INEQUALITIES OF HERMITE-HADAMARD TYPE FOR GH-CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Abstract

Some inequalities of Hermite-Hadamard type for $G H$-convex functions defined on positive intervals are given. Applications for special means are provided as well.

1. Introduction

Let X be a vector space over the real or complex number field \mathbb{K} and $x, y \in$ $X, x \neq y$. Define the segment

$$
[x, y]:=\{(1-t) x+t y, t \in[0,1]\} .
$$

We consider the function $f:[x, y] \rightarrow \mathbb{R}$ and the associated function

$$
g(x, y):[0,1] \rightarrow \mathbb{R}, g(x, y)(t):=f[(1-t) x+t y], t \in[0,1]
$$

Note that f is convex on $[x, y]$ if and only if $g(x, y)$ is convex on $[0,1]$.
For any convex function defined on a segment $[x, y] \subset X$, we have the HermiteHadamard integral inequality (see [21, p. 2], [22, p. 2])

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \int_{0}^{1} f[(1-t) x+t y] d t \leq \frac{f(x)+f(y)}{2} \tag{1.1}
\end{equation*}
$$

which can be derived from the classical Hermite-Hadamard inequality for the convex function $g(x, y):[0,1] \rightarrow \mathbb{R}$.

For related results, see [1]-[20], [23]-[25], [26]-[35] and [36]-[45].
Let X be a linear space and C a convex subset in X. A function $f: C \rightarrow \mathbb{R} \backslash\{0\}$ is called $A H$-convex (concave) on the convex set C if the following inequality holds

$$
\begin{equation*}
f((1-\lambda) x+\lambda y) \leq(\geq) \frac{1}{(1-\lambda) \frac{1}{f(x)}+\lambda \frac{1}{f(y)}}=\frac{f(x) f(y)}{(1-\lambda) f(y)+\lambda f(x)} \tag{AH}
\end{equation*}
$$

for any $x, y \in C$ and $\lambda \in[0,1]$.

[^0]An important case which provides many examples is that one in which the function is assumed to be positive for any $x \in C$. In that situation the inequality (AH) is equivalent to

$$
(1-\lambda) \frac{1}{f(x)}+\lambda \frac{1}{f(y)} \leq(\geq) \frac{1}{f((1-\lambda) x+\lambda y)}
$$

for any $x, y \in C$ and $\lambda \in[0,1]$.
Therefore we can state the following fact:
Criterion 1. Let X be a linear space and C a convex subset in X. The function $f: C \rightarrow(0, \infty)$ is AH-convex (concave) on C if and only if $\frac{1}{f}$ is concave (convex) on C in the usual sense.

If we apply the Hermite-Hadamard inequality (1.1) for the function $\frac{1}{f}$ then we state the following result:

Proposition 1. Let X be a linear space and C a convex subset in X. If the function $f: C \rightarrow(0, \infty)$ is AH-convex (concave) on C, then

$$
\begin{equation*}
\frac{f(x)+f(y)}{2 f(x) f(y)} \leq(\geq) \int_{0}^{1} \frac{d \lambda}{f((1-\lambda) x+\lambda y)} \leq(\geq) \frac{1}{f\left(\frac{x+y}{2}\right)} \tag{1.2}
\end{equation*}
$$

for any $x, y \in C$.
Following [4], we can introduce the concept of GH-convex (concave) function $f: I \subset(0, \infty) \rightarrow \mathbb{R}$ on an interval of positive numbers I as satisfying the condition

$$
\begin{equation*}
f\left(x^{1-\lambda} y^{\lambda}\right) \leq(\geq) \frac{1}{(1-\lambda) \frac{1}{f(x)}+\lambda \frac{1}{f(y)}}=\frac{f(x) f(y)}{(1-\lambda) f(y)+\lambda f(x)} \tag{1.3}
\end{equation*}
$$

Since

$$
f\left(x^{1-\lambda} y^{\lambda}\right)=f \circ \exp [(1-\lambda) \ln x+\lambda \ln y]
$$

and

$$
\frac{f(x) f(y)}{(1-\lambda) f(y)+\lambda f(x)}=\frac{f \circ \exp (\ln x) f \circ \exp (\ln y)}{(1-\lambda) f \circ \exp (y)+\lambda f \circ \exp (x)}
$$

then $f: I \subset(0, \infty) \rightarrow \mathbb{R}$ is $G H$-convex (concave) on I if and only if $f \circ \exp$ is AH-convex (concave) on $\ln I:=\{x \mid x=\ln t, t \in I\}$.

Motivated by the above results, in this paper we establish some Hermite-Hadamard type inequalities for $G H$-convex (concave) functions. Some examples for special means are provided as well.

