WEIGHTED SHARING OF Q-SHIFT
 DIFFERENCE-DIFFERENTIAL POLYNOMIALS OF MEROMORPHIC FUNCTIONS SHARING A SMALL FUNCTION

HARINA P. WAGHAMORE AND RAMYA MALIGI

Abstract

In this article, with the notion of weighted sharing we study the uniqueness problems of q-shift difference-differential polynomials of meromorphic functions sharing a small function $a(z)$ with weight l. Our result improves and generalize a recent result of Renukadevi S. Dyavanal and Ashwini M. Hattikal.

1. Introduction and main results

Let f be a non-constant meromorphic function in the whole complex plane. We shall use the following standard notations of the value distribution theory: $T(r, f), N(r, f), \bar{N}(r, f), m(r, f)$, (see [17]). The notation $S(r, f)$ is defined to be any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty, r \notin E$, where E is a set of positive real number of finite linear measure, not necessarily the same at each occurrence. A meromorphic function $a(z)$ is called a small function with respect to $f(z)$ provided that $T(r, a)=S(r, f)$. Suppose that $f(z)-a(z)$ and $g(z)-a(z)$ have the same zeros with same counting multiplicities (ignoring multiplicities), then we say that f and g share $a(z) \mathrm{CM}(\mathrm{IM})$.
Definition 1.[13] Let k be a non-negative integer or infinity. For $a \in \mathbb{C} \cup\{\infty\}$, we denote by $E_{k}(a, f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a, f)=E_{k}(a, g)$, then we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then z_{0} is a zero of $f-a$ with multiplicity $m(\leq k)$ if and only if it is a zero of $g-a$ with multiplicity $m(\leq k)$; and z_{0} is a zero of $f-a$ with multiplicity $m(>k)$ if and only if it is a zero of $g-a$ with multiplicity $n(>k)$, where m is not necessarily equal to n.

We write f, g share (a, l) to mean that f, g share the value ' a ' with weight l. Clearly if f, g share (a, l), then f, g share (a, p) for all integer $p, 0 \leq p<k$. Also, we note that f, g share a value ' a ' IM or CM , if and only if f, g share $(a, 0)$ or

[^0]Submitted May 10, 2018.
(a, ∞), respectively.
Definition 2.[2] We denote and define order of $f(z)$ by

$$
\rho(f)=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

If a non-constant meromorphic function $f(z)$ is of zero order, then $\rho(f)=0$.
Recently difference polynomials in the complex plane \mathbb{C} become a subject of great interest among the researcher around the world. With the development of difference analogue of Nevanlinna theory [see [3], [4], [5], [6]], a large number of papers have focused on value distribution and uniqueness of difference polynomials.

In 2014, X.M.Li, H.X.Yi and W.L.Li [7] proved the following theorem on uniqueness of difference polynomials of meromorphic functions sharing a small function.

Theorem 1. Let f and g be two transcendental meromorphic function of finite order, let $\alpha \not \equiv 0$ be an entire function such that $\rho(\alpha)<\rho(f)$, let η be a non-zero complex number and let n and m be two positive integers such that $n \geq m+12$ and $m \geq 2$. Suppose $f^{n}(z)\left(f^{m}(z)-1\right) f(z+\eta)-\alpha(z)$ and $g^{n}(z)\left(g^{m}(z)-1\right) g(z+\eta)-\alpha(z)$ share $0, \infty$ CM. Then $f(z)=t g(z)$, where t is a constant satisfying $t^{m}=1$.

Further, K.Y. Zhang and H.X.Yi [19] extended the result of X.M.Li, H.X.Yi and W.L.Li [7] and proved the theorem on uniqueness of product of differential-difference polynomials of entire functions as in the following theorem.
Theorem 2. Let $f(z)$ and $g(z)$ be transcendental entire functions of finite or$\operatorname{der}, \alpha(z) \not \equiv 0$ be a common small function with respect to f and $g, c_{j}(j=1,2, \ldots, d)$ be distinct finite complex numbers and n, m, d and $v_{j}(j=1,2, \ldots, d)$ are nonnegative integers. If $n \geq 4 k-m+\sigma+9$ and the differential-difference polynomial $\left(f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{v_{j}}\right)^{(k)}$ and $\left(g^{n}(z)(g(z)-1)^{m} \prod_{j=1}^{d} g\left(z+c_{j}\right)^{v_{j}}\right)^{(k)}$ share $\alpha(z) \mathrm{CM}$, then $f \equiv g$.
In 2015, F.H.Liu and H.X.Yi [9] improved the previous results by considering uniqueness problems on product of difference polynomials of meromorphic functions.

Theorem 3. Let $f(z)$ and $g(z)$ be non-constant meromorphic functions satisfying $\rho(f)<\infty, \rho(g)<\infty . f(z)$ and $g(z)$ share ∞ IM. $\alpha(z) \not \equiv 0$ is an entire function satisfying $\rho(\alpha)<\rho(f)$. $m, n, s, \mu_{j}(j=1,2, \ldots, s)$ are non-negative integers, $\sigma=\sum_{j=1}^{s} \mu_{j}, c_{j}(j=1,2, \ldots, s)$ are non-zero complex constants. $F(z)=$ $f^{n}\left(f^{m}-1\right) \prod_{j=1}^{s} f\left(z+c_{j}\right)^{\mu_{j}}, G(z)=g^{n}\left(g^{m}-1\right) \prod_{j=1}^{s} g\left(z+c_{j}\right)^{\mu_{j}}$ share α, ∞ CM. If $n \geq m+2 s+3 \sigma+7$ we get $f(z)=\operatorname{tg}(z)$, where t is a constant satisfying $t^{m}=1$.

Recently, R. S. Dyavanal and A. M. Hattikal [2] investigated the uniqueness of difference polynomials of meromorphic functions sharing a small function $a(z)$ with counting multiplicity.

