), G_{b}\left(p, T y_{n}, T y_{n}\right), G_{b}\left(p, T y_{n}, T y_{n}\right)\right. \\
& \left.G_{b}(p, p, p), G_{b}\left(p, T y_{n}, T y_{n}\right)\right]
\end{aligned}
$$

Thus

$$
G_{b}\left(p, T y_{n}, T y_{n}\right) \leq k \max G_{b}\left(p, T y_{n}, T y_{n}\right)
$$

It is possible only if $G_{b}\left(p, T y_{n}, T y_{n}\right)=0$. Thus $T y_{n}=p=T p$. It is proved that T is G_{b}-continuous at p.
Theorem 3 Let $\left(X, G_{b}\right)$ be a complete G_{b}-metric space with $s \geq 1$ and let T : $X \rightarrow X$ be a mapping satisfying
$G_{b}(T x, T y, T z) \leq \alpha G_{b}(x, y, z)+\beta G_{b}(x, T x, T x)+\gamma G_{b}(y, T y, T y)+\delta G_{b}(z, T z, T z)$
for all $x, y, z \in X$ and where $\alpha+\beta+\gamma+\delta<1$. Then T has a unique fixed point say p (i.e. $T p=p$) and T is G_{b}-continuous at p.
Proof. Let $x_{0} \in X$ and the mapping $T: X \rightarrow X$ then we get a sequence $\left\{x_{n}\right\}$ in X such that $x_{n}=T x_{n-1}=T^{n} x_{0}$. Consider

$$
\begin{aligned}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)= & G_{b}\left(T x_{n-1}, T x_{n}, T x_{n}\right) \\
\leq & \alpha G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)+\beta G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)+\gamma G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \\
& +\delta G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \\
\leq & (\alpha+\beta) G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)+(\gamma+\delta) G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \\
\leq & \frac{\alpha+\beta}{1-(\gamma+\delta)} G_{b}\left(x_{n-1}, x_{n}, x_{n}\right) \\
\leq & \lambda G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)
\end{aligned}
$$

where $\lambda=\frac{\alpha+\beta}{1-(\gamma+\delta)}$. Therefore, continuing in this way, we get $G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq$ $\lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)$.

Moreover for all $n, m \in \mathbb{N}, n<m$ and by (v) th property of G_{b} metric space, we have

$$
\begin{aligned}
G_{b}\left(x_{n}, x_{m}, x_{m}\right) \leq & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, x_{m}, x_{m}\right)\right] \\
\leq & s\left[\lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+G_{b}\left(x_{n+1}, x_{m}, x_{m}\right)\right] \\
\leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{2}\left[G_{b}\left(x_{n+1}, x_{n+2}, x_{n+2}\right)+G_{b}\left(x_{n+2}, x_{m}, x_{m}\right)\right] \\
\leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{2} \lambda^{n+1} G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
& +s^{3}\left[G_{b}\left(x_{n+2}, x_{n+3}, x_{n+3}\right)+G_{b}\left(x_{n+3}, x_{m}, x_{m}\right)\right] \\
\leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{2} \lambda^{n+1} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{3} \lambda^{n+2} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+ \\
& \cdots+s^{m-1} \lambda^{n+m-2} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s^{m-1} \lambda^{n+m-1} G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
= & s \lambda^{n}\left[\left(1+s \lambda+(s \lambda)^{2}+(s \lambda)^{3}+\cdots+(s \lambda)^{m-2}\right)+(s \lambda)^{m-2} \lambda\right] \\
& G_{b}\left(x_{0}, x_{1}, x_{1}\right) \\
= & s \lambda^{n}\left[\frac{1-(s \lambda)^{n-(m-2)}}{(1-s \lambda)}+(s \lambda)^{m-2} \lambda\right] G_{b}\left(x_{0}, x_{1}, x_{1}\right) .
\end{aligned}
$$

Letting $m, n \rightarrow \infty$, we have $\lim _{n, m \rightarrow \infty} G_{b}\left(x_{n}, x_{m}, x_{m}\right)=0$. Hence $\left\{x_{n}\right\}$ is a G_{b} -Cauchy sequence in X. Since X is a G_{b}-complete, therefore there exists $p \in X$ such that $\left\{x_{n}\right\}$ is G_{b}-converges to p. Now we will show here p is fixed point of T. Suppose that $T p \neq p$.

