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SOME GROWTH ANALYSIS OF ITERATED ENTIRE
FUNCTIONS ON THE BASIS OF THEIR MAXIMUM TERMS

AND RELATIVE ORDERS

TANMAY BISWAS

Abstract. The main aim of this paper is to study some growth properties
of iterated entire functions on the basis of their maximum terms and relative
order.

1. Introduction and De�nitions.

We denote C by the set of all �nite complex numbers. For any two entire
functions f and g de�ned in C, Lahiri and Banerjee [5] introduced the concept of
the iteration of f with respect to g in the following manner:

f (z) = f1 (z)
f (g (z)) = f (g1 (z)) = f2 (z)
f (g (f (z))) = f (g (f1 (z))) = f (g2 (z)) = f3 (z)
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
f (g (f � � � � � � (f (z) or g (z)) � � � � � � )) = fn (z)

according as n is odd or even, and so
g (z) = g1 (z)
g (f (z)) = g (f1 (z)) = g2 (z)
g (f (g (z))) = g (f (g1 (z))) = g (f2 (z)) = g3 (z)
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
g (f (gn�2 (z))) = g (fn�1 (z)) = gn (z) :

Clearly all fn (z) and gn (z) are entire functions.
For any entire function f , the so called maximum modulus function denoted

by Mf (r) is de�ned for each non-negative real value of r as follows:

Mf (r) = max
jzj=r

jf (z) j:

If an entire function f is non-constant then Mf (r) is strictly increasing
and continuous and its inverse Mf

�1 : (jf (0)j ;1) ! (0;1) exists and is such
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that lim
s!1

M�1
f (s) = 1: The maximum term �f (r) of entire f can be de�ned as

�f (r) = max
n�0

(janjrn) : Obviously �f (r) is also a real and increasing function of

r. For another entire function g, the ratios Mf (r)
Mg(r)

when r ! +1 as well as
�f (r)

�g(r)

when r ! +1 are called the comparative growth of f with respect to g in terms of
their maximum moduli and the maximum term respectively. Actually the study of
comparative growth properties of composite entire functions under some di¤erent
directions is the prime concern of this paper. We use the standard notations and
de�nitions of the theory of entire functions which are available in [4] and [9], and
therefore we do not explain those in details. We begin by recalling the following
de�nitions.

De�nition 1. [1, 2] The relative order and relative lower order of an entire function
f with respect to another entire function g, denoted by �g (f) and �g (f) respectively
are de�ned as

�g (f) = lim sup
r!+1

logM�1
g (Mf (r))

log r
and �g (f) = lim inf

r!+1

logM�1
g (Mf (r))

log r
:

De�nition 1 coincides with the classical de�nitions of order and lower order
of entire function [8] if g (z) = exp z:

Datta and Maji [3] gave an alternative de�nition of relative order and rel-
ative lower order in terms of maximum term of an entire function with respect to
another entire function in the following way:

De�nition 2. [3] The relative order �g (f) and relative lower order �g (f) of an
entire function f with respect to an entire function g are de�ned as follows:

�g (f) = lim sup
r!1

log��1g
�
�f (r)

�
log r

and �g (f) = lim inf
r!1

log��1g
�
�f (r)

�
log r

:

In fact, Datta and Maji [3] also established the equivalence of De�nition 1
and De�nition 2.

Now for another two non-constant entire functions h and k, we may de�ne
the iteration of ��1h (r) with respect to ��1k (r) in the following manner:

��1h (r) = ��1h1 (r) ;

��1k
�
��1h (r)

�
= ��1k

�
��1h1 (r)

�
= ��1h2 (r) ;

��1h
�
��1k

�
��1h (r)

��
= ��1h

�
��1h2 (r)

�
= ��1h3 (r) ;

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��1h

�
� � � � � �

�
��1h

�
��1k

�
��1h (r)

����
= ��1hn (r) when n is odd and

��1k
�
� � � � � �

�
��1h

�
��1k

�
��1h (r)

����
= ��1hn (r) when n is even .

Obviously ��1hn (r) is an increasing functions of r:
The main aim of this paper is to prove some results related to the growth

rates of iterated entire functions on the basis of maximum term using the idea of
the relative order of an entire function with respect to another entire function.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
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Lemma 1. [6] Let f and g be any two entire functions. Then for every � > 1 and
0 < r < R;

�f�g (r) �
�

�� 1�f
�
�R

R� r�g (R)
�
:

Lemma 2. [7] If f and g are any two entire functions. Then for all su¢ ciently
large values of r;

�f�g(r) �
1

2
�f

�
1

16
�g

�r
4

��
Lemma 3. [3] If f be an entire and � > 1; 0 < � < �; then for all su¢ ciently
large r;

�f (�r) � ��f (r) :

Lemma 4. Let f be a non-constant entire function and a, b be real with b > a >
:Then when r is large enough, one has

�
�f (r)

�a
< �f

�
rb
�
:

Proof. Let f (x) =
+1P
n=0

anx
n be a non-constant entire function. Then for all r > 0

we have �f (r) = max
n�0

(janjrn) : So we obtain that

�
�f (r)

�a
= max

n�0
(janj)a ran : (1)

Further, we get that

�f
�
rb
�
= max

n�0
janjrbn : (2)

As we take the maximum value for large r, therefore n 6= 0. Since b > a > 1; so
the lemma follows from (1) and (2). �

Lemma 5. Let f , g; h, k be any four entire functions. Also let � = �1�2 where
�1 > 1; �2 >

��1�1
�1�1

for every � > 1 and �1 > �
��1 . Then for all su¢ ciently large

values of r,

(I) ��1hn
�
�fn (r)

�
< ��1k

�
�g
�
Ar�

��
when n is even

and

(II) ��1hn
�
�fn (r)

�
< ��1h

�
�f
�
Ar�

��
when n (n 6= 1) is odd
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where8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(i) � = mn�1 and A = �m+m
2+m3+:::+mn�1

wherever n is any integer with n > 1 and
1 � min f�h (f) ; �k (g)g � max f�h (f) ; �k (g)g < m;

(ii) � = m
n
2�1 and A = �1+2m+2m

2+:::+2m
n
2
�1
wherever n is any even integer and

0 < �h (f) < 1 � �k (g) < m;

(iii) � = m
n�1
2 and �2m+2m

2+:::+2m
n�1
2 wherever n (n 6= 1) is any odd integer and

0 < �h (f) < 1 � �k (g) < m;

(iv) � = m
n
2 and A = �2m+2m

2+2m3+:::+2m
n
2
�1+m

n
2 wherever n is any even integer

and 0 < �k (g) < 1 � �h (f) < m;

(v) � = m
n�1
2 and A = �1+2m+2m

2+:::+2m
n�2
2 +m

n�1
2 wherever n (n 6= 1) is any odd

integer and 0 < �k (g) < 1 � �h (f) < m;

(vi) � = 1 and A = �n�1 wherever n is any integer with n > 1 and
0 < max f�h (f) ; �k (g)g < 1 .