2. Results

As a direct consequence of Hermite-Hadamard inequality we have:
Theorem 1. Let $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty)$ be GH-convex (concave) on $[a, b]$. Then

$$
\begin{equation*}
\frac{f(a)+f(b)}{2 f(a) f(b)} \leq(\geq) \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{1}{t f(t)} d t \leq(\geq) \frac{1}{f(\sqrt{a b})} \tag{2.1}
\end{equation*}
$$

From a different perspective we have:

Theorem 2. Let $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty)$ be $G H$-convex (concave) on $[a, b]$. Then

$$
\begin{equation*}
\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(t)}{t} d t \leq(\geq) \frac{G^{2}(f(a), f(b))}{L(f(a), f(b))} \tag{2.2}
\end{equation*}
$$

where, for $p, q>0, G(p, q):=\sqrt{p q}$ is the geometric-mean while

$$
L(p, q):=\left\{\begin{array}{l}
\frac{p-q}{\ln p-\ln q} \text { if } p \neq q \\
q \text { if } p=q
\end{array}\right.
$$

is the logarithmic-mean.
Using the following well known inequality $G(a, b) \leq L(a, b)$ we have a simpler upper bound

$$
\begin{equation*}
\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(t)}{t} d t \leq \frac{G^{2}(f(a), f(b))}{L(f(a), f(b))} \leq G(f(a), f(b)) \tag{2.3}
\end{equation*}
$$

provided that $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty)$ is $G H$-convex on $[a, b]$.
We have also the complementary result:
Theorem 3. Let $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty)$ be GH-convex (concave) on $[a, b]$. Then

$$
\begin{equation*}
f(\sqrt{a b}) \leq(\geq) \frac{\int_{a}^{b} \frac{1}{t} f(t) f\left(\frac{a b}{t}\right) d t}{\int_{a}^{b} \frac{1}{t} f(t) d t} \tag{2.4}
\end{equation*}
$$

We observe that by Cauchy-Bunyakovsky-Schwarz integral inequality we have

$$
\begin{equation*}
\int_{a}^{b} \frac{1}{t} f(t) f\left(\frac{a b}{t}\right) d t \leq\left(\int_{a}^{b} \frac{1}{t^{2}} f^{2}(t) d t\right)^{1 / 2}\left(\int_{a}^{b} f^{2}\left(\frac{a b}{t}\right) d t\right)^{1 / 2} \tag{2.5}
\end{equation*}
$$

If we change the variable $\frac{a b}{t}=s$, then $d t=-\frac{a b}{s^{2}} d s$ and we have

$$
\int_{a}^{b} f^{2}\left(\frac{a b}{t}\right) d t=a b \int_{a}^{b} \frac{1}{s^{2}} f^{2}(s) d s
$$

From (2.5) we get

$$
\begin{aligned}
\int_{a}^{b} \frac{1}{t} f(t) f\left(\frac{a b}{t}\right) d t & \leq\left(\int_{a}^{b} \frac{1}{t^{2}} f^{2}(t) d t\right)^{1 / 2}\left(a b \int_{a}^{b} \frac{1}{s^{2}} f^{2}(s) d s\right)^{1 / 2} \\
& =\sqrt{a b} \int_{a}^{b} \frac{1}{t^{2}} f^{2}(t) d t
\end{aligned}
$$

Now, if $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty)$ is $G H$-convex, then from (2.4) we have

$$
\begin{equation*}
f(\sqrt{a b}) \leq \frac{\int_{a}^{b} \frac{1}{t} f(t) f\left(\frac{a b}{t}\right) d t}{\int_{a}^{b} \frac{1}{t} f(t) d t} \leq \sqrt{a b} \frac{\int_{a}^{b} \frac{1}{t^{2}} f^{2}(t) d t}{\int_{a}^{b} \frac{1}{t} f(t) d t} \tag{2.6}
\end{equation*}
$$

If the function $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty)$ is monotonic either nonincreasing or nondecreasing, then the functions $f(\cdot)$ and $f\left(\frac{a b}{\cdot}\right)$ have opposite monotonicities. By the Čebyšev weighted integral inequality for asynchronous functions g and h and the positive weight $w \geq 0$, namely

$$
\int_{a}^{b} w(t) d t \int_{a}^{b} w(t) g(t) h(t) d t \leq \int_{a}^{b} w(t) g(t) d t \int_{a}^{b} w(t) h(t) d t
$$

we have

$$
\int_{a}^{b} \frac{1}{t} d t \int_{a}^{b} \frac{1}{t} f(t) f\left(\frac{a b}{t}\right) d t \leq \int_{a}^{b} \frac{1}{t} f(t) d t \int_{a}^{b} \frac{1}{t} f\left(\frac{a b}{t}\right) d t
$$

i.e.,

$$
\int_{a}^{b} \frac{1}{t} f(t) f\left(\frac{a b}{t}\right) d t \leq \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{1}{t} f(t) d t \int_{a}^{b} \frac{1}{t} f\left(\frac{a b}{t}\right) d t
$$

