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DISLOCATED QUASI RECTANGULAR b-METRIC SPACES AND

RELATED FIXED POINT THEOREMS

P. G. GOLHARE AND C.T. AAGE

Abstract. In this paper, we introduce the notion of dislocated quasi rectan-
gular b-metric space. We extend the well-known Banach and Kannan fixed

point theorems in this space. We also prove some well known fixed point the-
orems for ϕ-weak contraction in it. We give examples to support our results.

1. Introduction

Now a days fixed point theory is being extensively studied. Many researchers
have been generalized concept of metric spaces and proved fixed point theorems
for different types contraction mappings in these spaces. Initially, metric space
was generalized by Wilson[14] by introducing the concept of quasi-metric space.
Bakhtin[2] introduced the b-metric space which is generalizes the metric spaces and
established basic fixed point theorems it. Hitzler et al.[11] put forth concept of
dislocated metric spaces. R. George et al.[12] introduced notion of rectangular b-
metric spaces as a generalization of both metric spaces and b-metric spaces. They
also proved analogue of Banach contraction principle and Kannan type contraction
in rectangular b-metric spaces. In the literature, many generalizations of metric
spaces are found namely dislocated b-metric space, quasi b-metric space, dislocated
quasi b-metric space etc. In this paper, we also introduce the new generalization
of metric space, which we call dislocated quasi rectangular b-metric space. We
establish analogues of some well known results in the literature in dislocated quasi
rectangular b-metric spaces.

Bakhtin[2] defined the b-metric space as follows:
Definition 1 ([2]) Let X be a non-empty set and mapping d : X × X → [0,∞)
satisfies:

(i) d(x, y) = 0 if and only if x = y for all x, y ∈ X,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) there exists a real number k ≥ 1 such that d(x, y) ≤ k[d(x, z) + d(z, y)] for all

x, y, z ∈ X.
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Then d is called b-metric on X and (X, d) is called a b-metric space with coefficient
k.
Shah and Huassain[10] extended b-metric space to quasi-b-metric spaces and proved
some fixed point theorems in it. Alghamdi, Husasain and Salimi[8] defined the term
b-metric-like spaces or dislocated b-metric spaces to generalize metric-like spaces.
Some of generalizations of metric spaces are mentioned below.
Definition 2([10]) Let X be a non-empty set. Let d : X × X → [0,∞) be a
mapping and k ≥ 1 be a constant such that:

(i) d(x, y) = 0 = d(y, x) if and only if x = y for all x, y ∈ X,
(ii) d(x, y) ≤ k[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then pair (X, d) is called quasi-b-metric space.
Definition 3 ([8]) Let X be a non-empty set. Let d : X×X → [0,∞) be a mapping
and k ≥ 1 be a constant such that:

(i) d(x, y) = 0 then x = y for all x, y ∈ X,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) d(x, y) ≤ k[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then pair (X, d) is called dislocated b-metric space.
Chakkrid and Cholatis[4] defined the concept of dislocated quasi-b-metric space

as follows:
Definition 4([4]) Let X be a non-empty set. Let the mapping d : X ×X → [0,∞)
and constant k ≥ 1 satisfy following conditions:

(i) d(x, y) = 0 = d(y, x) then x = y for all x, y ∈ X,
(ii) d(x, y) ≤ k[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then the pair (X, d) is called dislocated quasi-b−metric space or in short dqb-metric
space. The constant k is called coefficient of space (X, d). It is clear that b-metric
spaces, quasi-b-metric spaces and b-metric-like spaces are dqb-metric spaces but
converse is not true.
Example 1([9]) Let X = R+ and for p > 1, d : X ×X → [0,∞) be defined as,

d(x, y) = |x− y|p + |x|p,∀x, y ∈ X.

Then (X, d) is dqb-metric space with k = 2p > 1. But (X, d) is not b-metric space
and also not dislocated quasi metric space.
Example 2([4]) Let X = R and suppose,

d(x, y) = |2x− y|2 + |2x+ y|2,
then (X, d) is dqb-metric space with coefficient k = 2 but (X, d) is not a quasi-b-
metric space. Also (X, d) is not dislocated quasi metric space.
Definition 5([1])Let X be a non-empty set and mapping d : X × X → [0,∞)
satisfies:

(i) d(x, y) = 0 if and only if x = y for all x, y ∈ X,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) d(x, y) ≤ [d(x, u) + d(u, v) + d(v, y)] for all x, y ∈ X and all distinct points

u, v ∈ X \ {x, y}.
Then d is called a rectangular metric on X and (X, d) is called a rectangular metric
space.

R. George et al.([12]) defined rectangular b-metric space as follows:
Definition 6([12]) Let X be a non-empty set and mapping d : X × X → [0,∞)
satisfies:
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(i) d(x, y) = 0 if and only if x = y for all x, y ∈ X,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) there exist a real number s ≥ 1 such that d(x, y) ≤ s[d(x, u)+d(u, v)+d(v, y)]

for all x, y ∈ X and all distinct points u, v ∈ X \ {x, y}.
Then d is called a rectangular b-metric on X and (X, d) is called a rectangular
b-metric space with coefficient s.
Example 3([12]) Let X = N, define d : X ×X → [0,∞) by

d(x, y) =


0, if x = y,

4α, if x, y ∈ {1, 2}and x ̸= y,

α, if x or y ̸∈ {1, 2}and x ̸= y,

where α > 0 is a constant. Then (X, d) is a rectangular b-metric space with
coefficient k = 4

3 > 1.

Example 4([6]) Let A = {0, 2},B = { 1
n : n ∈ N} andX = A∪B define d : X×X →

[0,∞) by

d(x, y) =


0, if x = y,

1, if x ̸= y and {x, y} ⊂ A or {x, y} ⊂ B,

y2, if x ∈ A and y ∈ B,

x2, if x ∈ B and y ∈ A,

then (X, d) is rectangular b-metric space with coefficient k = 3. Now, we introduce
the notion of dislocated rectangular b-metric space as follows:
Definition 7 Let X be a non-empty set and mapping d : X×X → [0,∞) satisfies:

(i) d(x, y) = 0 then x = y for all x, y ∈ X,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) there exist a real number k ≥ 1 such that d(x, y) ≤ k[d(x, u)+d(u, v)+d(v, y)]

for all x, y ∈ X and all distinct points u, v ∈ X \ {x, y}.
Then d is called a dislocated rectangular b-metric on X and (X, d) is called a dis-
located rectangular b-metric space with coefficient k.