Proof. Case I. Let 1 < min f�h (f) ; �k (g)g � max f�h (f) ; �k (g)g < 1. Now
we consider m is such that 1 < min f�h (f) ; �k (g)g � max f�h (f) ; �k (g)g < m:
Also suppose that �h (f) + " < m and �k (g) + " < m respectively where " (> 0) is
arbitrary. Now in view of Lemma 1, Lemma 3, Lemma 4 and for any even integer
n, we get for all su¢ ciently large values of r that

�fn (r) � �f

�
�gn�1 (�r)

�
i:e:; ��1h

�
�fn (r)

�
� ��1h

�
�f

�
�gn�1 (�r)

��
i:e:; ��1h

�
�fn (r)

�
�

�
�gn�1 (�r)

�(�h(f)+")
(3)

i:e:; ��1h
�
�fn (r)

�
< �gn�1 ((�r)

m
)

i:e:; ��1h

 
�fn

 
r
1
m

�

!!
< �gn�1 (r) � �g

�
�fn�2 (�r)

�
i:e:; ��1h2

 
�fn

 
r
1
m

�

!!
< ��1k

�
�g

�
�fn�2 (�r)

��
i:e:; ��1h2

 
�fn

 
r
1
m

�

!!
<

�
�fn�2 (�r)

�(�k(g)+")

i:e:; ��1h2

 
�fn

 
r
1
m

�

!!
< �fn�2 ((�r)

m
)

i:e:; ��1h2

 
�fn

 
r

1
m2

(�)
1+ 1

m

!!
< �fn�2 (r) � �f

�
�gn�3 (�r)

�
;
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and so on. We thus have that, for even n

��1hn

 
�fn

 
r

1

mn�1

(�)
1+ 1

m+
1
m2+

1
m3+:::+

1

mn�2

!!
< ��1k

�
�g (r)

�
i:e:; ��1hn

�
�fn (r)

�
< ��1k

�
�g

��
(�)

1+ 1
m+

1
m2+

1
m3+:::+

1

mn�2 r
�mn�1��

i:e:; ��1hn
�
�fn (r)

�
< ��1k

�
�g

�
(�)

m+m2+m3+:::+mn�1
� rm

n�1
��

.

Similarly, we �nd that, for odd n (n 6= 1),

��1hn
�
�fn (r)

�
< ��1h

�
�f

�
(�)

m+m2+m3+:::+mn�1
� rm

n�1
��

:

Hence (i) of the lemma is established.
Case II. Let 0 < min f�h (f) ; �k (g)g < 1 � max f�h (f) ; �k (g)g <1.
Sub case (A). Let 0 < �h (f) < 1 � �k (g) < 1. Now we consider m is

such that 0 < �h (f) < 1 � �k (g) < m: Also suppose that �h (f) + " < 1 and
�k (g) + " < m respectively where " (> 0) is arbitrary. Now in view of Lemma 1,
Lemma 3, Lemma 4 and for any even integer n, we obtain from (3) for all su¢ ciently
large values of r that

��1h
�
�fn (r)

�
�

�
�gn�1 (�r)

�(�h(f)+")
< �gn�1 (�r)

i:e:; ��1h

�
�fn

�
r

�

��
< �gn�1 (r) � �g

�
�fn�2 (�r)

�
i:e:; ��1h2

�
�fn

�
r

�

��
< ��1k

�
�g

�
�fn�2 (�r)

��
i:e:; ��1h2

�
�fn

�
r

�

��
<

�
�fn�2 (26r)

�(�k(g)+")
< �fn�2 ((�r)

m
)

i:e:; ��1h2

 
�fn

 
r
1
m

(�)
2

!!
< �fn�2 (r) � �f

�
�gn�3 (�r)

�
i:e:; ��1h3

 
�fn

 
r
1
m

(�)
2

!!
<

�
�gn�3 (�r)

�(�h(f)+")
< �gn�3 (�r)

i:e:; ��1h3

 
�fn

 
r
1
m

(�)
2+ 1

m

!!
< �gn�3 (r) � �g

�
�fn�4 (�r)

�
;

and so on. We �nally arrive at the following inequality when n is even

��1hn

0@�fn
0@ r

1

m
n
2
�1

(�)
2+ 2

m+
2
m2+

2
m3+:::+

2

m
n
2
�2+

1

m
n
2
�1

1A1A < ��1k
�
�g (r)

�

i:e:; ��1hn
�
�fn (r)

�
< ��1k

0@�g
0@�(�)2+ 2

m+
2
m2+

2
m3+:::+

2

m
n
2
�2+

1

m
n
2
�1 r

�mn
2
�1
1A1A

i:e:; ��1hn
�
�fn (r)

�
< ��1k

�
�g

�
(�)

1+2m+2m2+:::+2m
n
2
�1
� rm

n
2
�1
��

:

Similarly, when n is odd and n 6= 1 and 0 < �h (f) < 1 � �k (g) < m, we �nd
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��1hn
�
�fn (r)

�
< ��1h

�
�f

�
(�)

2m+2m2+:::+2m
n�1
2 � rm

n�1
2

��
:

Hence (ii) and (iii) of the lemma are proved.
Sub case (B). Let 0 < �k (g) < 1 � �h (f) < 1. Now we consider m is

such that 0 < �k (g) < 1 � �h (f) < m: Also suppose that �k (g) + " < 1 and
�h (f) + " < m respectively where " (> 0) is arbitrary. Now in view of Lemma 1,
Lemma 3, Lemma 4 and for any even integer n, we get from (3) for all su¢ ciently
large values of r that