Theorem 4. Let f and g be two non-constant meromorphic functions of zero order and $a(z)$ is a small function with respect to both f and g. Let $n \geq m+3 \lambda+2 d+7$ be a positive integer, where $m, d, \lambda\left(=\sum_{j=1}^{d} s_{j}\right.$ for $\left.j=1,2, \ldots, d\right)$ are finite positive integers such that $d<\lambda$. Let $q_{j}, c_{j}(j=1,2, \ldots, d)$ are distinct non-zero complex
constants. If

$$
f^{n}(z)(f(z)-1)^{m} \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}
$$

and

$$
g^{n}(z)(g(z)-1)^{m} \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}
$$

share $a(z) \mathrm{CM}, f$ and g share $\infty \mathrm{IM}$, then
(1) if $m \geq 2$, then either $f=t g$ for a constant t such that $t^{d}=1$ where $d=$ $G C D(n+m+\lambda, n+m+\lambda-1, \ldots, n+m+\lambda-i, \ldots, n+\lambda)$ or f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(w_{1}, w_{2}\right)=w_{1}^{n}\left(w_{1}-1\right)^{m} \prod_{j=1}^{d} w_{1}\left(q_{j} z+c_{j}\right)^{s_{j}}-w_{2}^{n}\left(w_{2}-1\right)^{m} \prod_{j=1}^{d} w_{2}\left(q_{j} z+c_{j}\right)^{s_{j}}
$$

(2) if $m=1$, then $f=t g$ for a constant t such that $t^{d}=1$ where $d=G C D(n+$ $\lambda, n+1+\lambda)$.

In this paper, we define a q-shift difference product of meromorphic function $f(z)$ as follows.

$$
\begin{gather*}
F(z)=\left(f^{n}(z) P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)^{(k)} \tag{1}\\
F_{1}(z)=f^{n}(z) P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}} \tag{2}
\end{gather*}
$$

where $q_{j}, c_{j}(j=1,2, \ldots, d)$ are distinct non-zero complex constants, $n, d, k, \lambda, s_{j}(j=$ $1,2, \ldots, d)$ be positive integers. $\lambda=\sum_{j=1}^{d} s_{j}$. Let $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{0}$ is a non-zero polynomial of degree m and $\Gamma_{0}=m_{1}+m_{2}$, where m_{1} is the number of the simple zero of $P(z)$ and m_{2} is the number of multiple zeros of $P(z)$.

Here, we used the idea of weighted sharing values to extend the above results for meromorphic functions.

Theorem 5. Let f and g be two non-constant meromorphic functions of zero order and $a(z)$ is a small function with respect to both f and g. If F and G share $(a(z), l)$, where l, n are positive integers; f and g share ∞ IM with the conditions of n as below
(i) $n>3 k+2 \Gamma_{0}-m+k d+\lambda+3 d+7$, when $l \geq 2$
(ii) $n>4 k+\frac{5 \Gamma_{0}}{2}-m+\frac{3 k d}{2}+\frac{3 \lambda}{2}+\frac{7 d}{2}+8$, when $l=1$
(iii) $n>9 k+5 \Gamma_{0}-m+4 k d+4 \lambda+6 d+13$, when $l=0$ then one of the following cases hold:

1) $f \equiv t g$ for a constant t such that $t^{l}=1$, where $l=G C D\left\{n+\lambda_{0}+\lambda, n+\lambda_{1}+\right.$ $\left.\lambda, \ldots, n+\lambda_{m}+\lambda\right\}$ and

$$
\lambda_{i}=\left\{\begin{array}{ll}
i, & a_{i} \neq 0 \\
m, & a_{i}=0
\end{array} \quad i=0,1, \ldots, m\right.
$$

2) f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(w_{1}, w_{2}\right)=w_{1}^{n} P\left(w_{1}\right) \prod_{j=1}^{d} w_{1}\left(z+c_{j}\right)^{s_{j}}-w_{2}^{n} P\left(w_{2}\right) \prod_{j=1}^{d} w_{2}\left(z+c_{j}\right)^{s_{j}}
$$

Remark 1. When $k=0$ and $\Gamma_{0}=m_{1}+m_{2}=m$ in Theorem 5 , then Theorem 5 improves and generalize Theorem 3 and Theorem 4.

Remark 2. When $k=0, \Gamma_{0}=m_{1}+m_{2}=m, \lambda=1$ and $d=1$ in Theorem 5 , then Theorem 5 reduces to Theorem 1.

Corollary. Let f and g be two non-constant entire functions of zero order and $a(z)$ is a small function with respect to both f and g. If F and G share $(a(z), l)$, where l, n are positive integers; f and g share ∞ IM with the conditions of n as below
(i) $n \geq 2 k-m+2 \Gamma_{0}+\lambda+5$, when $l \geq 2$
(ii) $n \geq \frac{5 k}{2}+\frac{5 \Gamma_{0}}{2}+\frac{3 \lambda}{2}-m+\frac{11}{2}$, when $l=1$
(iii) $n \geq 5 k+5 \Gamma_{0}+4 \lambda-m+8$, when $l=0$ then conclusion of Theorem 5 holds.