So, if $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty)$ is $G H$-convex and monotonic on $[a, b]$, then from (2.4) we have

$$
\begin{equation*}
f(\sqrt{a b}) \leq \frac{\int_{a}^{b} \frac{1}{t} f(t) f\left(\frac{a b}{t}\right) d t}{\int_{a}^{b} \frac{1}{t} f(t) d t} \leq \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{1}{t} f\left(\frac{a b}{t}\right) d t \tag{2.7}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
f(\sqrt{a b}) \leq \frac{\int_{a}^{b} \frac{1}{t} f(t) f\left(\frac{a b}{t}\right) d t}{\int_{a}^{b} \frac{1}{t} f(t) d t} \leq \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{1}{t} f(t) d t \tag{2.8}
\end{equation*}
$$

Theorem 4. Let $f: I \subset(0, \infty) \rightarrow(0, \infty)$ be GH-convex (concave) on I. If $x, y \in \stackrel{\circ}{I}$, the interior of I, then there exists $\varphi(y) \in\left[f_{-}^{\prime}(y), f_{+}^{\prime}(y)\right]$ such that

$$
\begin{equation*}
\frac{f(y)}{f(x)}-1 \leq(\geq) \frac{\varphi(y) y}{f(y)}(\ln y-\ln x) \tag{2.9}
\end{equation*}
$$

In particular, we have:
Corollary 1. Let $f: I \subset(0, \infty) \rightarrow(0, \infty)$ be $G H$-convex (concave) on I and differentiable on $\stackrel{\circ}{I}$. If $x, y \in \stackrel{\circ}{I}$, then

$$
\begin{equation*}
\frac{f(y)}{f(x)}-1 \leq(\geq) \frac{f^{\prime}(y) y}{f(y)}(\ln y-\ln x) \tag{2.10}
\end{equation*}
$$

We also have:
Theorem 5. Let $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty)$ be GH-convex (concave) on $[a, b]$. Then

$$
\begin{equation*}
\int_{a}^{b} \frac{1}{s} f^{2}(s) d s \leq(\geq)[(\ln b-\ln u) f(b)+(\ln u-\ln a) f(a)] f(u) \tag{2.11}
\end{equation*}
$$

for any $u \in[a, b]$.
If we take in (2.11) $u=G(a, b)=\sqrt{a b}$, then we get

$$
\begin{equation*}
\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{1}{s} f^{2}(s) d s \leq(\geq) A(f(a), f(b)) f(G(a, b)) \tag{2.12}
\end{equation*}
$$

If we take in (2.11) either $u=a$ or $u=b$, then we have

$$
\begin{equation*}
\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{1}{s} f^{2}(s) d s \leq(\geq) f(b) f(a) \tag{2.13}
\end{equation*}
$$

Also, by taking in (2.11) $u=I(a, b)$, the identric mean, that is defined by

$$
I(a, b):=\left\{\begin{array}{l}
\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}} \text { if } b \neq a \\
a \text { if } b=a,
\end{array}\right.
$$

then we get

$$
\begin{align*}
& \int_{a}^{b} \frac{1}{s} f^{2}(s) d s \tag{2.14}\\
& \leq(\geq)[(\ln b-\ln I(a, b)) f(b)+(\ln I(a, b)-\ln a) f(a)] f(I(a, b))
\end{align*}
$$

Since simple calculations show that

$$
\ln b-\ln I(a, b)=\frac{L(a, b)-a}{L(a, b)}
$$

and

$$
\ln I(a, b)-\ln a=\frac{b-L(a, b)}{L(a, b)}
$$

then the inequality (2.14) is equivalent to

$$
\begin{equation*}
\int_{a}^{b} \frac{1}{s} f^{2}(s) d s \leq(\geq) f(I(a, b))\left[\frac{L(a, b)-a}{L(a, b)} f(b)+\frac{b-L(a, b)}{L(a, b)} f(a)\right] \tag{2.15}
\end{equation*}
$$