��1h

 
�fn

 
r
1
m

�

!!
< �gn�1 (r) � �g

�
�fn�2 (�r)

�
i:e:; ��1h2

 
�fn

 
r
1
m

�

!!
< ��1k

�
�g

�
�fn�2 (�r)

��
i:e:; ��1h2

 
�fn

 
r
1
m

�

!!
<

�
�fn�2 (�r)

�(�k(g)+")
< �fn�2 (�r)

i:e:; ��1h2

 
�fn

 
r
1
m

(�)
1+ 1

m

!!
< �fn�2 (r) � �f

�
�gn�3 (�r)

�
i:e:; ��1h3

 
�fn

 
r
1
m

(�)
1+ 1

m

!!
<

�
�gn�3 (�r)

�(�h(f)+")
< �gn�3 ((�r)

m
)

i:e:; ��1h3

 
�fn

 
r

1
m2

(�)
1+ 2

m

!!
< �gn�3 (r) � �g

�
�fn�4 (�r)

�
;

and so on.
We �nally have the following inequality when n is even

��1hn

0@�fn
0@ r

1

m
n
2

(�)
1+ 2

m+
2
m2+

2
m3+:::+

2

m
n
2
�1

1A1A < ��1k
�
�g (r)

�

i:e:; ��1hn
�
�fn (r)

�
< ��1k

0@�g
0@�(�)1+ 2

m+
2
m2+

2
m3+:::+

2

m
n
2
�1 r

�mn
2

1A1A
i:e:; ��1hn

�
�fn (r)

�
< ��1k

�
�g

�
(�)

2m+2m2+2m3+:::+2m
n
2
�1+m

n
2 � rm

n
2

��
:

Likewise, when n is odd (n 6= 1) and 0 < �k (g) < 1 � �h (f) < m; we get

��1hn
�
�fn (r)

�
< ��1h

�
�f

�
(�)

1+2m+2m2+:::+2m
n�2
2 +m

n�1
2 � rm

n�1
2

��
:

Hence (iv) and (v) of the lemma are established.
Case III. Let 0 < max f�h (f) ; �k (g)g < 1.
In this case we can choose an arbitrary "(> 0) in such a manner so that �h (f)+

" < 1 and �k (g)+ " < 1 hold. Now reasoning similarly as in the proof stated above
one can easily deduce the conclusion of (vi) of lemma, so its proof is omitted.
This completes the proof of the lemma. �
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Lemma 6. Let f , g; h, k be any four entire functions. Also let � = 4�1 where
�1 > 16�2 for every �2 > 2. Then for all su¢ ciently large values of r,

(I) ��1hn
�
�fn (r)

�
> ��1k

�
�g

�
Ar

1
�

��
when n is even

and

(II) ��1hn
�
�fn (r)

�
> ��1h

�
�f

�
Ar

1
�

��
when n (n 6= 1) is odd

where8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(i) � = mn�1 and A = �
mn�1

1+m+m2+:::+mn�2 wherever n is any integer with n > 1 and
1
m < min f�h (f) ; �k (g)g � max f�h (f) ; �k (g)g < 1;

(ii) � = m
n
2�1 and A = �

m
n
2
�1

2+2m+2m2+:::+2m
n
2
�2

+m
n
2
�1 wherever n is any even integer

and 0 < �k (g) � 1 < �h (f) <1;

(iii) � = m
n�1
2 and A = �

m
n�1
2

2+2m+2m2+:::+2m
n�1
2 wherever n (n 6= 1) is any odd integer

and 0 < �k (g) � 1 < �h (f) <1;;

(iv) � = m
n
2 and A = �

m
n
2

1+2m+2m2+:::+2m
n
2
�1 wherever n is any even integer and

0 < �h (f) � 1 < �k (g) <1;

(v) � = m
n�1
2 and A = �

m
n�1
2

1+2m+2m2+:::+m
n�1
2 wherever n (n 6= 1) is any odd integer

0 < �h (f) � 1 < �k (g) <1;

(vi) � = 1 and A = �
1

n�1 wherever n is any integer with n > 1 and
1 < min f�h (f) ; �k (g)g <1 .

Proof. Case I. Let 0 < min f�h (f) ; �k (g)g � max f�h (f) ; �k (g)g < 1. Now we
consider that m is such that 1

m < min f�h (f) ; �k (g)g � max f�h (f) ; �k (g)g < 1:
Also suppose that �h (f)� " > 1

m and �k (g)� " > 1
m respectively where " (> 0) is

arbitrary. Now in view of Lemma 2, Lemma 3, Lemma 4 and for any even integer
n, we get for all su¢ ciently large values of r that

�fn (r) � �f

�
�gn�1

�
r

�

��
i:e:; ��1h

�
�fn (r)

�
� ��1h

�
�f

�
�gn�1

�
r

�

���
i:e:; ��1h

�
�fn (r)

�
�

�
�gn�1

�
r

�

��(�h(f)�")
> �gn�1

 �
r

�

� 1
m

!
(4)

i:e:; ��1h
�
�fn (�r

m)
�
> �gn�1 (r) � �g

�
�fn�2

�
r

�

��
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i:e:; ��1h2
�
�fn (�r

m)
�
> ��1k

�
�g

�
�fn�2

�
r

�

���
i:e:; ��1h2

�
�fn (�r

m)
�
>

�
�fn�2

�
r

�

��(�k(g)�")
> �fn�2

 �
r

�

� 1
m

!

i:e:; ��1h2

�
�fn

�
�1+m � rm

2
��

> �fn�2 (r) � �f
�
�gn�3

�
r

�

��
;

and so on. We thus have that, for even n

��1hn

�
�fn

�
�1+m+m

2+:::+mn�2
� rm

n�1
��
> ��1k

�
�g (r)

�
i:e:; ��1hn

�
�fn (r)

�
> ��1k

 
�g

 �
r

�1+m+m
2+:::+mn�2

� 1

mn�1
!!

i:e:; ��1hn
�
�fn (r)

�
> ��1k

 
�g

  
r

1

mn�1

�
1+m+m2+:::+mn�2

mn�1

!!!
.

Similarly, we �nd that, for odd n (n 6= 1),

��1hn
�
�fn (r)

�
> ��1h

 
�f

  
r

1

mn�1

�
1+m+m2+:::+mn�2

mn�1

!!!
.