One can note that every rectangular b-metric space is dislocated rectangular b-
metric space but converse need not be true as illustrated by following example.
Example 5 Let X = N, define d : X ×X → [0,∞) by

d(x, y) =

{
4α, if x, y ∈ {1, 2},
α, otherwise

where α > 0 is a constant. Then (X, d) is a dislocated rectangular b-metric space
with coefficient k = 2 > 1. Note that d(1, 1) = 4α ̸= 0 and d(2, 2) = 4α ̸= 0.
Therefore (X, d) is not a rectangular b-metric space.
Now, we define the notion of dislocated quasi rectangular b-metric space or in short
dq-rectangular b-metric space as follows
Definition 8 Let X be a non-empty set and mapping d : X×X → [0,∞) satisfies:

(i) d(x, y) = 0 = d(y, x) then x = y for all x, y ∈ X,
(ii) there exist a real number k ≥ 1 such that d(x, y) ≤ k[d(x, u)+d(u, v)+d(v, y)]

for all x, y ∈ X and all distinct points u, v ∈ X \ {x, y}.
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Then d is called a dislocated quasi or dq-rectangular b-metric on X and (X, d) is
called a dislocated quasi or dq-rectangular b-metric space with coefficient k.
Example 6 Let X = N, define d : X ×X → [0,∞) by

d(x, y) =


4α, if x = 1, y = 2,

3α, if x = 2, y = 1,
α
2 , otherwise

where α > 0 is a constant. Then (X, d) is a dislocated quasi rectangular b-metric
space with coefficient k = 3 > 1. Note that for any x ∈ N, d(x, x) = α

2 ̸= 0.
Therefore (X, d) is not a rectangular b-metric space. Also d(1, 2) = 4α ̸= 3α =
d(2, 1).

We give some definitions regarding dislocated rectangular b-metric spaces with
inspiration from M. Alghamdi et al.([8]). We define open ball of radius r about x
in dislocated quasi rectangular b-metric space (X, d) as

Br(x) =
{
y ∈ X : max{|d(x, y)− d(x, x)|, |d(y, x)− d(x, x)|} < r

}
.

Definition 9 A subset G of a dislocated rectangular b-metric space (X, d) is said
to be open if for every x ∈ G there exists r > 0 such that Br(x) ⊂ G.
Definition 10 A subset F of a dislocated rectangular b-metric space (X, d) is said
to be closed if its complement X \ F is open.

Dislocated rectangular b-metric space (X, d) with coefficient k > 1 is not neces-
sarily Hausdorff. Indeed in Example 1, there does not exist r1, r2 > 0 such that
Br1(1) ∩Br2(2) = ∅. In fact for every r > 0, 1 ∈ Br(2) and 2 ∈ Br(1).
Definition 11 A sequence {xn} in a dislocated quasi rectangular b-metric space
(X, d) is said to be convergent to x ∈ X if and only if limn→∞ d(xn, x) = limn→∞ d(x, xn) =
d(x, x). In this case, we say that x is limit of sequence {xn}.

This can also put as limn→∞ |d(xn, x)−d(x, x)| = 0 = limn→∞ |d(x, xn)−d(x, x)|.
From this definition it is clear that given ϵ > 0 there exists N ∈ N such that
max{|d(xn, x) − d(x, x)|, |d(x, xn) − d(x, x)|} < ϵ for all n ≥ N . We write this as
xn → x as n → ∞.
Definition 12 Let (X, d1) and (Y, d2) be two dislocated quasi rectangular b-metric
spaces. A mapping T : X → Y is said to be continuous at u ∈ X if and only if
given ϵ > 0 there exists δ > 0 such that max{|d2(Tx, Tu)− d1(u, u)|, |d2(Tu, Tx)−
d1(u, u)|} < ϵ whenever max{|d1(x, u)− d1(u, u)|, |d1(u, x)− d1(u, u)|} < δ.
Definition 13 A sequence {xn} in a dislocated quasi rectangular b-metric space
(X, d) is called as Cauchy sequence if and only if limn→∞ d(xn, xn+i) and limn→∞ d(xn+i, xn)
exists and is finite for all i ∈ N.
Definition 14 A dislocated rectangular b-metric space (X, d) is said to be complete
if every Cauchy sequence in X is convergent.

2. Main Results

Our first results is given below.
Theorem 1 Let (X, d) be a complete dislocated rectangular b-metric space with
coefficient k > 1. Let T : X → X be a mapping satisfying

d(Tx, Ty) ≤ αd(x, y), (1)

for all x, y ∈ X, where 0 ≤ α ≤ 1
k . Then T has a unique fixed point in X.

Proof. We choose any arbitrary point x0 ∈ X. Now define sequence {xn} in X
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such that xn = Txn−1 for all n ∈ N. If for some n ∈ N, xn−1 = xn, then xn−1

becomes fixed point of T and we have nothing to prove. Therefore, we assume that
xn−1 ̸= xn for all n ∈ N. From inequality (1), we have

d(xn−1, xn) = d(Txn−2, Txn−1) ≤ αd(xn−2, xn−1). (2)

Applying inequality (2) repeatedly, we get,

d(xn−1, xn) ≤ αd(xn−2, xn−1) ≤ · · · ≤ αn−1d(x0, x1). (3)

Similarly,

d(xn, xn−1) ≤ αd(xn−1,xn−2) ≤ · · · ≤ αn−1d(x1, x0). (4)

We also assume that x0 ̸= xn for any 2 ≤ n ∈ N. If not, then for some n ≥ 2 in
view of (3), we have

d(x0, Tx0) = d(xn, Txn)

d(x0, x1) = d(xn, xn+1).