2. Some Lemmas

Lemma 1.[18] Let $f(z)$ be a non-constant meromorphic function, and $a_{n}(\neq$ $0), a_{n-1}, \ldots, a_{0}$ be small functions with respect to f. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f+a_{0}\right)=n T(r, f)+S(r, f)
$$

Lemma 2.[16] Let $f(z)$ be a non-constant meromorphic function of zero order, and let c and q be two non-zero complex numbers. Then

$$
T(r, f(q z+c))=T(r, f(z))+S(r, f)
$$

on a set of logarithmic density 1.
Lemma 3.[8] Let f be a meromorphic function with zero order and c and q be two non-zero complex numbers. Then

$$
\begin{aligned}
& N\left(r, \frac{1}{f(q z+c)}\right) \leq N\left(r, \frac{1}{f(z)}\right)+S(r, f) \quad N(r, f(q z+c)) \leq N(r, f)+S(r, f) \\
& \bar{N}\left(r, \frac{1}{f(q z+c)}\right) \leq N\left(r, \frac{1}{f(z)}\right)+S(r, f) \quad \bar{N}(r,(f(q z+c)) \leq N(r, f)+S(r, f)
\end{aligned}
$$

outside of a possible exceptional set E with finite logarithmic measure.
Lemma 4.[10] Let $f(z)$ be a non-constant meromorphic function and p, k be positive integers. Then

$$
\begin{gather*}
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f) \tag{3}\\
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq k \bar{N}(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f) \tag{4}
\end{gather*}
$$

Lemma 5.[1] Let F, G be two nonconstant meromorphic functions sharing (1,2), $(\infty, 0)$ and $H \not \equiv 0$. Then
(i) $T(r, F) \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+\bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)+\bar{N}_{*}(r, \infty ; F, G)-$
$m(r, 1 ; G)-N_{E}^{(3}(r, 1 ; F)-\bar{N}_{L}(r, 1 ; G)+S(r, F)+S(r, G) ;$
(ii) $T(r, G) \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+\bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)+\bar{N}_{*}(r, \infty ; F, G)-$ $m(r, 1 ; F)-N_{E}^{(3}(r, 1 ; G)-\bar{N}_{L}(r, 1 ; F)+S(r, F)+S(r, G)$.

Lemma 6.[12] Let F, G be two nonconstant meromorphic functions sharing $(1,1)$, $(\infty, 0)$ and $H \not \equiv 0$. Then
(i) $T(r, F) \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+\frac{3}{2} \bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)+\frac{1}{2} \bar{N}(r, 0 ; F)+$ $\bar{N}_{*}(r, \infty ; F, G)+S(r, F)+S(r, G)$;
(ii) $T(r, G) \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+\bar{N}(r, \infty ; F)+\frac{3}{2} \bar{N}(r, \infty ; G)+\frac{1}{2} \bar{N}(r, 0 ; G)+$ $\bar{N}_{*}(r, \infty ; F, G)+S(r, F)+S(r, G)$.
Lemma 7.[12] Let F, G be two nonconstant meromorphic functions sharing $(1,0)$, $(\infty, 0)$ and $H \not \equiv 0$. Then
(i) $T(r, F) \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+3 \bar{N}(r, \infty ; F)+2 \bar{N}(r, \infty ; G)+2 \bar{N}(r, 0 ; F)+$ $\bar{N}(r, 0 ; G)+\bar{N}_{*}(r, \infty ; F, G)+S(r, F)+S(r, G) ;$
(ii) $T(r, F) \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+2 \bar{N}(r, \infty ; F)+3 \bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; F)+$ $2 \bar{N}(r, 0 ; G)+\bar{N}_{*}(r, \infty ; F, G)+S(r, F)+S(r, G)$.

Lemma 8. Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions, let n, k be two positive integers with $n>k+\Gamma_{0}-m+2 \lambda+d+2$ and $a(z)(\not \equiv 0, \infty)$ be a small function with respect to f and g and let $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1} z+a_{0}$, where $a_{0}, a_{1}, \ldots, a_{m-1}, a_{m}$ are complex constants. If

$$
\left(f^{n}(z) P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)^{(k)}\left(g^{n}(z) P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right)^{(k)} \equiv a^{2}
$$

f and g share $\infty \mathrm{IM}$, then $P(z)$ is reduced to a nonzero monomial, that is $P(z)=$ $a_{i} z^{i} \neq 0$ for some $i=0,1,2, \ldots, m$.
Proof. If $P(z)$ is not reduced to a nonzero monomial, then without loss of generality, we assume that $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1} z+a_{0}$, where $a_{0}(\neq 0), a_{1}, \ldots, a_{m-1}, a_{m}(\neq 0)$ are complex constants. By hypothesis of Lemma 8 , we know that either both f and g are transcendental meromorphic functions or they are both rational functions. since f and g share $\infty \mathrm{IM}$, the poles of f and g are finite. Similarly f and g has finitely many zeros.

Case 1. If f and g are transcendental meromorphic functions. Let $f=h e^{\beta}$, where β is a non-constant entire function and $h(z)$ is a nonzero rational function. Thus, by induction on k, we get

$$
\begin{aligned}
& \left(a_{i} f^{i+n} \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)^{(k)}=P_{i}\left(\beta^{\prime}, \beta^{\prime \prime}, \ldots, \beta^{(k)}, \sum s_{j} \beta^{\prime}\left(q_{j} z+c_{j}\right), \ldots\right. \\
& \sum s_{j} \beta^{(k)}\left(q_{j} z+c_{j}\right), h, h^{\prime}, \ldots, h^{(k)}, \sum s_{j} h\left(q_{j} z+c_{j}\right), \sum s_{j} h^{\prime}\left(q_{j} z+c_{j}\right), \ldots \\
& \left.\sum s_{j} h^{(k)}\left(q_{j} z+c_{j}\right)\right) e^{(i+n) \beta(z)+\sum_{j=1}^{d} s_{j} \beta\left(q_{j} z+c_{j}\right)}
\end{aligned}
$$

where, $P_{i}(i=1,2, \ldots, m)$ are difference-differential polynomials with coefficients as rational functions in $h(z)$ and $\sum s_{j} h\left(z+c_{j}\right)$ or its derivatives.