Hence (i) of the lemma is established.
Case II. Let 0 < min f�h (f) ; �k (g)g � 1 < max f�h (f) ; �k (g)g <1.
Sub case (A). Let 0 < �k (g) � 1 < �h (f) < 1. Now we consider m is

such that 1
m < �k (g) � 1 < �h (f) < 1: Also suppose that �k (g) � " > 1

m and
�h (f) � " > 1 respectively where " (> 0) is arbitrary. Now in view of Lemma 2,
Lemma 3, Lemma 4 and for any even integer n, we obtain from (4) for all su¢ ciently
large values of r that

��1h
�
�fn (r)

�
�

�
�gn�1

�
r

�

��(�h(f)�")
> �gn�1

�
r

�

�
i:e:; ��1h

�
�fn (�r)

�
> �gn�1 (r) � �g

�
�fn�2

�
r

�

��
i:e:; ��1h2

�
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�
> ��1k

�
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�
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r
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���
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�
�fn (�r)

�
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�
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��(�k(g)�")
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 �
r

�

� 1
m

!

i:e:; ��1h2
�
�fn

�
�2 � rm

��
> �fn�2 (r) � �f

�
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�
r

�

��
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�2 � rm

��
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�
�gn�3

�
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i:e:; ��1h3

�
�fn

�
�2+m � rm

��
> �gn�3

�
r

�

�
> �g

�
�fn�4

�
r

�

��
;

and so on. We �nally arrive at the following inequality when n is even

��1hn

�
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�
�2+2m+2m

2+:::+2m
n
2
�2+m

n
2
�1
� rm

n
2
�1
��
> ��1k

�
�g (r)

�
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i:e:; ��1hn
�
�fn (r)

�
> ��1k

0@�g
0@ r

�2+2m+2m
2+:::+2m

n
2
�2+m

n
2
�1

! 1

m
n
2
�1
1A1A

i:e:; ��1hn
�
�fn (r)

�
> ��1k

0B@�g
0B@
0B@ r

1

m
n
2
�1

�
2+2m+2m2+:::+2m

n
2
�2

+m
n
2
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2
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Similarly, when n is odd and n 6= 1 and 1
m < �k (g) � 1 < �h (f) <1, we �nd

��1hn
�
�fn (r)

�
> ��1h

0BB@�f
0BB@ r

1

m
n�1
2

�
2+2m+2m2+:::+2m

n�1
2

m
n�1
2

1CCA
1CCA :

Hence (ii) and (iii) of the lemma are proved.
Subcase (B). Let 0 < �h (f) � 1 < �k (g) <1. Now we considerm is such that

1
m < �h (f) � 1 < �k (g) <1: Also suppose that �k (g)�" > 1 and �h (f)�" > 1

m
respectively where " (> 0) is arbitrary. Now in view of Lemma 2, Lemma 3, Lemma
4 and for any even integer n, we obtain from (4) for all su¢ ciently large values of
r that

i:e:; ��1h
�
�fn (�r

m)
�
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r
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i:e:; ��1h2

�
�fn (�r

m)
�
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�
�1+m � rm

��
>

�
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�
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�
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> �gn�3

 �
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i:e:; ��1h3

�
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�
�1+2m � rm

2
��
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�
�fn�4

�
r

�
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;

and so on. We thus have that, for even n
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i:e:; ��1hn
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Likewise, when n is odd (n 6= 1) and 1
m < �h (f) � 1 < �k (g) <1; we get
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��1hn
�
�fn (r)

�
> ��1h

0BB@�f
0BB@
0BB@ r

1

m
n�1
2

�
1+2m+2m2+:::+m

n�1
2

m
n�1
2

1CCA
1CCA
1CCA :

Hence (iv) and (v) of the lemma are established.
Case III. Let 1 < min f�h (f) ; �k (g)g <1.
In this case we can choose an arbitrary "(> 0) in such a manner so that �k (g)�

" > 1 and �h (f)�" > 1 hold. Now reasoning similarly as in the proof stated above
one can easily deduce the conclusion of (vi) of lemma, so its proof is omitted.
This completes the proof of the lemma. �

3. Main Results

In this section we present the main results of the paper.

Theorem 1. Let f , g, k and h be any four entire functions such that 0 < �h (f) �
�h (f) < 1 and 0 < �k (g) < 1. Also let  be a positive continuous function
de�ned on [0;+1) increasing to +1 as r ! +1. Then for every real number �;

lim
r!+1

��1hn
�
�fn (r)

��
log��1h

�
�f (exp  (r))

�	1+� =1;
when lim

r!+1
log (r)
log r = 0 and n is any integer such that n > 1:

Proof. First let us consider n to be an even integer. If � be such that 1 + � � 0
then the theorem is trivial. So we suppose that 1+� > 0. Now it follows from the
�rst part of Lemma 6, for all su¢ ciently large values of r that

��1hn
�
�fn (r)

�
>
�
Ar

1
�

��k(g)�"
; (5)

where A and � satisfy the conditions of Lemma 6.
Again from the de�nition of �h (f) ; it follows for all su¢ ciently large values of r

that �
log��1h

�
�f (exp  (r))

�	1+� � (�h (f) + ")1+� ( (r))1+� : (6)

Now from (5) and (6) ; it follows for all su¢ ciently large values of r that

��1hn
�
�fn (r)

��
log��1h

�
�f (exp  (r))

�	1+� >
�
Ar

1
�

��k(g)�"
(�h (f) + ")

1+�
( (r))

1+� :

Since lim
r!+1

log (r)
log r = 0; therefore r

�k(g)�"
�

((r))1+�
! +1 as r ! +1, then from above

it follows that

lim inf
r!+1

��1hn
�
�fn (r)

��
log��1h

�
�f (exp  (r))

�	1+� =1 for any even number n.