It implies that

d(x0, x1) ≤ αnd(x0, x1),

which is a contradiction unless d(x0, x1) = 0. Thus x0 = x1 and s x0 turns out to
be a fixed point of T . So, we assume that xn ̸= xm for all n ̸= m ∈ N. In view of
(1), for any n ∈ N, we can write

d(xn−1, xn+1) = d(Txn−2, Txn) ≤ αd(xn−2, xn). (5)

Applying (1) repeatedly, we get

d(xn−1, xn+1) ≤ αn−1d(x0, x2). (6)

Similarly,

d(xn+1, xn−1) ≤ αn−1d(x2, x0). (7)

Now, we will prove that {xn} is a Cauchy sequence in X, equivalently, we will show

lim
n→∞

d(xn, xn+m) = 0 = lim
n→∞

d(xn+m, xn),

for all n,m ∈ N.
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Case (i): Suppose m is even i.e. m = 2i for some i ∈ N and n may be even or
odd. Using inequalities (3), (4) and rectangular inequality, we get

d(xn, xn+m) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)+] + · · ·
+ ki−1[d(xn−4+2i, xn−3+2i) + d(xn−3+2i, xn−2+2i)] + ki−1[d(xn−2+2i, xn+2i)]

≤ k[αnd(x0, x1) + αn+1d(x0, x1)] + k2[αn+2d(x0, x1) + αn+3d(x0, x1)]

+ k3[αn+4d(x0, x1) + αn+5d(x0, x1)] + · · ·+ ki−1[αn−4+2id(x0, x1) + αn−3+2id(x0, x1)]

+ ki−1αn−2+2id(x0, x2)

≤ kαn[1 + kα2 + k2α4 + · · · ]d(x0, x1) + kαn+1[1 + kα2 + k2α4 + · · · ]d(x0, x1)

+ ki−1αn−2+2id(x0, x2)

≤
[ (1 + α)

1− kα2

]
kαnd(x0, x1) + ki−1αn−2+2id(x0, x2)

≤
[ (1 + α)

1− kα2

]
kαnd(x0, x1) + αn−2d(x0, x2).

Letting n → ∞ in last inequality above, we get

lim
n→∞

d(xn, xn+m) = 0,

for all even m ∈ N.
Case (ii): Suppose m is odd i.e. m = 2i− 1 for some i ∈ N and n may be even

or odd. Using inequalities (3), (4) and rectangular inequality, we get

d(xn, xn+m) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i−1)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i−1)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)] + · · ·
+ ki[d(xn+2i−2, xn+2i−1)]

≤ k[αnd(x0, x1) + αn+1d(x0, x1)] + k2[αn+2d(x0, x1) + αn+3d(x0, x1)]

+ k3[αn+4d(x0, x1) + αn+5d(x0, x1)] + · · ·+ kiαn+2i−2d(x0, x1)

≤ kαn[1 + kα2 + k2α4 + · · · ]d(x0, x1) + kαn+1[1 + kα2 + k2α4 + · · · ]d(x0, x1)

≤
[ (1 + α)

1− kα2

]
kαnd(x0, x1).

Letting n → ∞ in last inequality above, we see that limit on the right hand side
exist and is finite. Therefore, limn→∞ d(xn, xn+m) exists and is finite for all odd
m ∈ N. Thus from the case(i) and case(ii), it follows that limn→∞ d(xn, xn+m)
exists and for all m ∈ N

lim
n→∞

d(xn, xn+m) = 0. (8)

Now, we will prove that limn→∞ d(xn+m, xn) = 0 for all m,n ∈ N with m > n. We
consider two cases:
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Case (a): Suppose m is even i.e. m = 2i for some i ∈ N and n may be odd or
even. Then

d(xn+m, xn) ≤ ki−2d(xn+2i, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2d(x2, x0) + ki−2[αn+2i−3d(x1, x0) + αn+2i−4d(x1, x0)]

+ ki−3[αn+2i−4d(x1, x0) + αn+2i−5d(x1, x0)] + · · ·
+ k[αn+1d(x1, x0) + αnd(x1, x0)]

= (kα)2i−2αnd(x2, x0) +
{
(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
d(x1, x0)

≤ (kα)2i−2αnd(x2, x0) +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{ αn

1− α
+

αn−1

1− α

}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{1 + α

1− α

}
αn−1d(x1, x0).

It gives that

lim
n→∞

d(xn+m, xn) = 0. (9)

Case (b): Suppose m is odd i.e. m = 2i − 1 for some i ∈ N and n may be odd or
even. Then

d(xn+m, xn) ≤ ki−2d(xn+2i−1, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2d(x1, x0) + ki−2[αn+2i−3d(x1, x0) + αn+2i−4d(x1, x0)]

+ ki−3[αn+2i−4d(x1, x0) + αn+2i−5d(x1, x0)] + · · ·
+ k[αn+1d(x1, x0) + αnd(x1, x0)]

= (kα)2i−2αnd(x1, x0) +
{
(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
d(x1, x0)

≤ (kα)2i−2αnd(x1, x0) +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{ αn

1− α
+

αn−1

1− α

}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{1 + α

1− α

}
αn−1d(x1, x0).
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It gives that limn,m→∞ d(xn+m, xn) = 0. Thus from case (a) and case (b), it follows
that

lim
n→∞

d(xn, xn+m) = 0 = lim
n→∞

d(xn+m, xn),

for all n,m ∈ N. Hence {xn} is a Cauchy sequence in X. Since (X, d) is a complete
dislocated quasi rectangular b-metric space, there exists some u ∈ X such that
xn → u.

We will show that u is fixed point of T . For any given n ∈ N, we can write

d(u, Tu) ≤ k[d(u, xn) + d(xn, xn+1) + d(xn+1, Tu)]

= k[d(u, xn) + d(xn, xn+1) + d(Txn, Tu)]

≤ k[d(u, xn) + d(xn, xn+1) + αd(xn, u)].

Letting n → ∞, using fact that xn → u and (6), we get d(u, Tu) = 0. Also,

d(Tu, u) ≤ k[d(Tu, xn+1) + d(xn+1, xn) + d(xn, u)]

= k[d(Tu, Txn) + d(xn+1, xn) + d(xn, u)]

≤ k[αd(u, xn) + d(xn+1, xn) + d(xn, u)].

Letting n → ∞, using fact that xn → u and (6), we get d(Tu, u) = 0. Thus
d(u, Tu) = 0 = d(Tu, u). This gives that Tu = u. Hence u is fixed point of T in
X. Now, we prove that u is unique fixed point of T in X. Suppose u′ be another
fixed point of T in X. In view of (1), we have

d(u, u′) = d(Tu, Tu′) ≤ αd(u, u′) < d(u, u′).

This a contradiction unless d(u, u′) = 0. Similarly,

d(u′, u) = d(Tu′, Tu) ≤ αd(u′, u) < d(u′, u).