Notice that
$P_{0}\left(\beta^{\prime}, \beta^{\prime \prime}, \ldots, \beta^{(k)}, \sum s_{j} \beta^{\prime}\left(q_{j} z+c_{j}\right), \ldots, \sum s_{j} \beta^{(k)}\left(q_{j} z+c_{j}\right), h, h^{\prime}, \ldots, h^{(k)}\right.$,
$\left.\sum s_{j} h\left(q_{j} z+c_{j}\right), \sum s_{j} h^{\prime}\left(q_{j} z+c_{j}\right), \ldots, \sum s_{j} h^{(k)}\left(q_{j} z+c_{j}\right)\right), \ldots, P_{m}\left(\beta^{\prime}, \beta^{\prime \prime}, \ldots, \beta^{(k)}\right.$,
$\sum s_{j} \beta^{\prime}\left(q_{j} z+c_{j}\right), \ldots, \sum s_{j} \beta^{(k)}\left(q_{j} z+c_{j}\right), h, h^{\prime}, \ldots, h^{(k)}, \sum s_{j} h\left(q_{j} z+c_{j}\right)$,
$\left.\sum s_{j} h^{\prime}\left(q_{j} z+c_{j}\right), \ldots, \sum s_{j} h^{(k)}\left(q_{j} z+c_{j}\right)\right) \not \equiv 0$.
Since $\beta(z)$ is an entire function,

$$
T\left(r, \beta^{\prime}(z)\right)=m\left(r, \beta^{\prime}(z)\right)=m\left(r, \frac{\left(e^{\beta(z)}\right)^{\prime}}{e^{\beta(z)}}\right)=S(r, f)
$$

Thus, we obtain

$$
T\left(r, \beta^{(k)}(z)\right) \leq T\left(r, \beta^{\prime}\right)+S(r, f)=S(r, f) \text { for } j=1,2, \ldots, k
$$

and

$$
\begin{aligned}
T\left(r, \sum s_{j} \beta^{\prime}\left(q_{j} z+c_{j}\right)\right) & =m\left(r, \sum s_{j} \beta^{\prime}\left(q_{j} z+c_{j}\right)\right)+N\left(r, \sum s_{j} \beta^{\prime}\left(q_{j} z+c_{j}\right)\right) \\
& =m\left(r, \sum s_{j} \beta^{\prime}\left(q_{j} z+c_{j}\right)\right) \\
& =m\left(r, \frac{\left(e^{\sum s_{j} \beta\left(q_{j} z+c_{j}\right)^{\prime}}\right)}{e^{\sum s_{j} \beta\left(q_{j} z+c_{j}\right)}}\right)=S(r, f)
\end{aligned}
$$

Therefore
$T\left(r, \sum s_{j} \beta^{(k)}\left(q_{j} z+c_{j}\right)\right) \leq T\left(r, \sum s_{j} \beta^{\prime}\left(q_{j} z+c_{j}\right)\right)+S(r, f)=S(r, f)$ for $j=1,2, \ldots, k$, which is a contradiction.

Case 2. If f and g are rational functions, then a is a nonzero constant, thus f and g have no zeros and no poles, which is impossible. Since f and g are not constants.
The above two Cases imply that $P(z)$ is reduced to a nonzero monomial, namely, $P(z)=a_{i} z^{i} \not \equiv 0$ for some $i \in\{0,1, \ldots, m\}$.

3. Proof of Theorem 5.

Let $F^{*}=\frac{F}{a(z)}$ and $G^{*}=\frac{G}{a(z)}$. From the hypothesis we have $F(z)$ and $G(z)$ share $(a(z), l)$ and f, g share ∞ IM. It follows that F^{*} and G^{*} share 1 CM and ∞ IM. We now discuss the following two cases separately.
Case 1. We assume that $H \not \equiv 0$. Now we consider the following three subcases.
Subcase 1. Suppose that $l \geq 2$. Then using Lemma 5 we obtain

$$
\begin{align*}
T(r, F) & \leq T\left(r, F^{*}\right)+S(r, F) \\
& \leq N_{2}\left(r, 0 ; F^{*}\right)+N_{2}\left(r, 0 ; G^{*}\right)+\bar{N}\left(r, \infty ; F^{*}\right)+\bar{N}\left(r, \infty ; G^{*}\right)+\bar{N}_{*}\left(r, \infty ; F^{*}, G^{*}\right) \\
& -m\left(r, 1 ; G^{*}\right)-N_{E}^{(3}\left(r, 1 ; F^{*}\right)-\bar{N}_{L}\left(r, 1 ; G^{*}\right)+S\left(r, F^{*}\right)+S\left(r, G^{*}\right) \\
& \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+\bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)+\bar{N}_{*}(r, \infty ; F, G) \\
& +S(r, F)+S(r, G) \tag{5}
\end{align*}
$$

Noting that

$$
\begin{align*}
\bar{N}_{*}\left(r, \infty ; F^{*}, G^{*}\right) & =\bar{N}_{L}(r, \infty ; F)+\bar{N}_{L}(r, \infty ; G) \\
& \leq \bar{N}(r, \infty ; F)=\bar{N}(r, \infty ; G) \tag{6}
\end{align*}
$$

we obtain from (5) that

$$
\begin{align*}
T(r, F) & \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+2 \bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)+S(r, F) \\
& +S(r, G) \tag{7}
\end{align*}
$$