3. Proofs

Since $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty)$ is $G H$-convex (concave) on $[a, b]$, hence $f \circ \exp$ is $A H$-convex (concave) on $[\ln a, \ln b]$. By the inequality (1.2) for $f \circ \exp$ and $\ln a$, $\ln b$ we have

$$
\begin{align*}
\frac{f \circ \exp (\ln a)+f \circ \exp (\ln b)}{2 f \circ \exp (\ln a) f \circ \exp (\ln b)} & \leq(\geq) \int_{0}^{1} \frac{d \lambda}{f \circ \exp ((1-\lambda) \ln a+\lambda \ln b)} \tag{3.1}\\
& \leq(\geq) \frac{1}{f \circ \exp \left(\frac{\ln a+\ln b}{2}\right)}
\end{align*}
$$

that is equivalent to

$$
\begin{equation*}
\frac{f(a)+f(b)}{2 f(a) f(b)} \leq(\geq) \int_{0}^{1} \frac{d \lambda}{f\left(a^{1-\lambda} b^{\lambda}\right)} \leq(\geq) \frac{1}{f(\sqrt{a b})} \tag{3.2}
\end{equation*}
$$

If we change the variable $t=a^{1-\lambda} b^{\lambda}$, then $(1-\lambda) \ln a+\lambda \ln b=\ln t$, which gives $\lambda=\frac{\ln t-\ln a}{\ln b-\ln a}$ and $d \lambda=\frac{1}{(\ln b-\ln a) t} d t$. We have then

$$
\int_{0}^{1} \frac{d \lambda}{f\left(a^{1-\lambda} b^{\lambda}\right)}=\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{1}{t f(t)} d t
$$

and by (3.2) we obtain the desired result (2.1).
From the definition of $G H$-convex (concave) functions on $[a, b]$ and by integration we get

$$
\begin{equation*}
\int_{0}^{1} f\left(a^{1-\lambda} b^{\lambda}\right) d \lambda \leq(\geq) f(a) f(b) \int_{0}^{1} \frac{d \lambda}{(1-\lambda) f(a)+\lambda f(b)} \tag{3.3}
\end{equation*}
$$

If $f(a)=f(b)$, then the integral

$$
\begin{equation*}
\int_{0}^{1} \frac{d \lambda}{(1-\lambda) f(a)+\lambda f(b)} \tag{3.4}
\end{equation*}
$$

reduces to $\frac{1}{f(a)}$.

If $f(a) \neq f(b)$, then by changing the variable $u=(1-\lambda) f(a)+\lambda f(b)$ in (3.4) we have

$$
\int_{0}^{1} \frac{d \lambda}{(1-\lambda) f(a)+\lambda f(b)}=\frac{1}{f(b)-f(a)} \int_{f(a)}^{f(b)} \frac{d u}{u}=\frac{1}{L(f(a), f(b))}
$$

Also, as above, if we change the variable $t=a^{1-\lambda} b^{\lambda}$, then

$$
\int_{0}^{1} f\left(a^{1-\lambda} b^{\lambda}\right) d \lambda=\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(t)}{t} d t
$$

Replacing these values in (3.3), we get the desired result (2.2).
If we take in the definition of $G H$-convex functions $\lambda=\frac{1}{2}$, then we get

$$
\begin{equation*}
f(\sqrt{x y}) \leq(\geq) \frac{2 f(x) f(y)}{f(y)+f(x)} \tag{3.5}
\end{equation*}
$$

If we replace in (3.5), $x=a^{1-\lambda} b^{\lambda}$ and $y=a^{\lambda} b^{1-\lambda}$, then we get

$$
\begin{equation*}
f(\sqrt{a b})\left[f\left(a^{1-\lambda} b^{\lambda}\right)+f\left(a^{\lambda} b^{1-\lambda}\right)\right] \leq(\geq) 2 f\left(a^{1-\lambda} b^{\lambda}\right) f\left(a^{\lambda} b^{1-\lambda}\right) \tag{3.6}
\end{equation*}
$$

By integrating this inequality over λ on $[0,1]$ we obtain

$$
\begin{align*}
& f(\sqrt{a b})\left[\int_{0}^{1} f\left(a^{1-\lambda} b^{\lambda}\right) d \lambda+\int_{0}^{1} f\left(a^{\lambda} b^{1-\lambda}\right) d \lambda\right] \tag{3.7}\\
& \leq(\geq) 2 \int_{0}^{1} f\left(a^{1-\lambda} b^{\lambda}\right) f\left(a^{\lambda} b^{1-\lambda}\right) d \lambda
\end{align*}
$$

Observe that

$$
\int_{0}^{1} f\left(a^{\lambda} b^{1-\lambda}\right) d \lambda=\int_{0}^{1} f\left(a^{1-\lambda} b^{\lambda}\right) d \lambda=\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(t)}{t} d t
$$

and

$$
\begin{aligned}
\int_{0}^{1} f\left(a^{1-\lambda} b^{\lambda}\right) f\left(a^{\lambda} b^{1-\lambda}\right) d \lambda & =\int_{0}^{1} f\left(a^{1-\lambda} b^{\lambda}\right) f\left(\frac{a b}{a^{1-\lambda} b^{\lambda}}\right) d \lambda= \\
& =\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(t) f\left(\frac{a b}{t}\right)}{t} d t
\end{aligned}
$$