It is also contradiction unless d(u′, u) = 0. Thus d(u, u′) = 0 = d(u′, u). Hence
u = u′. Thus uniqueness of u is established.
Example 7 Let X = N, define d : X ×X → [0,∞) by

d(x, y) =


4α, if x = 1, y = 2,
7
2α, if x = 2, y = 1,
α
4 , if x = p2, y = q2 for some p, q ∈ N,
α, otherwise,

where α > 0 is a constant. Then (X, d) is a dislocated quasi rectangular b-metric
space with coefficient k = 2 > 1. If T : N → N is defined as follows:

Tx =

{
1, if x = p2 for some p ∈ N,
x2, otherwise,

then T is Banach contraction in dislocated quasi rectangular b-metric space (N, d)
and T has unique fixed point x = 1 ∈ N.
Theorem 2 Let (X, d) be a complete dislocated rectangular b-metric space with
coefficient k > 1. Let T : X → X be a mapping satisfying

d(Tx, Ty) ≤ γ[d(x, Tx) + d(y, Ty)], (10)

for all x, y ∈ X, where 0 ≤ γ < 1
k . Then T has a unique fixed point in X.

Proof. We choose any arbitrary point x0 ∈ X. Define a sequence {xn} in X
such that xn = Txn−1 for all n ∈ N. If for some n ∈ N, xn−1 = xn, then xn−1
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becomes fixed point of T . Therefore, we assume that xn−1 ̸= xn for all n ∈ N.
From inequality (10), we have

d(xn−1, xn) = d(Txn−2, Txn−1) ≤ γ[d(xn−2, Txn−2) + d(xn−1, Txn−1)]

= γ[d(xn−2, xn−1) + d(xn−1, xn)].

It gives that

d(xn−1, xn) ≤
γ

1− γ
d(xn−2, xn−1) = αd(xn−2, xn−1), (11)

where α = γ
1−γ . Applying inequality (11) repeatedly, we get

d(xn−1, xn) ≤ αd(xn−2, xn−1) ≤ · · · ≤ αn−1d(x0, x1). (12)

We also assume that x0 ̸= xn for any 2 ≤ n ∈ N. If not, then for some n ≥ 2
in view of (12), we have d(x0, Tx0) = d(xn, Txn), which implies that d(x0, x1) =
d(xn, xn+1) and hence d(x0, x1) ≤ αnd(x0, x1), which is a contradiction unless
d(x0, x1) = 0. Thus x0 = x1 and x0 turns out to be a fixed point of T . Hence, we
assume that xn ̸= xm for all n ̸= m ∈ N. In view of (10), for any n ∈ N, we have

d(xn−1, xn+1) = d(Txn−2, Txn) ≤ γ[d(xn−2, Txn−2) + d(xn, Txn)]

= γ[d(xn−2, xn−1) + d(xn, xn+1)]

≤ γ[αn−2d(x0, x1) + αnd(x0, x1)]

= γαn−2[1 + α2]d(x0, x1)

= βαn−2d(x0, x1),

where β = γ[1 + α2]. Hence, we have

d(xn−1, xn+1) ≤ βαn−2d(x0, x1). (13)

In order to show {xn} is a Cauchy sequence in X, it is sufficient to show that

lim
n→∞

d(xn, xn+m) = 0 = lim
n→∞

d(xn+m, xn),

for all n,m ∈ N. For this, we consider the following cases:
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Case (i): Suppose m is even i.e. m = 2i for some i ∈ N and n may be even or
odd. Then using inequalities (12), (13) and rectangular inequality, we get

d(xn, xn+2i) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)+] + · · ·
+ ki−1[d(xn+2i−4, xn+2i−3) + d(xn+2i−3, xn+2i−2)] + ki−1[d(xn+2i−2, xn+2i)]

≤ k[αnd(x0, x1) + αn+1d(x0, x1)] + k2[αn+2d(x0, x1) + αn+3d(x0, x1)]

+ k3[αn+4d(x0, x1) + αn+5d(x0, x1)] + · · ·+ ki−1[αn+2i−4d(x0, x1) + αn+2i−3d(x0, x1)]

+ ki−1αn+2i−2βd(x0, x2)

≤ kαn[1 + kα2 + k2α4 + · · · ]d(x0, x1) + kαn+1[1 + kα2 + k2α4 + · · · ]d(x0, x1)

+ ki−1αn−3+2id(x0, x2)

≤
[ (1 + α)

1− kα2

]
kαn−1d(x0, x1) + ki−1αn−3+2iβd(x0, x2)

≤
[ (1 + α)

1− kα2

]
kαn−1d(x0, x1) + αn−3βd(x0, x2).

Letting n → ∞ in last inequality above, we get limn→∞ d(xn, xn+m) = 0, for all
even m ∈ N.

Case (ii): Suppose m is even i.e. m = 2i− 1 for some i ∈ N and n may be even
or odd. Using inequalities (12), (13) and rectangular inequality, we get

d(xn, xn+2i−1) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i−1)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i−1)]

≤ k[d(xn−1, xn) + d(xn, xn+1)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)] + · · ·
+ ki[d(xn+2i, xn+2i−1)]

≤ k[αnd(x0, x1) + αn+1d(x0, x1)] + k2[αn+2d(x0, x1) + αn+3d(x0, x1)]

+ k3[αn+4d(x0, x1) + αn+5d(x0, x1)] + · · ·+ kiαn+2id(x0, x1)

≤ kαn[1 + kα2 + k2α4 + · · · ]d(x0, x1) + kαn+1[1 + kα2 + k2α4 + · · · ]d(x0, x1)

≤
[ (1 + α)

1− kα2

]
kαn−1d(x0, x1).

Letting n → ∞, we get limn→∞ d(xn, xn+m) = 0, for all odd m ∈ N. Thus from
case (i) and case (ii), it follows that for all m,n ∈ N.

lim
n,m→∞

d(xn, xn+m) = 0. (14)

Now, we prove that limn→∞ d(xn+m, xn) = 0 for all m,n ∈ N. Again, we consider
two cases:
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Case (a): Suppose m is even i.e. m = 2i for some i ∈ N and n may be odd or
even. Then

d(xn+m, xn) ≤ ki−2d(xn+2i, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2d(x2, x0) + ki−2[αn+2i−3d(x1, x0) + αn+2i−4d(x1, x0)]

+ ki−3[αn+2i−4d(x1, x0) + αn+2i−5d(x1, x0)] + · · ·
+ k[αn+1d(x1, x0) + αnd(x1, x0)]

= (kα)2i−2αnd(x2, x0) +
{
(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
d(x1, x0)

≤ (kα)2i−2αnd(x2, x0) +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{ αn

1− α
+

αn−1

1− α

}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{1 + α

1− α

}
αn−1d(x1, x0).