By using (3) and (4), we have

$$
\begin{align*}
& T(r, F) \leq T(r, F)-T\left(r, F_{1}\right)+N_{k+2}\left(r, 0 ; F_{1}\right)+k \bar{N}\left(r, \infty ; G_{1}\right)+N_{k+2}\left(r, 0 ; G_{1}\right) \\
&+2 \bar{N}\left(r, \infty ; F_{1}\right)+\bar{N}\left(r, \infty ; G_{1}\right)+S(r, f)+S(r, g) \\
& T\left(r, F_{1}\right) \leq N_{k+2}\left(r, 0 ; f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+k \bar{N}\left(r, \infty ; g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right) \\
&+ N_{k+2}\left(r, 0 ; g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+2 \bar{N}\left(r, \infty ; f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right) \\
&+ \bar{N}\left(r, \infty ; g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+S(r, f)+S(r, g) \\
&(n+m+\lambda) T(r, f) \leq\left(k+\Gamma_{0}+2 d+\lambda+4\right) T(r, f)+\left(2 k+\Gamma_{0}+\lambda+k d+d\right. \\
&+3) T(r, g)+S(r, f)+S(r, g) \tag{8}
\end{align*}
$$

Similarly, we have for $T(r, g)$,

$$
\begin{align*}
(n+m+\lambda) T(r, g) & \leq\left(k+\Gamma_{0}+2 d+\lambda+4\right) T(r, g)+\left(2 k+\Gamma_{0}+\lambda+k d+d\right. \\
& +3) T(r, f)+S(r, f)+S(r, g) \tag{9}
\end{align*}
$$

from (8) and (9), we have

$$
\begin{aligned}
(n+m+\lambda)[T(r, f)+T(r, g)] & \leq\left(3 k+2 \Gamma_{0}+2 \lambda+k d+3 d+7\right)[T(r, f)+T(r, g)] \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

a contradiction with the fact that $n>3 k+2 \Gamma_{0}-m+k d+\lambda+3 d+7$.
Subcase 2. Let $l=1$. Then using (6) and Lemma 6 we obtain

$$
\begin{align*}
T(r, F) & \leq T\left(r, F^{*}\right)+S(r, F) \\
& \leq N_{2}\left(r, 0 ; F^{*}\right)+N_{2}\left(r, 0 ; G^{*}\right)+\frac{3}{2} \bar{N}\left(r, \infty ; F^{*}\right)+\bar{N}\left(r, \infty ; G^{*}\right)+\bar{N}_{*}\left(r, \infty ; F^{*}, G^{*}\right) \\
& +\frac{1}{2} \bar{N}\left(r, 0 ; F^{*}\right)+S\left(r, F^{*}\right)+S\left(r, G^{*}\right) \\
& \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+\frac{3}{2} \bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)+\bar{N}_{*}(r, \infty ; F, G) \\
& +\frac{1}{2} \bar{N}(r, 0 ; F)+S(r, F)+S(r, G) \\
& \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+\frac{5}{2} \bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)+\frac{1}{2} \bar{N}(r, 0 ; F) \\
& +S(r, F)+S(r, G) \tag{10}
\end{align*}
$$

Using (10), (3) and (4), we have

$$
\begin{aligned}
T(r, F) & \leq T(r, F)-T\left(r, F_{1}\right)+N_{k+2}\left(r, 0 ; F_{1}\right)+k \bar{N}\left(r, \infty ; G_{1}\right)+N_{k+2}\left(r, 0 ; G_{1}\right) \\
& +\frac{5}{2} \bar{N}\left(r, \infty ; F_{1}\right)+\bar{N}\left(r, \infty ; G_{1}\right)+\frac{1}{2}\left[k \bar{N}\left(r, \infty ; F_{1}\right)+N_{k+1}\left(r, 0 ; F_{1}\right)\right] \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

$$
\begin{aligned}
T\left(r, F_{1}\right) & \leq N_{k+2}\left(r, 0 ; f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+k \bar{N}\left(r, \infty ; g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right) \\
& +N_{k+2}\left(r, 0 ; g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+\frac{5}{2} \bar{N}\left(r, \infty ; f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right) \\
& +\bar{N}\left(r, \infty ; g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+\frac{1}{2}\left[k \bar{N}\left(r, \infty ; f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)\right. \\
& \left.+N_{k+1}\left(r, 0 ; f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)\right]+S(r, f)+S(r, g)
\end{aligned}
$$

$$
\begin{equation*}
(n+m+\lambda) T(r, f) \leq\left(2 k+\frac{3 \Gamma_{0}}{2}+\frac{3 \lambda}{2}+\frac{k d}{2}+\frac{5 d}{2}+5\right) T(r, f)+\left(2 k+\Gamma_{0}+d+\lambda\right. \tag{11}
\end{equation*}
$$

$$
+k d+3) T(r, g)+S(r, f)+S(r, g)
$$

Similarly, we have for $T(r, g)$,

$$
\begin{align*}
(n+m+\lambda) T(r, g) & \leq\left(2 k+\frac{3 \Gamma_{0}}{2}+\frac{3 \lambda}{2}+\frac{k d}{2}+\frac{5}{2} d+5\right) T(r, g)+\left(2 k+\Gamma_{0}+d+\lambda\right. \tag{12}\\
& +k d+3) T(r, f)+S(r, f)+S(r, g)
\end{align*}
$$

from (11) and (12), we have

$$
\begin{aligned}
(n+m+\lambda)[T(r, f)+T(r, g)] & \leq\left(4 k+\frac{5 \Gamma_{0}}{2}+\frac{5 \lambda}{2}+\frac{3 k d}{2}+\frac{7 d}{2}+8\right)[T(r, f)+T(r, g)] \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

a contradiction with the fact that $n>4 k+\frac{5 \Gamma_{0}}{2}-m+\frac{3 k d}{2}+\frac{3 \lambda}{2}+\frac{7 d}{2}+8$.
Subcase 3. Let $l=0$. Then using (6) and Lemma 7 we obtain

$$
\begin{align*}
T(r, F) & \leq T\left(r, F^{*}\right)+S(r, F) \\
& \leq N_{2}\left(r, 0 ; F^{*}\right)+N_{2}\left(r, 0 ; G^{*}\right)+3 \bar{N}\left(r, \infty ; F^{*}\right)+2 \bar{N}\left(r, \infty ; G^{*}\right)+\bar{N}_{*}\left(r, \infty ; F^{*}, G^{*}\right) \\
& +2 \bar{N}\left(r, 0 ; F^{*}\right)+\bar{N}\left(r, 0 ; G^{*}\right)+S\left(r, F^{*}\right)+S\left(r, G^{*}\right) \\
& \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+3 \bar{N}(r, \infty ; F)+2 \bar{N}(r, \infty ; G)+\bar{N}_{*}(r, \infty ; F, G) \\
& +2 \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+S(r, F)+S(r, G) \\
& \leq N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+4 \bar{N}(r, \infty ; F)+2 \bar{N}(r, \infty ; G) \\
& +2 \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+S(r, F)+S(r, G) \tag{13}
\end{align*}
$$