Similarly, with the help of the second part of Lemma 6 one can easily derive the
same conclusion for any odd integer n (6= 1) :
Thus the theorem follows from above. �

Remark 1. Theorem 1 is still valid with �limit superior�instead of � limit �if we
replace the condition � 0 < �h (f) � �h (f) <1�by � 0 < �h (f) <1�.
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In the line of Theorem 1, one may state the following theorem without its
proof:

Theorem 2. Let f , g, k and h be any four entire functions such that 0 < �h (f) <
1 and 0 < �k (g) � �k (g) < 1. Also let  be a positive continuous function
de�ned on [0;+1) increasing to +1 as r ! +1. Then for every real number �;

lim
r!+1

��1hn
�
�fn (r)

��
log��1k

�
�g(exp  (r))

�	1+� =1;
when lim

r!+1
log (r)
log r = 0 and n is any integer such that n > 1:

Remark 2. In Theorem 2 if we take the condition 0 < �k (g) < 1 instead of
0 < �k (g) � �k (g) < 1, then also Theorem 2 remains true with �limit superior�
in place of � limit �.

Theorem 3. Let f , g, k and h be any four entire functions such that 0 < �h (f) �
�h (f) < 1 and 0 < �k (g) < 1. Also let  be a positive continuous function
de�ned on [0;+1) increasing to +1 as r ! +1. Then for each � 2 (�1;1) ;

lim
r!+1

�
��1hn

�
�fn (r)

��1+�
log��1h

�
�f (exp  (r))

� = 0;
when lim

r!+1
log (r)
log r = +1 and n is any integer such that n > 1:

Proof. If 1+� � 0; then the theorem is obvious. We consider that 1+� > 0. Now
for any even integer n, it follows from the �rst part of Lemma 5 for all su¢ ciently
large values of r that

��1hn
�
�fn (r)

�
<
�
Ar�

�(�k(g)+") ; (7)

where A and � satisfy the conditions of Lemma 5.
Again for all su¢ ciently large values of r we get that

log��1h
�
�f (exp  (r))

�
� (�h (f)� ")  (r) : (8)

Hence for all su¢ ciently large values of r; we obtain from (7) and (8) that�
��1hn

�
�fn (r)

��1+�
log��1h

�
�f (exp  (r))

� < �
Ar�

�(�k(g)+")
(�h (f)� ")  (r)

: (9)

Since lim
r!+1

log (r)
log r = +1; therefore r�(�k(g)+")(1+�)

(r) ! +1 as r ! +1. So from
(9) we obtain that

lim
r!+1

�
��1hn

�
�fn (r)

��1+�
log��1h

�
�f (exp  (r))

� = 0 for any even number n.
Similarly, with the help of the second part of Lemma 5 one can easily derive the

same conclusion for any odd integer n (6= 1) :
This proves the theorem. �

Remark 3. In Theorem 3 if we take the condition 0 < �h (f) < 1 instead of
0 < �h (f) � �h (f) < 1, the theorem remains true with � limit inferior� in place
of �limit �.
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In view of Theorem 3, the following theorem can be carried out :

Theorem 4. Let f , g, k and h be any four entire functions such that 0 < �h (f) <
1 and 0 < �k (g) � �k (g) < 1. Also let  be a positive continuous function
de�ned on [0;+1) increasing to +1 as r ! +1. Then for each � 2 (�1;1) ;

lim
r!+1

�
��1hn

�
�fn (r)

��1+�
log��1k

�
�g(exp  (r))

� = 0;
when lim

r!+1
log (r)
log r = +1 and n is any integer such that n > 1:

The proof is omitted.

Remark 4. In Theorem 4 if we take the condition 0 < �k (g) < 1 instead of
0 < �k (g) � �k (g) < 1 then the theorem remains true with � limit inferior� in
place of �limit �.

Theorem 5. Let f , g, k and h be any four entire functions such that �k (g) <
�h (f) � �h (f) <1 and 0 < �k (g) <1. Then for any even number n;

lim inf
r!+1

��1hn
�
�fn (r)

�
��1h

�
�f (r

�)
� = 0;

where � satis�es the conditions of Lemma 5.

Proof. From the �rst part of Lemma 5, we obtain for a sequence of values of r
tending to in�nity that

��1hn
�
�fn (r)

�
<
�
Ar�

�(�k(g)+")
: (10)

Again from the de�nition of relative order, we obtain for all su¢ ciently large
values of r that

��1h
�
�f (r

�)
�
> r�(�h(f)�"): (11)

Now in view of (10) and (11) ; we get for a sequence of values of r tending to in�nity
that

��1hn
�
�fn (r)

�
��1h

�
�f (r

�)
� < �Ar��(�k(g)+")

r�(�h(f)�")
: (12)

Now as �k (g) < �h (f) ; we can choose " (> 0) in such a way that �k (g) + " <
�h (f)� " and the theorem follows from (12) : �

Remark 5. If we take 0 < �k (g) < �h (f) � �h (f) < 1 instead of " �k (g) <
�h (f) � �h (f) < 1 and �k (g) < 1 " and the other conditions remain the same,
the conclusion of Theorem 5 remains valid with � limit inferior �replaced by � limit
�.

Theorem 6. Let f , g, k and h be any four entire functions such that �h (f) <
�k (g) � �k (g) <1 and 0 < �h (f) <1: Then for any odd number n (6= 1) ;

lim inf
r!+1

��1hn
�
�fn (r)

�
��1k

�
�g(r

�)
� = 0;

where � satis�es the conditions of Lemma 5.

The proof of Theorem 6 is omitted as it can be carried out in the line of
Theorem 5 and with the help of the second part of Lemma 5.
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Remark 6. If we consider 0 < �h (f) < �k (g) � �k (g) <1 instead of " �h (f) <
�k (g) � �k (g) < 1 and �h (f) < 1 " and the other conditions remain the same,
the conclusion of Theorem 5 remains valid with � limit inferior �replaced by � limit
�.

Theorem 7. Let f , g, k and h be any four entire functions such that 0 < �h (f) �
�h (f) <1 and 0 < �k (g) <1: Then

(i) lim sup
r!+1

log��1hn
�
�fn (r)

�
log��1h

�
�f (r

�)
� � �k (g)

�h (f)
when n is even,

and

(ii) lim sup
r!+1

log��1hn
�
�fn (r)

�
log��1h

�
�f (r

�)
� � �h (f)

�h (f)
when n (6= 1) is any odd integer

where � satis�es the conditions of Lemma 5.