It gives that limn→∞ d(xn+m, xn) = 0.
Case (b): Suppose m is odd i.e. m = 2i − 1 for some i ∈ N and n may be odd or
even. Then

d(xn+m, xn) ≤ ki−2d(xn+2i−1, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2d(x1, x0) + ki−2[αn+2i−3d(x1, x0) + αn+2i−4d(x1, x0)]

+ ki−3[αn+2i−4d(x1, x0) + αn+2i−5d(x1, x0)] + · · ·
+ k[αn+1d(x1, x0) + αnd(x1, x0)]

= (kα)2i−2αnd(x1, x0) +
{
(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
d(x1, x0)

≤ (kα)2i−2αnd(x1, x0) +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{ αn

1− α
+

αn−1

1− α

}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{1 + α

1− α

}
αn−1d(x1, x0).
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It gives that limn→∞ d(xn+m, xn) = 0. Thus taking account all cases, we have

lim
n→∞

d(xn, xn+m) = 0 = lim
n→∞

d(xn+m, xn)

for all n,m ∈ N. Hence {xn} is a Cauchy sequence in X. Since (X, d) is a complete
dislocated quasi rectangular b-metric space, there exists some u ∈ X such that
xn → u. We claim that u is fixed point of T . For any given n ∈ N, we can write

d(u, Tu) ≤ k[d(u, xn) + d(xn, xn+1) + d(xn+1, Tu)]

= k[d(u, xn) + d(xn, xn+1) + d(Txn, Tu)]

≤ k
{
d(u, xn) + d(xn, xn+1) + γ[d(xn, Txn) + d(u, Tu)]

}
= k

{
d(u, xn) + d(xn, xn+1) + γ[d(xn, xn+1) + d(u, Tu)]

}
,

which gives that,

d(u, Tu) ≤ 1

1− γ

{
d(u, xn) + d(xn, xn+1) + γd(xn, xn+1)

}
. (15)

Letting n → ∞, the sequence xn → u, we get d(u, Tu) = 0. Also,

d(Tu, u) ≤ k[d(Tu, xn+1) + d(xn+1, xn) + d(xn, u)]

= k[d(Tu, Txn) + d(xn+1, xn) + d(xn, u)]

≤ k
{
γ[d(u, Tu) + d(xn, Txn)] + d(xn+1, xn) + d(xn, u)

}
= k

{
γ[d(u, Tu) + d(xn, xn+1)] + d(xn+1, xn) + d(xn, u)

}
.

Letting n → ∞, the sequence xn → u, we get d(Tu, u) = 0. Thus d(u, Tu) = 0 =
d(Tu, u). It gives that Tu = u. Hence u is fixed point of T in X.

Note that

d(u, u) = d(Tu, Tu) ≤ γ[d(u, Tu) + d(u, Tu)] = 2γd(u, u) < d(u, u), (16)

which is a contradiction unless d(u, u) = 0. Thus if v is fixed point of T , then we
have d(v, v) = 0. Suppose u′ be another fixed point of T in X. In view of (10), we
have

d(u, u′) = d(Tu, Tu′) ≤ γ[d(u, Tu) + d(u′, Tu′)] = γ[d(u, u) + d(u′, u′)] = 0.

Also,

d(u′, u) = d(Tu′, Tu) ≤ γ[d(u′, Tu′) + d(u, Tu)] = γ[d(u′, u′) + d(u, u)] = 0.

Thus d(u, u′) = d(u′, u) = 0 i.e. u = u′. u is a unique fixed point of T .
Example 8 Let A = {0, 2}, B = { 1

n : n ∈ N} and X = A ∪B define d : X ×X →
[0,∞) by

d(x, y) =


3, if x, y ∈ A,

1, if x, y ∈ B,
1
n , if x ∈ A and y ∈ B,

1− 1
n , if x ∈ B and y ∈ A,

then (X, d) is dislocated quasi rectangular b-metric space with coefficient k = 3
2 > 1.

If T : X → X is defined as follows:

Tx =

{
2, if x ∈ A,

0, if x ∈ B,
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then T is Kannan contraction in dislocated quasi rectangular b-metric space (X, d)
and T has unique fixed point x = 2 ∈ X.

Now, we define Φ = {ϕ : [0,∞) → [0,∞)| ϕ is continuous, nondecreasing and ϕ(α) =
0 if and only if α = 0}.
Theorem 3 Let (X, d) be a complete dislocated quasi rectangular b-metric space
with coefficient k ≥ 1. Let T : X → X be a mapping satisfying

d(Tx, Ty) ≤ αd(x, y)− ϕ(d(x, y)), (17)

for all x, y ∈ X, where 0 ≤ α < 1
k and ϕ ∈ Φ. Then T has a unique fixed point in

X.
Proof. We choose any arbitrary point x0 ∈ X. Define a sequence {xn} in X
such that xn = Txn−1 for all n ∈ N. If for some n ∈ N, xn−1 = xn, then xn−1

becomes fixed point of T . Therefore, we assume that xn−1 ̸= xn for all n ∈ N.
From inequality (17), we have

d(xn, xn+1) = d(Txn−1, Txn) ≤ αd(xn−1, xn)− ϕ(d(xn−1, xn)) ≤ αd(xn−1, xn).

Applying inequality (17) repeatedly, we get,

d(xn, xn+1) ≤ αd(xn−1, xn) ≤ · · · ≤ αnd(x0, x1). (18)

Similarly,

d(xn+1, xn) ≤ αd(xn, xn−1) ≤ · · · ≤ αnd(x1, x0). (19)

We also assume that x0 ̸= xn for any 2 ≤ n ∈ N. If not, then for some n ≥ 2 in
view of (18), we have d(x0, Tx0) = d(xn, Txn) that is d(x0, x1) = d(xn, xn+1) and

d(x0, x1) ≤ αnd(x0, x1),

which is a contradiction unless d(x0, x1) = 0 i.e. x0 = x1. Thus x0 turns out to be
a fixed point of T . Hence we assume that xn ̸= xm for all n ̸= m ∈ N. Now, in
view of (17), for any n ∈ N,

d(xn−1, xn+1) = d(Txn−2, Txn) ≤ αd(xn−2, xn)− ϕ(d(xn−2, xn)) ≤ αd(xn−2, xn).
(20)

Applying (20) repeatedly, we get

d(xn−1, xn+1) ≤ αn−1d(x0, x2). (21)

Similarly,

d(xn+1, xn−1) ≤ αn−1d(x2, x0). (22)

In order to show, {xn} is a Cauchy sequence inX, it is sufficient to show, limn→∞ d(xn, xn+m) =
0 = limn→∞ d(xn+m, xn) for all n,m ∈ N. First, we will prove that limn→∞ d(xn, xn+m) =
0. So, we consider the following cases:
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Case (i): Suppose m is even i.e. m = 2i for some i ∈ N and n may be even or
odd. Using inequalities (18), (21) and rectangular inequality, we get

d(xn, xn+2i) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)+] + · · ·
+ ki−1[d(xn+2i−4, xn+2i−3) + d(xn+2i−3, xn+2i−2)] + ki−1[d(xn+2i−2, xn+2i)]