Using (13), (3) and (4), we have

$$
\begin{align*}
& T(r, F) \leq T(r, F)-T\left(r, F_{1}\right)+N_{k+2}\left(r, 0 ; F_{1}\right)+k \bar{N}\left(r, \infty ; G_{1}\right)+N_{k+2}\left(r, 0 ; G_{1}\right)+4 \bar{N}\left(r, \infty ; F_{1}\right) \\
&+2 \bar{N}\left(r, \infty ; G_{1}\right)+2\left[k \bar{N}\left(r, \infty ; F_{1}\right)+N_{k+1}\left(r, 0 ; F_{1}\right)\right]+k \bar{N}\left(r, \infty ; G_{1}\right)+N_{k+1}\left(r, 0 ; G_{1}\right) \\
&+S(r, F)+S(r, G) \\
& T\left(r, F_{1}\right) \leq N_{k+2}\left(r, 0 ; f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+k \bar{N}\left(r, \infty ; g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right) \\
&+N_{k+2}\left(r, 0 ; g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+4 \bar{N}\left(r, \infty ; f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right) \\
&+2 \bar{N}\left(r, \infty ; g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+2\left[k \bar{N}\left(r, \infty ; f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)\right. \\
&\left.+N_{k+1}\left(r, 0 ; f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)\right]+k \bar{N}\left(r, \infty ; g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right) \\
&+N_{k+1}\left(r, 0 ; g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right)+S(r, f)+S(r, g) \\
&(n+m+\lambda) T(r, f) \leq\left(5 k+3 \Gamma_{0}+3 \lambda+2 k d+4 d+8\right) T(r, f)+\left(4 k+2 \Gamma_{0}+2 k d\right. \tag{14}
\end{align*}
$$

Similarly, we have for $T(r, g)$,

$$
\begin{align*}
(n+m+\lambda) T(r, g) & \leq\left(5 k+3 \Gamma_{0}+3 \lambda+2 k d+4 d+8\right) T(r, g)+\left(4 k+2 \Gamma_{0}+2 k d\right. \tag{15}\\
& +2 \lambda+2 d+5) T(r, f)+S(r, f)+S(r, g)
\end{align*}
$$

from (14) and (15), we have

$$
\begin{aligned}
(n+m+\lambda)[T(r, f)+T(r, g)] & \leq\left(9 k+5 \Gamma_{0}+4 k d+5 \lambda+6 d+13\right)[T(r, f)+T(r, g)] \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

a contradiction with the fact that $n>9 k+5 \Gamma_{0}-m+4 k d+4 \lambda+6 d+13$.
Case 2. We now assume that $H \equiv 0$. Then

$$
\left(\frac{F^{* \prime \prime}}{F^{* \prime}}-\frac{2 F^{* \prime}}{F^{*}-1}\right)-\left(\frac{G^{* \prime \prime}}{G^{* \prime}}-\frac{2 G^{* \prime}}{G^{*}-1}\right)=0
$$

Integrating both sides of the above equality twice we get

$$
\begin{equation*}
\frac{1}{F^{*}-1}=\frac{A}{G^{*}-1}+B \tag{16}
\end{equation*}
$$

where $A(\neq 0)$ and B are constants. From (16) it is obvious that F^{*}, G^{*} share the value 1 CM and hence they share the value 1 with weight 2 , and therefore, $n>3 k+2 \Gamma_{0}-m+k d+\lambda+3 d+7$. We now discuss the following three subcases separately.

Subcase 4. Suppose that $B \neq 0$ and $A=B$. Then from (16) we obtain

$$
\begin{equation*}
\frac{1}{F^{*}-1}=\frac{B G^{*}}{G^{*}-1} \tag{17}
\end{equation*}
$$

If $B=-1$, then from (17) we obtain

$$
F^{*} G^{*}=1
$$

i.e.,

$$
\left(f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}\right)^{(k)}\left(g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}\right)^{(k)}=a^{2}(z)
$$

which is a contradiction by Lemma 8.
If $B \neq-1$, from (17), we have $\frac{1}{F^{*}}=\frac{B G^{*}}{(1+B) G^{*}-1}$ and so $\bar{N}\left(r, \frac{1}{1+B} ; G^{*}\right)=\bar{N}\left(r, 0 ; F^{*}\right)$.
Using (3), (4) and the Second fundamental theorem of Nevanlinna, we deduce that

$$
\begin{align*}
T(r, G) & \leq T\left(r, G^{*}\right)+S(r, G) \\
& \leq \bar{N}\left(r, 0 ; G^{*}\right)+\bar{N}\left(r, \frac{1}{1+B} ; G^{*}\right)+\bar{N}\left(r, \infty ; G^{*}\right)+S(r, G) \\
& \leq \bar{N}\left(r, 0 ; F^{*}\right)+\bar{N}\left(r, 0 ; G^{*}\right)+\bar{N}\left(r, \infty ; G^{*}\right)+S(r, G) \\
& \leq \bar{N}(r, 0 ; F)+\bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)+S(r, G) \tag{18}
\end{align*}
$$