Proof. From the �rst part of Lemma 5, it follows for all su¢ ciently large values of
r that��1hn

�
�fn (r)

�
< ��1k

�
�g
�
Ar�

��
log��1hn
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�fn (r)

�
log��1h

�
�f (r

�)
� < log��1k
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��
log��1h

�
�f (r

�)
�

i:e:;
log��1hn

�
�fn (r)

�
log��1h

�
�f (r

�)
� < log��1k

�
�g
�
Ar�

��
log (Ar�)

�
log
�
Ar�

�
log��1h

�
�f (r

�)
�

i:e:; lim sup
r!+1

log��1hn
�
�fn (r)

�
log��1h

�
�f (r

�)
� � lim sup

r!+1

log��1k
�
�g
�
Ar�

��
log (Ar�)

� lim sup
r!+1

log
�
Ar�

�
log��1h

�
�f (r

�)
�

i:e:; lim sup
r!+1

log��1hn
�
�fn (r)

�
log��1h

�
�f (r

�)
� � �k (g) � 1

�h (f)
=
�k (g)

�h (f)
:

Thus the �rst part of theorem follows from above.
Likewise, with the help of the second part of Lemma 5 one can easily derive

conclusion of the second part of theorem:
This proves the theorem. �

Theorem 8. Let f , g, k and h be any four entire functions such that 0 < �k (g) �
�k (g) <1 and 0 < �h (f) <1:Then

(i) lim sup
r!+1

log��1hn
�
�fn (r)

�
log��1k

�
�g(r

�)
� � �k (g)

�k (g)
when n is even,

and

(ii) lim sup
r!+1

log��1hn
�
�fn (r)

�
log��1k

�
�g(r

�)
� � �h (f)

�k (g)
when n (6= 1) is any odd integer

where � satis�es the conditions of Lemma 5.

The proof of Theorem 8 is omitted as it can be carried out in the line of
Theorem 7:

Now we state the following two theorems without their proofs as those can
easily be carried out in the line of Theorem 7 and Theorem 8 respectively and with
the help of Lemma 5.
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Theorem 9. Let f , g, k and h be any four entire functions such that 0 < �h (f) �
�h (f) <1 and 0 < �k (g) � �k (g) <1: Then

(i) lim inf
r!+1

log��1hn
�
�fn (r)

�
log��1h

�
�f (r

�)
� � �k (g)

�h (f)
when n is even,

and

(ii) lim inf
r!+1

log��1hn
�
�fn (r)

�
log��1h

�
�f (r

�)
� � 1 when n (6= 1) is any odd integer

where � satis�es the conditions of Lemma 5.

Theorem 10. Let f , g, k and h be any four entire functions such that 0 < �h (f) �
�h (f) <1 and 0 < �k (g) � �k (g) <1: Then

(i) lim inf
r!+1

log��1hn
�
�fn (r)

�
log��1k

�
�g(r

�)
� � 1 when n is even,

and

(ii) lim inf
r!+1

log��1hn
�
�fn (r)

�
log��1k

�
�g(r

�)
� � �h (f)

�k (g)
when n (6= 1) is any odd integer

where � satis�es the conditions of Lemma 5.

Theorem 11. Let f , g, k and h be any four entire functions such that 0 < �h (f) <
1 and 0 < �k (g) <1. Then for any even number n;

(i) lim inf
r!+1

log��1hn
�
�fn

�
r�
��

log��1h
�
�f (r)

� � �k (g)

�h (f)
when 0 < �h (f) <1

and

(ii) lim inf
r!+1

log��1hn
�
�fn

�
r�
��

log��1k
�
�g(r)

� � �k (g)

�k (g)
when 0 < �k (g) <1;

where � satis�es the conditions of Lemma 6.

Proof. From the �rst part of Lemma 6, we obtain for all su¢ ciently large values of
r that

log��1hn
�
�fn

�
r�
��
> (�k (g)� ") log r + (�k (g)� ") logA : (13)

Also from the de�nition of �h (f) ; we obtain for all su¢ ciently large values of r
that

log��1h
�
�f (r)

�
� (�h (f) + ") log r : (14)

Analogously,from the de�nition of �k (g) ; it follows for all su¢ ciently large values
of r that

log��1k
�
�g(r)

�
� (�k (g) + ") log r : (15)

Now from (13) and (14) ; it follows for all su¢ ciently large values of r that

log��1hn
�
�fn

�
r�
��

log��1h
�
�f (r)

� >
(�k (g)� ") log r + (�k (g)� ") logA

(�h (f) + ") log r

i:e:; lim inf
r!+1

log��1hn
�
�fn

�
r�
��

log��1h
�
�f (r)

� � �k (g)

�h (f)
: (16)

Thus the �rst part of theorem follows from (16).
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Likewise, the conclusion of the second part of theorem can easily be derived from
(13) and (15) :
Hence the theorem follows. �

Theorem 12. Let f , g, k and h be any four entire functions such that 0 < �h (f) <
1 and 0 < �k (g) <1. Then for any odd number n (6= 1),

(i) lim inf
r!+1

log��1hn
�
�fn

�
r�
��

log��1h
�
�f (r)

� � �h (f)

�h (f)
when 0 < �h (f) <1

and

(ii) lim inf
r!+1

log��1hn
�
�fn

�
r�
��

log��1k
�
�g(r)

� � �h (f)

�k (g)
when 0 < �k (g) <1;

where � satis�es the conditions of Lemma 6.

The proofs of Theorem 12 is omitted as it can be carried out in the line of
Theorem 11 and with the help of the second part of Lemma 6.

Now we state the following two theorems without their proofs as those can
easily be carried out in the line of Theorem 11 and Theorem 12 respectively and
with the help of Lemma 6.

Theorem 13. Let f , g, k and h be any four entire functions such that 0 < �h (f) <
1 and 0 < �k (g) � �k (g) <1. Then for any even number n;

(i) lim sup
r!+1

��1hn
�
�fn

�
r�
��

log��1h
�
�f (r)

� � �k (g)

�h (f)
when 0 < �h (f) <1

and

(ii) lim sup
r!+1

log��1hn
�
�fn

�
r�
��

log��1k
�
�g(r)

� � 1;

where � satis�es the conditions of Lemma 6.