≤ k[αnd(x0, x1) + αn+1d(x0, x1)] + k2[αn+2d(x0, x1) + αn+3d(x0, x1)]

+ k3[αn+4d(x0, x1) + αn+5d(x0, x1)] + · · ·+ ki−1[αn+2i−4d(x0, x1) + αn+2i−3d(x0, x1)]

+ ki−1αn+2i−2βd(x0, x2)

≤ kαn[1 + kα2 + k2α4 + · · · ]d(x0, x1) + kαn+1[1 + kα2 + k2α4 + · · · ]d(x0, x1)

+ ki−1αn−3+2id(x0, x2)

≤
[ (1 + α)

1− kα2

]
kαn−1d(x0, x1) + ki−1αn−3+2iβd(x0, x2)

≤
[ (1 + α)

1− kα2

]
kαn−1d(x0, x1) + αn−3βd(x0, x2).

Letting n → ∞ in last inequality above, we get limn→∞ d(xn, xn+m) = 0, for all
even m ∈ N.

Case (ii): Suppose m is odd i.e. m = 2i− 1 for some i ∈ N and n may be even
or odd. Using inequality (22) and rectangular inequality, we get

d(xn, xn+2i−1) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i−1)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i−1)]

≤ k[d(xn−1, xn) + d(xn, xn+1)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)] + · · ·
+ ki[d(xn+2i, xn+2i−1)]

≤ k[αnd(x0, x1) + αn+1d(x0, x1)] + k2[αn+2d(x0, x1) + αn+3d(x0, x1)]

+ k3[αn+4d(x0, x1) + αn+5d(x0, x1)] + · · ·+ kiαn+2id(x0, x1)

≤ kαn[1 + kα2 + k2α4 + · · · ]d(x0, x1) + kαn+1[1 + kα2 + k2α4 + · · · ]d(x0, x1)

≤
[ (1 + α)

1− kα2

]
kαn−1d(x0, x1).

Letting n → ∞ in last inequality above, we get limn→∞ d(xn, xn+m) = 0, for all
odd m ∈ N. Taking account the Case (i) and Case (ii), it follows that, for all
m,n ∈ N,

lim
n→∞

d(xn, xn+m) = 0. (23)

Now, we will prove that limn→∞ d(xn+m, xn) = 0 for all m,n ∈ N. so, we consider
following two cases:
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Case (a): Suppose m is even i.e. m = 2i for some i ∈ N and n may be odd or
even. Using inequalities (19), (22) and rectangular inequality, we get

d(xn+m, xn) ≤ ki−2d(xn+2i, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2d(x2, x0) + ki−2[αn+2i−3d(x1, x0) + αn+2i−4d(x1, x0)]

+ ki−3[αn+2i−4d(x1, x0) + αn+2i−5d(x1, x0)] + · · ·
+ k[αn+1d(x1, x0) + αnd(x1, x0)]

= (kα)2i−2αnd(x2, x0) +
{
(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
d(x1, x0)

≤ (kα)2i−2αnd(x2, x0) +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{ αn

1− α
+

αn−1

1− α

}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{1 + α

1− α

}
αn−1d(x1, x0).

Letting n → ∞, we get limn→∞ d(xn+m, xn) = 0.
Case (b): Suppose m is odd i.e. m = 2i − 1 for some i ∈ N and n may be odd

or even. Using inequality (19) and rectangular inequality, we get

d(xn+m, xn) ≤ ki−2d(xn+2i−1, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2d(x1, x0) + ki−2[αn+2i−3d(x1, x0) + αn+2i−4d(x1, x0)]

+ ki−3[αn+2i−4d(x1, x0) + αn+2i−5d(x1, x0)] + · · ·
+ k[αn+1d(x1, x0) + αnd(x1, x0)]

= (kα)2i−2αnd(x1, x0) +
{
(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
d(x1, x0)

≤ (kα)2i−2αnd(x1, x0) +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{ αn

1− α
+

αn−1

1− α

}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{1 + α

1− α

}
αn−1d(x1, x0).



324 P. G. GOLHARE, C.T. AAGE EJMAA-2019/7(2)

Letting m,n → ∞, we get limn→∞ d(xn+m, xn) = 0. Taking account the Case (a)
and Case (b), we have

lim
n→∞

d(xn, xn+m) = 0 = lim
n→∞

d(xn+m, xn),

for all n,m ∈ N. Hence {xn} is a Cauchy sequence in X. Since (X, d) is a complete
dislocated quasi rectangular b-metric space, there exists some u ∈ X such that
xn → u.

Now we show that u is fixed point of T . For any given n ∈ N, we can write

d(u, Tu) ≤ k[d(u, xn) + d(xn, xn+1) + d(xn+1, Tu)]

= k[d(u, xn) + d(xn, xn+1) + d(Txn, Tu)]

≤ k
{
d(u, xn) + d(xn, xn+1) + αd(xn, u)− ϕ(d(xn, u))

}
.

Letting n → ∞, using fact that xn → u and (18), we get, d(u, Tu) = 0. Also,

d(Tu, u) ≤ k[d(Tu, xn+1) + d(xn+1, xn) + d(xn, u)]

= k[d(Tu, Txn) + d(xn+1, xn) + d(xn, u)]

≤ k
{
αd(u, xn)− ϕ(d(u, xn)) + d(xn+1, xn) + d(xn, u)

}
.

Letting n → ∞, using fact that xn → u and (19), we get d(Tu, u) = 0. Thus
d(u, Tu) = 0 = d(Tu, u). It gives that Tu = u i.e. u is fixed point of T in X.

Note that,

d(u, u) = d(Tu, Tu) ≤ αd(u, u)− ϕ(d(u, u)) ≤ αd(u, u) < d(u, u), (24)

which is a contradiction unless d(u, u) = 0. Thus in general, if v is fixed point of T ,
then d(v, v) = 0. Now, we will prove, u is unique fixed point of T in X. Soppose
u′ be another fixed point of T in X. In view of (17), we have

d(u, u′) = d(Tu, Tu′) ≤ αd(u, u′)− ϕ(d(u, u′)) ≤ αd(u, u′) < d(u, u′).