$$
\begin{aligned}
G_{b}\left(x_{n}, T p, T p\right) \leq & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, T p, T p\right)\right] \\
\leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s\left[\alpha G_{b}\left(x_{n}, p, p\right)+\beta G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right. \\
& \left.+\gamma G_{b}(p, T p, T p)+\delta G_{b}(p, T p, T p)\right]
\end{aligned}
$$

Letting $n \rightarrow \infty$, since $\lambda<1$, so $\lambda^{n} \rightarrow 0$ and $x_{n} \rightarrow p$. It gives that

$$
G_{b}(p, T p, T p) \leq s(\gamma+\delta) G_{b}(p, T p, T p)
$$

Since $s(\gamma+\delta)<1$. The above inequality is true only if $G_{b}(p, T p, T p)=0$ i.e. $p=T p$. Thus p is a fixed point of T.

Suppose $q \neq p$ and q is another fixed point of T, i.e. $T q=q$. Then consider

$$
\begin{aligned}
G_{b}\left(x_{n}, T q, T q\right) \leq & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, T q, T q\right)\right] \\
G_{b}\left(x_{n}, q, q\right) \leq & s \lambda^{n} G_{b}\left(x_{0}, x_{1}, x_{1}\right)+s\left[\alpha G_{b}\left(x_{n}, q, q\right)+\beta G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+\right. \\
& \left.\gamma G_{b}(q, T q, T q)+\delta G_{b}(q, T q, T q)\right]
\end{aligned}
$$

As $n \rightarrow \infty, x_{n} \rightarrow p, \lambda^{n} \rightarrow 0$ as $\lambda<1$ and $T q=q$. We get

$$
\begin{equation*}
G_{b}(p, q, q) \leq s \alpha G_{b}(p, q, q) \tag{10}
\end{equation*}
$$

since $s \alpha<1$. The inequality (10) is true only when $G_{b}(p, q, q)=0$. i.e. $p=q$. Thus p is a unique fixed point of T.

To show that T is G_{b}-continuous at p, let $\left\{y_{n}\right\}$ be a sequence in X such that $\lim _{n \rightarrow \infty} y_{n}=p$. Consider

$$
\begin{aligned}
G_{b}\left(p, T y_{n}, T y_{n}\right) \leq & \alpha G_{b}\left(p, y_{n}, y_{n}\right)+\beta G_{b}(p, p, p)+\gamma G_{b}\left(y_{n}, T y_{n}, T y_{n}\right) \\
& +\delta G_{b}\left(y_{n}, T y_{n}, T y_{n}\right) \\
= & \alpha G_{b}\left(p, y_{n}, y_{n}\right)+(\gamma+\delta) G_{b}\left(y_{n}, T y_{n}, T y_{n}\right) \\
\leq & \alpha G_{b}\left(p, y_{n}, y_{n}\right)+s(\gamma+\delta)\left\{G_{b}\left(y_{n}, p, p\right)+G_{b}\left(p, T y_{n}, T y_{n}\right)\right\} .
\end{aligned}
$$

It is implies that

$$
G_{b}\left(p, T y_{n}, T y_{n}\right) \leq\left[\frac{\alpha}{1-s(\gamma+\delta)} G_{b}\left(p, y_{n}, y_{n}\right)+\frac{s(\gamma+\delta)}{1-s(\gamma+\delta)} G_{b}\left(p, T y_{n}, T y_{n}\right)\right]
$$

As $n \rightarrow \infty,\left\{y_{n}\right\} \rightarrow p$, we get

$$
\begin{equation*}
G_{b}\left(p, T y_{n}, T y_{n}\right)=\frac{s(\gamma+\delta)}{1-s(\gamma+\delta)} G_{b}\left(p, T y_{n}, T y_{n}\right) \tag{11}
\end{equation*}
$$

Since $\frac{s(\gamma+\delta)}{1-s(\gamma+\delta)}<1$. The inequality (11) is true only if $G_{b}\left(p, T y_{n}, T y_{n}\right)=0$. i.e. $T y_{n}=p=T p$, as $n \rightarrow \infty$. It shows that T is G_{b}-continuous at p.