Theorem 14. Let f , g, k and h be any four entire functions such that 0 < �h (f) �
�h (f) <1 and 0 < �k (g) <1: Then for any odd number n (6= 1) ,

(i) lim sup
r!+1

log��1hn
�
�fn

�
r�
��

log��1k
�
�g(r)

� � �h (f)

�k (g)
when 0 < �k (g) <1

and

(ii) lim sup
r!+1

��1hn
�
�fn

�
r�
��

log��1h
�
�f (r)

� � 1 when �h (f) <1;
where � satis�es the conditions of Lemma 6.

Theorem 15. Let f , g, k and h be any four entire functions such that 0 < �h (f) �
�h (f) < 1; 0 < �k (g) < 1 and 0 <  < �k (g) < 1: Then for any even number
n ,

lim sup
r!+1

��1hn
�
�fn

�
r�
��

log��1h
�
�f (exp r

)
� =1;

where � satis�es the conditions of Lemma 6.



360 T. BISWAS EJMAA-2019/7(2)

Proof. From the �rst part of Lemma 6, we get for a sequence of values of r tending
to in�nity that

��1hn
�
�fn

�
r�
��
> (Ar)

(�k(g)�") : (17)

Again from the de�nition of �h (f) ; we obtain for all su¢ ciently large values of r
that

log��1h
�
�f (exp r

)
�
� (�h (f) + ") r : (18)

Now from (17) and (18) ; it follows for a sequence of values of r tending to in�nity
that

��1hn
�
�fn

�
r�
��

log��1h
�
�f (exp r

)
� > (Ar)

(�k(g)�")

(�h (f) + ") r

: (19)

As  < �k (g) ; we can choose "(> 0) in such a way that

 < �k (g)� " : (20)

Thus from (19) and (20) we get that

lim sup
r!+1

��1hn
�
�fn

�
r�
��

log��1h
�
�f (exp r

)
� =1 : (21)

Hence the theorem follows from (21) : �

Theorem 16. Let f , g, k and h be any four entire functions such that 0 < �h (f) �
�h (f) < 1; 0 < �k (g) < 1 and 0 <  < �k (g) < 1: Then for any even number
n ,

lim sup
r!+1

��1hn
�
�fn

�
r�
��

log��1k
�
�g(exp r

)
� =1;

where � satis�es the conditions of Lemma 6.

Proof. Let 0 <  < 0 < �k (g). Then from (21), we obtain for a sequence of values
of r tending to in�nity and A > 1 that

��1hn
�
�fn

�
r�
��
> A log��1h

�
�f (exp r

0)
�

i:e:; ��1hn
�
�fn

�
r�
��
> A (�h (f)� ") r0 : (22)

Again from the de�nition of �k (g) ; we obtain for all su¢ ciently large values of r
that

log��1k
�
�g(exp r

)
�
� (�k (g) + ") r : (23)

So combining (22) and (23) ; we obtain for a sequence of values of r tending to
in�nity that

��1hn
�
�fn

�
r�
��

log��1k
�
�g(exp r

)
� > A (�h (f)� ") r0

(�k (g) + ") r

: (24)

Since 0 > , from (24) it follows that

lim sup
r!+1

��1hn
�
�fn

�
r�
��

log��1k
�
�g(exp r

)
� =1 :

Thus the theorem follows: �

Now we state the following two theorems without their proofs as those can
easily be carried out in the line of Theorem 15 and Theorem 16 respectively and
with the help of the second part of Lemma 6.
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Theorem 17. Let f , g, k and h be any four entire functions such that 0 < �k (g) �
�k (g) < 1; 0 < �h (f) < 1 and 0 <  < �h (f) < 1: Then for any odd number
n (6= 1) ,

lim sup
r!+1

��1hn
�
�fn

�
r�
��

log��1h
�
�f (exp r

)
� =1;

where � satis�es the conditions of Lemma 6.

Theorem 18. Let f , g, k and h be any four entire functions such that 0 < �k (g) �
�k (g) < 1; 0 < �h (f) < 1 and 0 <  < �h (f) < 1: Then for any odd number
n (6= 1) ;

lim sup
r!+1

��1hn
�
�fn

�
r�
��

log��1k
�
�g(exp r

)
� =1;

where � satis�es the conditions of Lemma 6.

Theorem 19. Let f , g, k and h be any four entire functions such that 0 < �h (f) �
�h (f) <1; 0 < �k (g) <1 and �k (g) <  <1: Then for any even number n ,

lim inf
r!+1

��1hn
�
�fn (r)

�
log��1h

�
�f (exp r

�)
� = 0;

where � satis�es the conditions of Lemma 5.

Proof. From the �rst part of Lemma 5, it follows for a sequence of values of r
tending to in�nity that

��1hn
�
�fn (r)

�
<
�
Ar�

�(�k(g)+")
: (25)

Again for all su¢ ciently large values of r we get that

log��1h
�
�f (exp r

�)
�
� (�h (f)� ") r� : (26)

Now from (25) and (26) ; it follows for a sequence of values of r tending to in�nity
that

��1hn
�
�fn (r)

�
log��1h

�
�f (exp r

�)
� � �

Ar�
�(�k(g)+")

(�h (f)� ") r�
: (27)

As �k (g) < ; we can choose " (> 0) in such a way that

�k (g) + " <  : (28)

Thus the theorem follows from (27) and (28). �

In the line of Theorem 19, we may state the following theorem without its
proof:

Theorem 20. Let f , g, k and h be any four entire functions such that 0 < �h (f) <
1; 0 < �k (g) <1 and �k (g) <  <1: Then for any even number n ,

lim inf
r!+1

��1hn
�
�fn (r)

�
log��1k

�
�g(exp r

�)
� = 0;

where � satis�es the conditions of Lemma 5.
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Theorem 21. Let f , g, k and h be any four entire functions such that 0 < �k (g) �
�k (g) <1; 0 < �h (f) <1 and �h (f) <  <1: Then for any odd number n (6= 1)
,

lim inf
r!+1

��1hn
�
�fn (r)

�
log��1k

�
�g(exp r

�)
� = 0;

where � satis�es the conditions of Lemma 5.

Theorem 22. Let f , g, k and h be any four entire functions such that 0 < �k (g) <
1; 0 < �h (f) <1 and �h (f) <  <1: Then for any odd number n (6= 1) ,

lim inf
r!+1

��1hn
�
�fn (r)

�
log��1h

�
�f (exp r

�)
� = 0;

where � satis�es the conditions of Lemma 5.