It is a contradiction unless d(u, u′) = 0. Also,

d(u′, u) = d(Tu′, Tu) ≤ αd(u′, u)− ϕ(d(u′, u)) ≤ αd(u′, u) < d(u′, u).

It is a contradiction unless d(u′, u) = 0. Thus d(u, u′) = d(u′, u) = 0 and u = u′.
Hence u is a unique fixed point of T in X.

We define quasi-like contraction in dislocated quasi rectangular b-metric space
(X, d) as follows:
Definition 15 A mapping T : X → X said to be a quasi-like contraction if,

d(Tx, Ty) ≤ αmax{d(x, y), d(Tx, x), d(y, Ty)}, (25)

for all x, y ∈ X, where 0 ≤ α < 1
k .

Theorem 4 Let (X, d) be a complete dislocated quasi rectangular b-metric space
with coefficient k ≥ 1. Let T : X → X be a quasi-like contraction. Then T has
unique fixed point in X.
Proof. We choose any arbitrary point x0 ∈ X. Now define sequence {xn} in X
such that xn = Txn−1 for all n ∈ N. If for some n ∈ N, xn−1 = xn, then xn−1
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becomes fixed point of T and we have nothing to prove. Therefore, we assume that
xn−1 ̸= xn for all n ∈ N. From inequality (25 ), we have

d(x1, x2) = d(Tx0, Tx1)

≤ αmax{d(x0, x1), d(Tx0, x0), d(x1, Tx1)}
= αmax{d(x0, x1), d(x1, x0), d(x1, x2)}
≤ αmax{d(x0, x1), d(x1, x0)}.

Similarly,

d(x2, x1) = d(Tx1, Tx0)

≤ αmax{d(x1, x0), d(Tx1, x1), d(x0, Tx0)}
= αmax{d(x1, x0), d(x2, x1), d(x0, x1)}
≤ αmax{d(x1, x0), d(x0, x1)}.

Let η = max{d(x1, x0), d(x0, x1)}. Then

d(x1, x2) ≤ αη (26)

and

d(x2, x1) ≤ αη. (27)

Now,

d(x2, x3) = d(Tx1, Tx2)

≤ αmax{d(x1, x2), d(Tx1, x1), d(x2, Tx2)}
= αmax{d(x1, x2), d(x2, x1), d(x2, x3)}
≤ αmax{d(x1, x2), d(x2, x1)}
≤ α2η. (28)

Similarly,

d(x3, x2) = d(Tx2, Tx1)

≤ αmax{d(x2, x1), d(Tx2, x2), d(x1, Tx1)}
= αmax{d(x2, x1), d(x3, x2), d(x1, x2)}
≤ αmax{d(x2, x1), d(x1, x2)}
≤ α2η. (29)

Applying above inequalities (28) and (29), we get,

d(xn, xn+1) ≤ αnη (30)

and

d(xn+1, xn) ≤ αnη. (31)

We also assume that x0 ̸= xn for any 2 ≤ n ∈ N. If not, then for some n ≥ 2 in
view of (30), we have

d(x0, Tx0) = d(xn, Txn)

d(x0, x1) = d(xn, xn+1)

d(x0, x1) ≤ αnη.
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If η = d(x0, x1), then we get d(x0, x1) ≤ αnd(x0, x1), which is a contradiction unless
d(x0, x1) = 0. And hence d(x1, x0) = 0. This yields that x0 = x1. And thus x0

turns out to be a fixed point of T . Similarly,

d(Tx0, x0) = d(Txn, xn)

d(x1, x0) = d(xn+1, xn)

d(x1, x0) ≤ αnη.

If η = d(x1, x0), then we get d(x1, x0) ≤ αnd(x1, x0), which is a contradiction unless
d(x1, x0) = 0. And hence d(x0, x1) = 0. This yields that x0 = x1 and thus x0 turns
out to be a fixed point of T . Hence we assume that xn ̸= xm, for all n ̸= m ∈ N.

Let β = max{d(x2, x0), d(x0, x2), η}. We claim that d(xn, xn+2) ≤ αnβ and
d(xn+2, xn) ≤ αnβ, for all n ∈ N. We first prove d(xn, xn+2) ≤ αnβ. We proceed
by induction. For n = 1,

d(x1, x3) = d(Tx0, Tx2)

≤ αmax{d(x0, x2), d(Tx0, x0), d(x2, Tx2)}
= αmax{d(x0, x2), d(x1, x0), d(x2, x3)}
≤ αmax{d(x0, x2), η, α

2η}
≤ αmax{d(x0, x2), η}
= αβ.

Assume that d(xn−1, xn+1) ≤ αn−1β. Now consider

d(xn, xn+2) = d(Txn−1, Txn+1)

≤ αmax{d(xn−1, xn+1), d(Txn−1, xn−1), d(xn+1, Txn+1)}
= αmax{d(xn−1, xn+1), d(xn, xn−1), d(xn+1, xn+2)}
≤ αmax{αn−1β, αn−1η, αn+1η}
≤ ααn−1β

= αnβ.

Thus for all n ∈ N, we have

d(xn, xn+2) ≤ αnβ. (32)

Now, we prove that d(xn+2, xn) ≤ αnβ. Again we proceed by induction. For n = 1,

d(x3, x1) = d(Tx2, Tx0)

≤ αmax{d(x2, x0), d(Tx2, x2), d(x0, Tx0)}
= αmax{d(x2, x0), d(x3, x2), d(x0, x1)}
≤ αmax{d(x2, x0), α

2η, η}
≤ αmax{d(x2, x0), η}
= αβ.
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Assume that d(xn+1, xn−1) ≤ αn−1β. Now, we consider

d(xn+2, xn) = d(Txn+1, Txn−1)

≤ αmax{d(xn+1, xn−1), d(Txn+1, xn+1), d(xn−1, Txn−1)}
= αmax{d(xn+1, xn−1), d(xn+2, xn+1), d(xn−1, xn)}
≤ αmax{αn−1β, αn+1η, αn−1η}
≤ ααn−1β

= αnβ.