3. Property P

Let T be a self map of a complete G_{b} metric space with non-empty fixed point set $F(T)$. Then T is said to satisfy property P if $F(T)=F\left(T^{n}\right)$, for each $n \in \mathbb{N}$.
Theorem 4 Under the contraction of theorem $1, T$ has property P.
Proof. By Theorem 1, T has a fixed point. Therefore $F\left(T^{n}\right) \neq \emptyset$, each $n \in \mathbb{N}$. Fix $n>1$ and assume that $p \in F\left(T^{n}\right)$. To show that $p \in F(T)$. Suppose that $p \neq T p$. Then we have

$$
\begin{aligned}
G_{b}(p, T p, T p)= & G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \\
\leq & k \max \left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right), G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right)\right. \\
& G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right), G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \\
& \frac{\left[G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)+G_{b}\left(T^{n} p, T^{n} p, T^{n} p\right)\right]}{2} \\
& \frac{\left[G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)+G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)\right]}{2} \\
& \left.\frac{\left[G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)+G_{b}\left(T^{n} p, T^{n} p, T^{n} p\right)\right]}{2}\right] \\
= & k \max \left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right), G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)\right. \\
& \left.\frac{G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)}{2}\right]
\end{aligned}
$$

Here, we have three cases:
Case (i) Suppose

$$
\max \left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right), G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right), \frac{G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)}{2}\right]
$$

Then, we get

$$
G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \leq k G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right) \leq \cdots \leq k^{n} G_{b}(p, T p, T p)
$$

Case (ii) Suppose

$$
\begin{aligned}
\max \left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right), G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right),\right. & \left.\frac{G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)}{2}\right] \\
& =G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)
\end{aligned}
$$

Then, we get

$$
G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \leq k G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)
$$

which is contradiction, since $k<1$.
Case (iii) Suppose

$$
\begin{aligned}
\max \left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right), G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)\right. & \left., \frac{G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)}{2}\right] \\
& =\frac{G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)}{2}
\end{aligned}
$$

Then, we get

$$
\begin{equation*}
G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \leq k \frac{G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)}{2} \tag{12}
\end{equation*}
$$

By property (v) of G_{b}-metric space, we have

$$
\begin{equation*}
G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right) \leq s\left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right)+G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)\right] \tag{13}
\end{equation*}
$$

Using inequality (13) in (12), we get

$$
G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \leq s k\left[\frac{\left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right)+G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)\right]}{2}\right]
$$

It gives that

$$
\begin{aligned}
G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) & \leq \frac{s k}{2-s k} G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right) \\
& =\lambda G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right) \leq \cdots \leq \lambda^{n} G_{b}(p, T p, T p)
\end{aligned}
$$

where $\lambda=\frac{s k}{2-s k}$. Since $k, \lambda<1$, so as $n \rightarrow \infty$, we get $G_{b}(p, T p, T p)=0$ and hence in all cases $p=T p$ i.e. $p \in F(T)$. Hence T has property P.
Theorem 5 Under the contraction of theorem $2, T$ has property P.
Proof. By theorem 2, T has a fixed point. Therefore $F\left(T^{n}\right) \neq \emptyset$, each $n \in \mathbb{N}$. Fix
$n>1$ and assume that $p \in F\left(T^{n}\right)$. To show that $p \in F(T)$. Suppose that $P \neq T p$.

$$
\begin{aligned}
G_{b}(p, T p, T p= & G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \\
\leq & k \max \left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right), G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right)\right. \\
& G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right), G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right), G_{b}\left(T^{n} p, T^{n} p, T^{n} p\right) \\
& \left.G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)\right] \\
\leq & k \max \left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right), G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)\right. \\
& \left.G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)\right]
\end{aligned}
$$

Here we have three cases,
Case (i)Suppose

$$
\begin{array}{r}
\max \left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right), G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right), G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)\right] \\
=G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right)
\end{array}
$$

Then we get,

$$
G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \leq k G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right) \leq \cdots \leq k^{n} G_{b}(p, T p, T p)
$$

Case (ii)Suppose

$$
\begin{array}{r}
\max \left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right), G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right), G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)\right] \\
=G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)
\end{array}
$$

Then we get,

$$
G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \leq k G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)
$$

which is contradiction, since $k<1$.
Case (iii)Suppose

$$
\begin{array}{r}
\max \left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right), G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right), G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)\right] \\
=G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right)
\end{array}
$$

Then we get,

$$
\begin{equation*}
G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \leq k G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right) \tag{14}
\end{equation*}
$$

By property (v) of G_{b}-metric space, we have

$$
\begin{equation*}
G_{b}\left(T^{n-1} p, T^{n+1} p, T^{n+1} p\right) \leq s\left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right)+G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)\right] \tag{15}
\end{equation*}
$$

Using inequality (15) in (14), we get

$$
G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \leq s k\left[G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right)+G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)\right]
$$