We omit the proofs of Theorem 21 and Theorem 22 as those can be carried
out in the line of Theorem 19 and Theorem 20 respectively and with the help of
the second part of Lemma 5.

We omit the proofs of Theorem 21 and Theorem 22 as those can be carried
out in the line of Theorem 19 and Theorem 20 respectively and with the help of
the second part of Lemma 5.

Theorem 23. Let F; G; H; K; f; g; h and k be any eight entire functions such
that 0 < �H (F ) < 1, 0 < �K (G) < 1, 0 < �h (f) < 1 and 0 < �k (g) < 1:
Then for any two integers m(6= 1) and n(6= 1)

(i) lim
r!+1

��1Hm

�
�Fm (r)

�
��1hn

�
�fn (r)

�
� log��1h

�
�f (r)

� =1
and

(ii) lim
r!+1

��1Hm

�
�Fm (r)

�
��1hn

�
�fn (r)

�
� log��1k

�
�g(r)

� =1;
when 8>>>>>>>><>>>>>>>>:

�2�k (g) < �K (G) for m;n both even

�2�h (f) < �H (F ) for m(6= 1); n(6= 1) both odd

�2�h (f) < �K (G) for m even and n(6= 1) odd

�2�k (g) < �H (F ) for m(6= 1) odd and n even,

(29)

where � satis�es the conditions of Lemma 5.

Proof. We have from the de�nition of relative order and for all su¢ ciently large
values of r that

log��1h
�
�f (r)

�
� (�h (f) + ") log r : (30)

Case I. Let m and n are any two even numbers.
Therefore in view of �rst part of Lemma 5, we get for all su¢ ciently large values

of r that
��1hn

�
�fn (r)

�
<
�
Ar�

�(�k(g)+") : (31)

So from (30) and (31) it follows for all su¢ ciently large values of r that

��1hn
�
�fn (r)

�
� log��1h

�
�f (r)

�
<
�
Ar�

�(�k(g)+") � (�h (f) + ") log r : (32)
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Also from �rst part of Lemma 6, we obtain for all su¢ ciently large values of r
that

��1Hm

�
�Fm (r)

�
>
�
Ar

1
�

�(�K(G)�")
: (33)

Hence combining (32) and (33) we get for all su¢ ciently large values of r that,

��1Hm

�
�Fm (r)

�
��1hn

�
�fn (r)

�
� log��1h

�
�f (r)

� >
�
Ar

1
�

�(�K(G)�")
(Ar�)

(�k(g)+") � (�h (f) + ") log r
: (34)

Since �2�k (g) < �K (G), we can choose "(> 0) in such a manner that

�2 (�k (g) + ") � (�K (G)� ") : (35)

Thus from (34) and (35) we obtain that

lim
r!+1

��1Hm

�
�Fm (r)

�
��1hn

�
�fn (r)

�
� log��1h

�
�f (r)

� =1 : (36)

Case II. Let m(6= 1) and n(6= 1) are any two odd numbers .
Now in view of second part of Lemma 5, we get for all su¢ ciently large values

of r that
��1hn

�
�fn (r)

�
<
�
Ar�

�(�h(f)+") : (37)

So from (30) and (37) it follows for all su¢ ciently large values of r that

��1hn
�
�fn (r)

�
� log��1h

�
�f (r)

�
<
�
Ar�

�(�h(f)+") � (�h (f) + ") log r : (38)

Also from second part of Lemma 6, we obtain for all su¢ ciently large values of
r that

��1Hm

�
�Fm (r)

�
>
�
Ar

1
�

�(�H(F )�")
: (39)

Hence combining (38) and (39) we get for all su¢ ciently large values of r that,

��1Hm

�
�Fm (r)

�
��1hn

�
�fn (r)

�
� log��1h

�
�f (r)

� >
�
Ar

1
�

�(�H(F )�")
(Ar�)

(�h(f)+") � (�h (f) + ") log r
: (40)

As �2�h (f) < �H (F ), we can choose "(> 0) in such a manner that

�2 (�h (f) + ") � (�H (F )� ") : (41)

Therefore from (40) and (41) it follows that

lim
r!+1

��1Hm

�
�Fm (r)

�
��1hn

�
�fn (r)

�
� log��1h

�
�f (r)

� =1 : (42)

Case III. Let m be any even number and n(6= 1) be any odd number.
Then combining (33) and (38) we get for all su¢ ciently large values of r that

��1Hm

�
�Fm (r)

�
��1hn

�
�fn (r)

�
� log��1h

�
�f (r)

� >
�
Ar

1
�

�(�K(G)�")
(Ar�)

(�h(f)+") � (�h (f) + ") log r
: (43)

Since �2�h (f) < �K (G), we can choose "(> 0) in such a manner that

�2 (�h (f) + ") � (�K (G)� ") : (44)
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So from (43) and (44) we get that

lim
r!+1

��1Hm

�
�Fm (r)

�
��1hn

�
�fn (r)

�
� log��1h

�
�f (r)

� =1 : (45)

Case IV. Let m(6= 1) be any odd number and n be any even number .
Therefore combining (32) and (39) we obtain for all su¢ ciently large values of r

that

��1Hm

�
�Fm (r)

�
��1hn

�
�fn (r)

�
� log��1h

�
�f (r)

� �
�
Ar

1
�

�(�H(F )�")
(Ar�)

(�k(g)+") � (�h (f) + ") log r
: (46)

As �2�k (g) < �H (F ), we can choose "(> 0) in such a manner that

�2 (�k (g) + ") � (�H (F )� ") : (47)

Hence from (46) and (47) we have

lim
r!+1

��1Hm

�
�Fm (r)

�
��1hn

�
�fn (r)

�
� log��1h

�
�f (r)

� =1 : (48)

Thus the �rst part of the theorem follows from (36) ; (42) ; (45) and (48) :
Similarly, from the de�nition of �k (g) one can easily derive the conclusion of the

second part of the theorem.
Hence the theorem follows. �

Remark 7. If we consider �K (G) ; �H (F ) ; �K (G) and �H (F ) instead of �K (G) ;
�H (F ) ; �K (G) and �H (F ) respectively in (29) and the other conditions remain the
same, the conclusion of Theorem 23 is remains valid with �limit superior�replaced
by �limit�.
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