Making use of (3.7) we deduce the desired result (2.4).
The following lemma is of interest in itself:
Lemma 1. Let $f: I \subset \mathbb{R} \rightarrow(0, \infty)$ be $A H$-convex (concave) on I. If $x, y \in \stackrel{\circ}{I}$, the interior of I, then there exists $\varphi(y) \in\left[f_{-}^{\prime}(y), f_{+}^{\prime}(y)\right]$ such that

$$
\begin{equation*}
\frac{f(y)}{f(x)}-1 \leq(\geq) \frac{\varphi(y)}{f(y)}(y-x) \tag{3.8}
\end{equation*}
$$

holds.
Proof. Let $x, y \in \stackrel{\circ}{I}$. Since the function $\frac{1}{f}$ is concave (convex) then the lateral derivatives $f_{-}^{\prime}(y), f_{+}^{\prime}(y)$ exists for $y \in \stackrel{\circ}{I}$ and $\left(\frac{1}{f}\right)_{-(+)}^{\prime}(y)=-\frac{f_{-(+)}^{\prime}(y)}{f^{2}(y)}$.

Since $\frac{1}{f}$ is concave (convex) then we have the gradient inequality

$$
\frac{1}{f(y)}-\frac{1}{f(x)} \geq(\leq) \lambda(y)(y-x)=-\lambda(y)(x-y)
$$

with $\lambda(y) \in\left[-\frac{f_{+}^{\prime}(y)}{f^{2}(y)},-\frac{f_{-}^{\prime}(y)}{f^{2}(y)}\right]$, which is equivalent to

$$
\begin{equation*}
\frac{1}{f(y)}-\frac{1}{f(x)} \geq(\leq) \frac{\varphi(y)}{f^{2}(y)}(x-y) \tag{3.9}
\end{equation*}
$$

with $\varphi(y) \in\left[f_{-}^{\prime}(y), f_{+}^{\prime}(y)\right]$.
The inequality (3.9) can be also written as

$$
1-\frac{f(y)}{f(x)} \geq(\leq) \frac{\varphi(y)}{f(y)}(x-y)
$$

or as

$$
\frac{f(y)}{f(x)}-1 \leq(\geq) \frac{\varphi(y)}{f(y)}(y-x)
$$

and the inequality (3.8) is proved.
Now, since $f: I \subset(0, \infty) \rightarrow(0, \infty)$ is $G H$-convex (concave) on I, then the function $f \circ \exp$ is $A H$-convex (concave) on $\ln I$.

Let $u, v \in \ln \stackrel{\circ}{I}$, then by (3.8) we have

$$
\begin{equation*}
\frac{f\left(e^{v}\right)}{f\left(e^{u}\right)}-1 \leq(\geq) \frac{\varphi\left(e^{v}\right) e^{v}}{f\left(e^{v}\right)}(v-u) \tag{3.10}
\end{equation*}
$$

with $\varphi\left(e^{v}\right) \in\left[f_{-}^{\prime}\left(e^{v}\right), f_{+}^{\prime}\left(e^{v}\right)\right]$.
If $x, y \in \stackrel{\circ}{I}$ and we take $u=\ln x, v=\ln y$ in (3.10) then we get

$$
\frac{f(y)}{f(x)}-1 \leq(\geq) \frac{\varphi(y) y}{f(y)}(\ln y-\ln x)
$$

with $\varphi(y) \in\left[f_{-}^{\prime}(y), f_{+}^{\prime}(y)\right]$.
This proves Theorem 4.
The following lemma is of interest in itself.
Lemma 2. Let $g:[c, d] \subset(0, \infty) \rightarrow(0, \infty)$ be AH-convex (concave) on $[c, d]$, then we have the inequality

$$
\begin{equation*}
\frac{1}{d-c} \int_{c}^{d} g^{2}(t) d t \leq(\geq)\left[\frac{d-s}{d-c} g(d)+\frac{s-c}{d-c} g(c)\right] g(s) \tag{3.11}
\end{equation*}
$$

for any $s \in[c, d]$.
Proof. If the function $g:[c, d] \subset(0, \infty) \rightarrow(0, \infty)$ is $A H$-convex (concave) on $[c, d]$, then the function g is differentiable almost everywhere on $[c, d]$ and we have the inequality

$$
\begin{equation*}
\frac{g(t)}{g(s)}-1 \leq(\geq) \frac{g^{\prime}(t)}{g(t)}(t-s) \tag{3.12}
\end{equation*}
$$

for every $s \in[c, d]$ and almost every $t \in[c, d]$.
Multiplying (3.12) by $g(t)>0$ and integrating over $t \in[c, d]$ we have

$$
\begin{equation*}
\frac{1}{g(s)} \int_{c}^{d} g^{2}(t) d t-\int_{c}^{d} g(t) d t \leq(\geq) \int_{c}^{d} g^{\prime}(t)(t-s) d t \tag{3.13}
\end{equation*}
$$

Integrating by parts we also have

$$
\int_{c}^{d} g^{\prime}(t)(t-s) d t=g(d)(d-s)+g(c)(s-c)-\int_{c}^{d} g(t) d t
$$

and by (3.13) we get the desired result (3.11).