It gives that

$$
\begin{aligned}
G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) & \leq \frac{s k}{1-s k} G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right) \\
& =\lambda G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right) \leq \cdots \leq \lambda^{n} G_{b}(p, T p, T p)
\end{aligned}
$$

where $\lambda=\frac{s k}{1-s k}$. Since $k, \lambda<1$, so as $n \rightarrow \infty$, we get $G_{b}(p, T p, T p)=0$ and hence in all cases $p=T p$ i.e. $p \in F(T)$. Hence T has property P.
Theorem 6 Under the contraction of theorem $3, T$ has property P.
Proof. By theorem 3, T has a fixed point. Therefore $F\left(T^{n}\right) \neq \emptyset$, each $n \in \mathbb{N}$. Fix $n>1$ and assume that $p \in F\left(T^{n}\right)$. To show that $p \in F(T)$. Suppose that $P \neq T p$.

$$
\begin{aligned}
G_{b}(p, T p, T p)= & G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) \\
\leq & {\left[\alpha G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right)+\beta G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right)\right.} \\
& \left.+\gamma G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)+\delta G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right)\right] \\
\leq & (\alpha+\beta) G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right)+(\gamma+\delta) G_{b}\left(T^{n} p, T^{n+1} p, T^{n+1} p\right) .
\end{aligned}
$$

It gives that

$$
\begin{aligned}
G_{b}(p, T p, T p) & \leq \frac{(\alpha+\beta)}{1-(\gamma+\delta)} G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right) \\
& =\lambda G_{b}\left(T^{n-1} p, T^{n} p, T^{n} p\right) \leq \cdots \leq \lambda^{n} G_{b}(p, T p, T p)
\end{aligned}
$$

where $\lambda=\frac{(\alpha+\beta)}{1-(\gamma+\delta)}$. Since $\lambda<1$, so as $n \rightarrow \infty$, we get $G_{b}(p, T p, T p)=0$ and hence $p=T p$ i.e. $p \in F(T)$. Hence T has property P.
Example 3 Let us define $G_{b}(x, y, z)=|x-y|+|y-z|+|x-z|$ and let $x \in X$. Then $\left(X, G_{b}\right)$ be a complete G_{b}-metric space. Let $T(x)=\frac{x}{3}$. Without loss of generality, we assume $x>y>z$. Then
(i)

$$
\begin{aligned}
& G_{b}(T(x), T(y), T(z))=\left|\frac{x}{3}-\frac{y}{3}\right|+\left|\frac{y}{3}-\frac{z}{3}\right|+\left|\frac{x}{3}-\frac{z}{3}\right| \\
& =\frac{1}{3}[|x-y|+|y-z|+|x-z|] \\
& \leq k \max \left[G_{b}(x, y, z), G_{b}(x, T(x), T(x)), G_{b}(y, T(y), T(y)), G_{b}(z, T(z), T(z)),\right. \\
& \\
& \quad \frac{\left[G_{b}(x, T(y), T(y))+G_{b}(z, T(x), T(x))\right]}{2}, \frac{\left[G_{b}(x, T(y), T(y))+G_{b}(y, T(x), T(x))\right]}{2}, \\
& \left.\quad \frac{\left[G_{b}(y, T(z), T(z))+G_{b}(z, T(y), T(y))\right]}{2}, \frac{\left[G_{b}(x, T(z), T(z))+G_{b}(z, T(x), T(x))\right]}{2}\right] .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& G_{b}(T(x), T(y), T(z))=\left|\frac{x}{3}-\frac{y}{3}\right|+\left|\frac{y}{3}-\frac{z}{3}\right|+\left|\frac{x}{3}-\frac{z}{3}\right| \\
& =\frac{1}{3}[|x-y|+|y-z|+|x-z|] \\
& \leq k \max \left[G_{b}(x, y, z), G_{b}(x, T(x), T(x)), G_{b}(y, T(y), T(y)), G_{b}(x, T(y), T(y)),\right. \\
& \left.\quad G_{b}(y, T(x), T(x)), G_{b}(z, T(z), T(z)),\right]
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& G_{b}(T(x), T(y), T(z))=\left|\frac{x}{3}-\frac{y}{3}\right|+\left|\frac{y}{3}-\frac{z}{3}\right|+\left|\frac{x}{3}-\frac{z}{3}\right| \\
& =\frac{1}{3}[|x-y|+|y-z|+|x-z|] \\
& =\frac{1}{9}[|x-y|+|y-z|+|x-z|]+\frac{2}{9}[|x-y|+|y-z|+|x-z|] \\
& \leq \frac{1}{9}[|x-y|+|y-z|+|x-z|]+\frac{2}{9}[|x|+|y|+3|z|] \\
& \left.\leq \frac{1}{9}[|x-y|+|y-z|+|x-z|]+\frac{1}{3}\left[\left|\frac{2 x}{3}\right|+\left|\frac{2 y}{3}\right|\right]+\frac{1}{3}|6 z|\right] \\
& \leq \frac{1}{9}[|x-y|+|y-z|+|x-z|]+\frac{1}{3}\left[\left|x-\frac{x}{3}\right|+\left|y-\frac{y}{3}\right|\right]+\frac{1}{3}\left[9 \left\lvert\, z-\frac{z}{3}\right.\right] \\
& \leq \frac{1}{9}[|x-y|+|y-z|+|x-z|]+\frac{1}{6}\left[2\left|x-\frac{x}{3}\right|\right]+\frac{1}{6}\left[2\left|y-\frac{y}{3}\right|\right]+\frac{1}{2}\left[2 \left\lvert\, z-\frac{z}{3}\right.\right] \\
& \leq\left[\alpha G_{b}(x, y, z)+\beta G_{b}(x, T(x), T(x))+\gamma G_{b}(y, T(y), T(y))+\delta G_{b}(z, T(z), T(z))\right]
\end{aligned}
$$