Using (18), Lemma 4 we have

$$
\begin{aligned}
T(r, G) \leq & \leq \bar{N}\left(r, \infty ; F_{1}\right)+N_{k+1}\left(r, 0 ; F_{1}\right)+T(r, G)-T\left(r, G_{1}\right)+N_{k+1}\left(r, 0 ; G_{1}\right) \\
& +\bar{N}\left(r, \infty ; G_{1}\right)+S(r, g) \\
(n+m+\lambda) T(r, g) & \leq\left(2 k+\Gamma_{0}+k d+\lambda+1\right) T(r, f)+\left(k+\Gamma_{0}+d+\lambda+2\right) T(r, g) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
(n+m+\lambda) T(r, f) & \leq\left(2 k+\Gamma_{0}+k d+\lambda+1\right) T(r, g)+\left(k+\Gamma_{0}+d+\lambda+2\right) T(r, f) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

Thus we obtain

$$
\left(n+m-3 k-2 \Gamma_{0}-k d-d-\lambda-3\right)[T(r, f)+T(r, g)] \leq S(r, f)+S(r, g)
$$

a contradiction with $n>3 k+2 \Gamma_{0}-m+k d+\lambda+3 d+7$.
Subcase 5. Let $B \neq 0$ and $A \neq B$. Then from (17) we get $F^{*}=\frac{(B+1) G^{*}-(B-A+1)}{B G^{*}+(A-B)}$ and so $\bar{N}\left(r, \frac{B-A+1}{B+1} ; G^{*}\right)=\bar{N}\left(r, 0 ; F^{*}\right)$. Proceeding in a manner similar to Subcase 4 we can arrive at a contradiction.
Subcase 6. Let $B=0$ and $A \neq 0$. Then from (17) we get $F^{*}=\frac{G+A-1}{A}$ and $G=A F-(A-1)$. If $A \neq 1$, it follows that $\bar{N}\left(r, \frac{A-1}{A} ; F^{*}\right)=\bar{N}\left(r, 0 ; G^{*}\right)$ and $\bar{N}\left(r, 1-A ; G^{*}\right)=\bar{N}\left(r, 0 ; F^{*}\right)$. Using the similar arguments as in Subcase 4 we obtain a contradiction. Thus $A=1$ which implies $F^{*}=G^{*}$, and therefore,

$$
\left(f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)\right)^{(k)} \equiv\left(g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)\right)^{(k)}
$$

Integrating k times, we get

$$
f^{n} P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right) \equiv g^{n} P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)+R(z)
$$

where $R(z)$ is a polynomial of degree atmost $k-1$. If $R(z) \not \equiv 0$, above equation can be written as

$$
\frac{f^{n}(z) P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}{R(z)}=\frac{g^{n}(z) P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}}{R(z)}+1
$$

By the second fundamental theorem, we have

$$
\begin{aligned}
& T\left(r, \frac{f^{n}(z) P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}{R}\right) \leq \bar{N}\left(r, \frac{f^{n}(z) P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}{R(z)}\right) \\
& +\bar{N}\left(r, \frac{R(z)}{f^{n}(z) P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}}\right)+\bar{N}\left(r, \frac{R(z)}{g^{n}(z) P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}}}\right) \\
& +S(r, f) \\
& (n+m+\lambda) T(r, f) \leq\left(2+\Gamma_{0}+2 d\right) T(r, f)+\left(\Gamma_{0}+d+1\right) T(r, g)+S(r, f)+S(r, g)
\end{aligned}
$$

Similarly, we get
$(n+m+\lambda) T(r, g) \leq\left(2+\Gamma_{0}+2 d\right) T(r, g)+\left(\Gamma_{0}+d+1\right) T(r, f)+S(r, f)+S(r, g)$.
So
$(n+m+\lambda)[T(r, f)+T(r, g)] \leq\left(2 \Gamma_{0}+3 d+3\right)[T(r, f)+T(r, g)]+S(r, f)+S(r, g)$.
Which is contradiction to $n>2 \Gamma_{0}-m+3 d-\lambda+3$. Thus, we get $R(z) \equiv 0$ and hence

$$
\begin{aligned}
& f^{n}(z) P(f) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}=g^{n}(z) P(g) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}} \\
& f^{n}\left(a_{m} f^{m}+a_{m-1} f^{m-1}+\ldots+a_{1} f+a_{0}\right) \prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)=g^{n}\left(a_{m} g^{m}+a_{m-1} g^{m-1}+\ldots\right. \\
& \left.+a_{1} g+a_{0}\right) \prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)
\end{aligned}
$$

Let $h=\frac{f}{g}$, If h is constant then substituting $f=g h$ and
$\prod_{j=1}^{d} f\left(q_{j} z+c_{j}\right)^{s_{j}}=\prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)_{j}^{s} h\left(q_{j} z+c_{j}\right)^{s_{j}}$ in above equation, we deduce

$$
\begin{align*}
& \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\left[a_{m} g^{n+m}\left(h^{n+m+\lambda}-1\right)+a_{m-1} g^{n+m-1}\left(h^{n+m+\lambda-1}-1\right)+\ldots\right. \tag{19}\\
& \left.+a_{0} g^{n}\left(h^{n+\lambda}-1\right)\right] \equiv 0
\end{align*}
$$

where a_{m} is a non-zero complex constant and $\prod_{j=1}^{d} g\left(q_{j} z+c_{j}\right)^{s_{j}} \not \equiv 0$, Since g is nonconstant meromorphic function. Then, from (19), we have

$$
\begin{equation*}
a_{m} g^{n+m}\left(h^{n+m+\lambda}-1\right)+a_{m-1} g^{n+m-1}\left(h^{n+m+\lambda-1}-1\right)+\ldots+a_{0} g^{n}\left(h^{n+\lambda}-1\right) \equiv 0 . \tag{20}
\end{equation*}
$$

If $a_{m}(\neq 0)$ and $a_{m-1}=a_{m-2}=\ldots=a_{0}=0$, then from (20) and g is nonconstant meromorphic function, we get $h^{n+m+\lambda}=1$.