Thus, for all n ∈ N, we have

d(xn+2, xn) ≤ αnβ. (33)

Now, we will prove, {xn} is a Cauchy sequence inX, we prove that limn→∞ d(xn, xn+m) =
0 = limn→∞ d(xn+m, xn), for all n,m ∈ N. First, we prove that limn→∞ d(xn, xn+m) =
0. For this, consider the following cases:

Case (i): Suppose m is even i.e. m = 2i for some i ∈ N and n may be even or
odd. Using inequalities (30), (32) and rectangular inequality, we get

d(xn, xn+2i) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)+] + · · ·
+ ki−1[d(xn+2i−4, xn+2i−3) + d(xn+2i−3, xn+2i−2)] + ki−1[d(xn+2i−2, xn+2i)]

≤ k[αnη + αn+1η] + k2[αn+2η + αn+3η]

+ k3[αn+4η + αn+5η] + · · ·+ ki−1[αn+2i−4η + αn+2i−3η]

+ ki−1αn+2i−2β

≤ kαn[1 + kα2 + k2α4 + · · · ]η + kαn+1[1 + kα2 + k2α4 + · · · ]η
+ ki−1αn−3+2iβ

≤
[ (1 + α)

1− kα2

]
kαn−1η + ki−1αn−3+2iβ

≤
[ (1 + α)

1− kα2

]
kαn−1η + αn−3β.

Letting n → ∞ in last inequality above, we get limn→∞ d(xn, xn+m) = 0, for all
even m ∈ N.
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Case (ii): m is odd i.e. m = 2i − 1 for some i ∈ N and n may be even or odd.
Using inequality (30) and rectangular inequality, we get

d(xn, xn+2i−1) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i−1)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i−1)]

≤ k[d(xn−1, xn) + d(xn, xn+1)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)] + · · ·
+ ki[d(xn+2i, xn+2i−1)]

≤ k[αnη + αn+1η] + k2[αn+2η + αn+3η]

+ k3[αn+4η + αn+5η] + · · ·+ kiαn+2iη

≤ kαn[1 + kα2 + k2α4 + · · · ]η + kαn+1[1 + kα2 + k2α4 + · · · ]η

≤
[ (1 + α)

1− kα2

]
kαn−1η.

Letting n → ∞ in last inequality above, we get limn→∞ d(xn, xn+m) = 0, for all
odd m ∈ N. Thus from case (i) and case (ii), it follows that, for all m,n ∈ N,

lim
n→∞

d(xn, xn+m) = 0. (34)

we prove that limn→∞ d(xn+m, xn) = 0 for all m,n ∈ N. So, we consider two cases:
Case (a): Suppose m is even i.e. m = 2i for some i ∈ N and n may be odd or

even. Using inequalities (31), (33) and rectangular inequality, we get

d(xn+m, xn) ≤ ki−2d(xn+2i, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2β + ki−2[αn+2i−3η + αn+2i−4η]

+ ki−3[αn+2i−4η + αn+2i−5η] + · · ·
+ k[αn+1η + αnη]

= (kα)2i−2αnβ +
{
(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
η

≤ (kα)2i−2αnβ +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
η

= (kα)2i−2αnβ +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
η

= (kα)2i−2αnβ +
{ αn

1− α
+

αn−1

1− α

}
η

= (kα)2i−2αnβ +
{1 + α

1− α

}
αn−1η.

Letting n → ∞, we get limn→∞ d(xn+m, xn) = 0.
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Case (b): m is odd i.e. m = 2i − 1 for some i ∈ N and n may be odd or even.
Using inequality (31) and rectangular inequality, we get

d(xn+m, xn) ≤ ki−2d(xn+2i−1, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2η + ki−2[αn+2i−3η + αn+2i−4η]

+ ki−3[αn+2i−4η + αn+2i−5η] + · · ·
+ k[αn+1η + αnη]

= (kα)2i−2αnη +
{
(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
η

≤ (kα)2i−2αnη +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
η

= (kα)2i−2αnη +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
η

= (kα)2i−2αnη +
{ αn

1− α
+

αn−1

1− α

}
η

= (kα)2i−2αnη +
{1 + α

1− α

}
αn−1η.

Letting n → ∞, we get limn→∞ d(xn+m, xn) = 0. Thus, from case(a) and case(b),
it follows that, for all m,n ∈ N,

lim
n→∞

d(xn+m, xn) = 0. (35)

It shows that {xn} is a Cauchy sequence in X. Since (X, d) is a complete dislocated
quasi rectangular b-metric space, there exists some u ∈ X such that xn → u. Now,
we show that u is fixed point of T . For any given n ∈ N, we can write

d(u, Tu) ≤ k[d(u, xn) + d(xn, xn+1) + d(xn+1, Tu)]

= k[d(u, xn) + d(xn, xn+1) + d(Txn, Tu)]

≤ k
{
d(u, xn) + d(xn, xn+1) + αmax{d(xn, u), d(xn+1, xn), d(u, Tu)}

}
.

Letting n → ∞, using fact that xn → u, and inequalities (30), (31), we get,

d(u, Tu) ≤ kαd(u, Tu),

which is a contradiction unless d(u, Tu) = 0. Also,

d(Tu, u) ≤ k[d(Tu, xn+1) + d(xn+1, xn) + d(xn, u)]

= k[d(Tu, Txn) + d(xn+1, xn) + d(xn, u)]

≤ k
{
αmax{d(u, xn), d(Tu, u), d(xn, xn+1)}+ d(xn+1, xn) + d(xn, u)

}
.

Letting n → ∞, using fact that xn → u, and inequalities (30), (31), we get,

d(Tu, u) ≤ kαd(Tu, u),

which is a contradiction unless d(Tu, u) = 0. Hence, we get d(u, Tu) = 0 = d(Tu, u).
It gives that Tu = u. Hence u is fixed point of T in X.
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Note that,

d(u, u) = d(Tu, Tu) ≤ αmax{d(u, u), d(Tu, u), d(u, Tu)}
= αmax{d(u, u), d(u, u), d(u, u)}
= αd(u, u) < d(u, u),

which is a contradiction unless d(u, u) = 0. Thus in general if v is fixed point of T
then, d(v, v) = 0. Now, we prove that u is unique fixed point of T in X. Suppose,
u′ is another fixed point of T in X. In view of (25), we have

d(u, u′) = d(Tu, Tu′) ≤ αmax{d(u, u′), d(Tu, u), d(u′, Tu′)}
= αmax{d(u, u′), d(u, u), d(u′, u′)}
≤ αd(u, u′) < d(u, u′).

It is a contradiction unless d(u, u′) = 0. Also, consider

d(u′, u) = d(Tu′, Tu) ≤ αmax{d(u′, u), d(Tu′, u′), d(u, Tu)}
= αmax{d(u′, u), d(u′, u′), d(u, u)}
≤ αd(u′, u) < d(u′, u).

It is a contradiction unless d(u′, u) = 0. Hence, d(u, u′) = d(u′, u) = 0 i.e. u = u′.
So u is a unique fixed point of T in X.
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