Now, since $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty)$ is $G H$-convex (concave) on I, then the function $g=f \circ \exp$ is $A H$-convex (concave) on $[c, d]=[\ln a, \ln b]$.

From (3.11) we then have for $s=\ln u, u \in[a, b]$ that

$$
\begin{aligned}
& \frac{1}{\ln b-\ln a} \int_{\ln a}^{\ln b} f^{2} \circ \exp (t) d t \\
& \leq(\geq)\left[\frac{\ln b-\ln u}{\ln b-\ln a} f \circ \exp (\ln b)+\frac{\ln u-\ln a}{\ln b-\ln a} f \circ \exp (\ln a)\right] f \circ \exp (\ln u)
\end{aligned}
$$

This is equivalent to

$$
\begin{align*}
& \frac{1}{\ln b-\ln a} \int_{\ln a}^{\ln b} f^{2} \circ \exp (t) d t \tag{3.14}\\
& \leq(\geq)\left[\frac{\ln b-\ln u}{\ln b-\ln a} f(b)+\frac{\ln u-\ln a}{\ln b-\ln a} f(a)\right] f(u),
\end{align*}
$$

for any $u \in[a, b]$.
If we make the change of variable $s=\exp (t)$, then $t=\ln s, d t=\frac{d s}{s}$ and by (3.14) we get the desired inequality (2.11).

4. Applications

Consider the function $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty), f(t)=t^{p}, p \in \mathbb{R} \backslash\{0\}$. By the weighted geometric mean-harmonic mean inequality, we have

$$
\begin{align*}
f\left(x^{1-\lambda} y^{\lambda}\right) & =\left(x^{1-\lambda} y^{\lambda}\right)^{p}=\left(x^{p}\right)^{1-\lambda}\left(y^{p}\right)^{\lambda} \tag{4.1}\\
& \geq \frac{1}{\frac{1-\lambda}{x^{p}}+\frac{\lambda}{y^{p}}}=\frac{x^{p} y^{p}}{(1-\lambda) y^{p}+\lambda x^{p}} \\
& =\frac{f(x) f(y)}{(1-\lambda) f(y)+\lambda f(x)}
\end{align*}
$$

for any $x, y \in[a, b]$ and $\lambda \in[0,1]$, which shows that f is $G G$-concave on $[a, b]$.
For $p \in \mathbb{R} \backslash\{0,-1\}$, we define the p-logarithmic mean as

$$
L_{p}(a, b):=\left\{\begin{array}{l}
\left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)^{1 / p}, \text { if } b \neq a \\
b \text { if } b=a
\end{array}\right.
$$

We observe that

$$
L_{p}^{p}(a, b)=\frac{1}{b-a} \int_{a}^{b} t^{p} d t, p \in \mathbb{R} \backslash\{0,-1\}
$$

If we write the inequality (2.1) for the $G G$-concave function $f:[a, b] \subset(0, \infty) \rightarrow$ $(0, \infty), f(t)=t^{p}, p \in \mathbb{R} \backslash\{0\}$, then

$$
\begin{equation*}
H^{-1}\left(a^{p}, b^{p}\right) \geq \frac{1}{\ln b-\ln a} \int_{a}^{b} t^{-p-1} d t \geq G^{-1}\left(a^{p}, b^{p}\right) \tag{4.2}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\frac{1}{\ln b-\ln a} \int_{a}^{b} t^{-p-1} d t & =\frac{b-a}{\ln b-\ln a} \frac{1}{b-a} \int_{a}^{b} t^{-p-1} d t \\
& =L(a, b) L_{-p-1}^{-p-1}(a, b)
\end{aligned}
$$

for $p \in \mathbb{R} \backslash\{0,-1\}$ and by (4.2) we get

$$
\begin{equation*}
H^{-1}\left(a^{p}, b^{p}\right) \geq L(a, b) L_{-p-1}^{-p-1}(a, b) \geq G^{-1}\left(a^{p}, b^{p}\right) \tag{4.3}
\end{equation*}
$$