where $\alpha=\frac{1}{9}, \beta=\frac{1}{6}, \gamma=\frac{1}{6}, \delta=\frac{1}{2}$ and $\alpha+\beta+\gamma+\delta=\frac{17}{18}<1$.

References

[1] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, in press.
[2] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered G_{b}-metric spaces, Filomat, in press.
[3] B. E. Rhoades and M. Abbas, Maps satisfying generalized contractive conditions of integral type for which $F(T)=F(T n)$, International Journal of Pure and Applied Mathematics, vol.45, no.2, pp. 225-231,2008.
[4] G. S. Jeong and B. E. Rhoades, Maps for which $F(T)=F(T n)$, in Fixed Point Theory and Applications. Vol. 6, pp. 71-105, Nova Sci.
[5] G. S. Jeong and B. E. Rhoades, More maps for which $F(T)=F(T n)$, Demonstratio Mathematica, vol.40, no.3, pp. 671-680, 2007.
[6] I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30(1989),26-37.
[7] M. A. Khamsi, W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory,A Wiley-lnterscience Publication,
[8] R. Chugh, T. Kadian, A. Rani and B. E. Rhoades, Property P in G-metric spaces. Fixed Point Theory Appl. Volume 2010,Article ID 401684(2010).
[9] S. Czerwik, Contraction mappings in b-metric space, Acta Mat. Inf. Univ.Ostraviensis 1(1993), 5-11.
[10] W. A. Kirk and B. Sims, Handbook of metric fixed point theory, Kluwer, Academic Publishers, 0Dordrecht, 2001.
[11] W. Shatanawi, Some fixed point theorems in ordered G-metric spaces and applications. Abstr. Appl. Anal. 2011, Article ID 126205 (2011).
[12] Z. Mustafa, A new structure for generalized metric spaces-with applications to fixed point theory. PhD thesis, the University of Newcastle, Australia (2005).
[13] Z. Mustafa and B. Sims, A new approach to generalized metric spaces Journal of Nonlinear and Convex Analysis, vol.7, no.2, pp. 289- 297, 2006.
[14] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl. 2009, Article ID 917175 (2009).
[15] Z. Mustafa and H. Obiedat, A fixed point theorem of Reich in G-metric spaces. Cubo 12(1), 83-93 (2010).
[16] Z. Mustafa, H. Obiedat and F. Awawdeh, volume 2008, Article ID 189870, 12 pages, doi:10.1155/2008/189870.
[17] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces. Int. J. Math. Math. Sci. 2009, Article ID 283028 (2009).
D. R. Nhavi

Department of Mathematics, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, India

E-mail address: dnyaneshwar.nhavi@gmail.com
C. T. Aage

Department of Mathematics, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, India

E-mail address: caage17@gmail.com

[^0]: 2010 Mathematics Subject Classification. 54H25, 47H10, 54E50.
 Key words and phrases. G-metric spaces; b-metric spaces; G_{b}-metric spaces; contraction mappings.

 Submitted July 2, 2018.