If $a_{m}(\neq 0)$ and there exists $a_{i} \neq 0(i \in\{0,1,2, \ldots, m-1\})$. Suppose that $h^{n+m+\lambda} \neq 1$, from (20), we have $T(r, g)=S(r, g)$ which is contradiction with transcendental function g. Then $h^{n+m+\lambda}=1$. Similar to this discussion, we can see that $h^{n+j+\lambda}=1$ when $a_{j} \neq 0$ for some $j=0,1,2, \ldots, m$.

Thus, we have $f \equiv t g$ for a constant t such that $t^{l}=1$, where $l=G C D\{n+$ $\left.\lambda_{0}+\lambda, n+\lambda_{1}+\lambda, \ldots, n+\lambda_{m}+\lambda\right\}$ and $\lambda_{i}(i=0,1,2, \ldots, m)$ is stated as in Theorem 5.

Set $h=\frac{f}{g}$, If h is not a constant, from (20), we find that f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where

$$
R\left(w_{1}, w_{2}\right)=w_{1}^{n} P\left(w_{1}\right) \prod_{j=1}^{d} w_{1}\left(z+c_{j}\right)^{s_{j}}-w_{2}^{n} P\left(w_{2}\right) \prod_{j=1}^{d} w_{2}\left(z+c_{j}\right)^{s_{j}}
$$

4. Acknowledgement

The author (RM) is greatful to the University Grants Commission (UGC), New Delhi, India for Supporting her research work by providing her with a National Fellowship for Higher Education (NFHE).

References

[1] Banerjee, Abhijit. Uniqueness of meromorphic functions sharing two sets with finite weight. Port. Math. 65 (2008), no. 1, 81-93.
[2] Dyavanal, Renukadevi S.; Ashwini, Hattikal M. Uniqueness of q-shift difference polynomials of meromorphic functions sharing a small function, New Trends in Mathematical Sciences. 1 (2017), 250-263.
[3] Chiang, Yik-Man; Feng, Shao-Ji. On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane. Ramanujan J. 16 (2008), no. 1, 105-129.
[4] Halburd, R. G.; Korhonen, R. J. Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.
[5] Halburd, R. G.; Korhonen, R. J. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314 (2006), no. 2, 477-487.
[6] Halburd, R. G.; Korhonen, R. J. Meromorphic solutions of difference equations, integrability and the discrete Painleve equations. J. Phys. A 40 (2007), no. 6, 1-38.
[7] Li, Xiao-Min; Yi, Hong-Xun; Li, Wen-Li. Value distribution of certain difference polynomials of meromorphic functions. Rocky Mountain J. Math. 44 (2014), no. 2, 599-632.
[8] Liu, Yong; Cao, Yinhong; Qi, Xiaoguang; Yi, Hongxun. Value sharing results for q-shifts difference polynomials. Discrete Dyn. Nat. Soc. 2013, Art. ID 152069, 6 pp.
[9] Liu, Fanghong; Yi, Hongxun. Uniqueness of meromorphic functions concerning the difference polynomials. Kyungpook Math. J. 55 (2015), no. 2, 411-427.
[10] Lahiri, Indrajit; Sarkar, Arindam. Uniqueness of a meromorphic function and its derivative. JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 1, Article 20, 9 pp. (electronic).
[11] Meng, Chao; Zhao, Liang. Uniqueness of certain types of di?erence polynomials. J. Appl. Math. Inform. 36 (2018), no. 5-6, 447458.
[12] Sahoo, Pulak. Meromorphic functions that share fixed points with finite weights. Bull. Math. Anal. Appl. 2 (2010), no. 4, 106-118.
[13] Sahoo, Pulak. Meromorphic functions sharing fixed points and poles with finite weights. Acta Univ. Sapientiae Math. 5 (2013), no. 2, 184-198.
[14] Sahoo, Pulak; Saha, Biswajit. Value distribution and uniqueness of certain type of difference polynomials. Appl. Math. E-Notes 16 (2016), 33-44.
[15] Waghamore, Harina P. Generalization of value distribution and uniqueness of certain types of difference polynomials. Tbilisi Math. J. 11 (2018), no. 1, 1-13.
[16] Xu, Hong-Yan; Liu, Bing-Xiang; Tang, Ke-Zong. Some properties of meromorphic solutions of systems of complex q-shift difference equations. Abstr. Appl. Anal. 2013, Art. ID 680956, 6 pp.
[17] Yang, Lo. Value distribution theory. Translated and revised from the 1982 Chinese original. Springer-Verlag, Berlin; Science Press Beijing, Beijing, 1993.
[18] Yang, Chung-Chun; Yi, Hong-Xun. Uniqueness theory of meromorphic functions. Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.
[19] Zhang, Keyu; Yi, Hongxun. The value distribution and uniqueness of one certain type of differential-difference polynomials. Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 3, 719728.

HARINA P. WAGHAMORE
Department of Mathematics, Jnanabharathi Campus,Bangalore University, Bengaluru560056, INDIA

E-mail address: harinapw@gmail.com
RAMYA MALIGI
Department of Mathematics, Jnanabharathi Campus,Bangalore University, Bengaluru560056, INDIA

E-mail address: ramyamalgi@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 30D35.
 Key words and phrases. Meromorphic function, Small function, Weighted Sharing, q-shift, Difference-Difference Polynomials.