for $p \in \mathbb{R} \backslash\{0,-1\}$.
Now, if we use (2.2), then we get

$$
\begin{equation*}
L(a, b) L_{p-1}^{p-1}(a, b) \geq \frac{G^{2 p}(a, b)}{L\left(a^{p}, b^{p}\right)} \tag{4.4}
\end{equation*}
$$

for $p \in \mathbb{R} \backslash\{0,1\}$.
From (2.4) we also have

$$
\begin{equation*}
L_{p-1}^{p-1}(a, b) \geq G^{p}(a, b) L(a, b) \tag{4.5}
\end{equation*}
$$

for $p \in \mathbb{R} \backslash\{0,1\}$.
Moreover, if we use the inequality (2.12) we have

$$
\begin{equation*}
L(a, b) L_{2 p-1}^{2 p-1}(a, b) \geq A\left(a^{p}, b^{p}\right) G^{p}(a, b) \tag{4.6}
\end{equation*}
$$

for $p \in \mathbb{R} \backslash\left\{0, \frac{1}{2}\right\}$.
From (2.15) we finally have

$$
\begin{equation*}
L(a, b) L_{2 p-1}^{2 p-1}(a, b) \geq I^{p}(a, b)\left[\frac{L(a, b)-a}{b-a} b^{p}+\frac{b-L(a, b)}{b-a} a^{p}\right] \tag{4.7}
\end{equation*}
$$

for $p \in \mathbb{R} \backslash\left\{0, \frac{1}{2}\right\}$.
Now, for $q>0$ consider the function $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty), f(t)=$ $\exp (-q t)$. Then by the weighted arithmetic mean - geometric mean - harmonic mean inequality, we have for any $x, y \in[a, b]$ and $\lambda \in[0,1]$ that

$$
\begin{aligned}
f\left(x^{1-\lambda} y^{\lambda}\right) & =\exp \left(-q x^{1-\lambda} y^{\lambda}\right) \geq \exp (-q[(1-\lambda) x+\lambda y]) \\
& =[\exp (-q x)]^{1-\lambda}[\exp (-q y)]^{\lambda} \\
& \geq \frac{1}{(1-\lambda) \frac{1}{\exp (-q x)}+\lambda \frac{1}{\exp (-q y)}} \\
& =\frac{\exp (-q x) \exp (-q y)}{(1-\lambda) \exp (-q y)+\lambda \exp (-q x)} \\
& =\frac{f(x) f(y)}{(1-\lambda) f(y)+\lambda f(x)}
\end{aligned}
$$

which shows that f is $G H$-concave on $[a, b]$.
We consider the following α-exponential integral mean

$$
E i_{\alpha}(a, b):=\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{\exp (\alpha t)}{t} d t
$$

where $b>a>0$ and $\alpha \in \mathbb{R}$.
By (2.1) for the $G H$-convex function $f:[a, b] \subset(0, \infty) \rightarrow(0, \infty), f(t)=$ $\exp (-q t)$ where $q>0$, we get that

$$
\begin{equation*}
\frac{\exp (-q a)+\exp (-q b)}{2 \exp (-q(a+b))} \geq E i_{q}(a, b) \geq \exp (q \sqrt{a b}) \tag{4.8}
\end{equation*}
$$

From (2.2) we have for $q>0$ that

$$
\begin{equation*}
E i_{-q}(a, b) \geq \frac{\exp (-q(a+b))}{L(\exp (-q a), \exp (-q b))} \tag{4.9}
\end{equation*}
$$

Observe, however, that

$$
\begin{aligned}
L(\exp (-q a), \exp (-q b)) & =\frac{\exp (-q b)-\exp (-q a)}{q(a-b)} \\
& =\frac{\exp (q a)-\exp (q b)}{q(a-b) \exp (q(a+b))} \\
& =\frac{E(q a, q b)}{\exp (q(a+b))}
\end{aligned}
$$

where E is defined by

$$
E(c, d):=\frac{\exp d-\exp c}{d-c}, c \neq d
$$

Then by (4.9) we get

$$
\begin{equation*}
E(q a, q b) E i_{-q}(a, b) \geq 1 \tag{4.10}
\end{equation*}
$$

From (2.12) we also have

$$
\begin{equation*}
E i_{-2 q}(a, b) \geq A(\exp (-q a), \exp (-q b)) \exp (-q \sqrt{a b}) \tag{4.11}
\end{equation*}
$$

where $q>0$ and $b>a>0$.

References

[1] M. Alomari and M. Darus, The Hadamard's inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639-646.
[2] M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3 (2008), no. 37-40, 1965-1975.
[3] G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135 (2002), no. 3, 175-189.
[4] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007) 1294-1308.
[5] N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro and A. Sofo, Ostrowski type inequalities for functions whose modulus of the derivatives are convex and applications. Inequality Theory and Applications, Vol. 2 (Chinju/Masan, 2001), 19-32, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint: RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 1 [Online http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].
[6] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439-460.
[7] M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 58 (2009), no. 9, 1869-1877.
[8] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20.
[9] W. W. Breckner and G. Orbán, Continuity properties of rationally s-convex mappings with values in an ordered topological linear space. Universitatea "Babes-Bolyai", Facultatea de Matematică, Cluj-Napoca, 1978. viii+92 pp.
[10] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press, New York. 135-200.
[11] P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the RiemannStieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al. (Eds.), World Science Publishing, 2002, 53-62.
[12] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Mathematica, 32(2) (1999), 697712.
[13] G. Cristescu, Hadamard type inequalities for convolution of h-convex functions. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 8 (2010), 3-11.
[14] S. S. Dragomir, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM, 3(1) (1999), 127-135.
[15] S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38 (1999), 33-37.
[16] S. S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., 7 (2000), 477-485.
[17] S. S. Dragomir, On the Ostrowski's inequality for mappings of bounded variation and applications, Math. Ineq. \& Appl., 4(1) (2001), 33-40.
[18] S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_{c}^{d} f(t) d u(t)$ where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, $\mathbf{5}(1)$ (2001), 35-45.
[19] S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure \& Appl. Math., 3(5) (2002), Art. 68.
[20] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp.
[21] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31.
[22] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No.3, Article 35.
[23] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, 16(2) (2003), 373-382.
[24] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1
[25] S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanie, 42(90) (4) (1999), 301-314.
[26] S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687-696.
[27] S. S. Dragomir and S. Fitzpatrick,The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33 (2000), no. 1, 43-49.
[28] S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova and Levin. Indian J. Math. 39 (1997), no. 1, 1-9.
[29] S. S. Dragomir and C. E. M. Pearce, On Jensen's inequality for a class of functions of Godunova and Levin. Period. Math. Hungar. 33 (1996), no. 2, 93-100.
[30] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc. 57 (1998), 377-385.
[31] S. S. Dragomir, J. Pečarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335-341.
[32] S. S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, 2002.
[33] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_{1}-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28 (1997), 239-244.
[34] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105-109.
[35] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_{p}-norm and applications to some special means and to some numerical quadrature rules, Indian J. of Math., 40(3) (1998), 245-304.
[36] A. El Farissi, Simple proof and refeinment of Hermite-Hadamard inequality, J. Math. Ineq. 4 (2010), No. 3, 365-369.
[37] E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Russian), 138-142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985
[38] H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100-111.
[39] E. Kikianty and S. S. Dragomir, Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. (in press)
[40] U. S. Kirmaci, M. Klaričić Bakula, M. E. Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26-35.
[41] M. A. Latif, On some inequalities for h-convex functions. Int. J. Math. Anal. (Ruse) 4 (2010), no. 29-32, 1473-1482.
[42] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[43] D. S. Mitrinović and J. E. Pečarić, Note on a class of functions of Godunova and Levin. C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 1, 33-36.
[44] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92-104.
[45] J. E. Pečarić and S. S. Dragomir, On an inequality of Godunova-Levin and some refinements of Jensen integral inequality. Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 263-268, Preprint, 89-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1989.
[46] J. Pečarić and S. S. Dragomir, A generalization of Hadamard's inequality for isotonic linear functionals, Radovi Mat. (Sarajevo) 7 (1991), 103-107.
[47] M. Rădulescu, S. Rădulescu and P. Alexandrescu, On the Godunova-Levin-Schur class of functions. Math. Inequal. Appl. 12 (2009), no. 4, 853-862.
[48] M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for h convex functions. J. Math. Inequal. 2 (2008), no. 3, 335-341.
[49] E. Set, M. E. Özdemir and M. Z. Sarıkaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012), no. 1, 67-82.
[50] M. Z. Sarikaya, E. Set and M. E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions. Acta Math. Univ. Comenian. (N.S.) 79 (2010), no. 2, 265-272.
[51] M. Tunç, Ostrowski-type inequalities via h-convex functions with applications to special means. J. Inequal. Appl. 2013, 2013:326.
[52] S. Varošanec, On h-convexity. J. Math. Anal. Appl. 326 (2007), no. 1, 303-311.
S. S. Dragomir
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia, ${ }^{2}$ School of Computational \& Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa

E-mail address: sever.dragomir@vu.edu.au

[^0]: 2010 Mathematics Subject Classification. 26D15, 26D10.
 Key words and phrases. Convex functions, Integral inequalities, $G H$-Convex functions.
 Submitted April 11, 2017.

