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COMMON FIXED POINTS IN COMPLEX VALUED Ab-METRIC SPACE

K. ANTHONY SINGH AND M.R. SINGH

Abstract. In this paper, we prove two common fixed point theorems for two self
mappings in complex valued Ab-metric space. Our results generalize the common
fixed point results in complex valued b-metric space by Aiman A. Mukheimer [16]
which are already the generalizations of the results of Azam et al. [1] and S. Bhatt
et al. [15].

1. Introduction

Azam et al. [1] introduced the concept of complex valued metric space and
proved some fixed point results for a pair of mappings for a contraction condition
satisfying a rational expression. In 2013, K. Rao et al.[14] introduced complex val-
ued b-metric space as a generalization of complex valued metric space. Azam et al.
[1] and S. Bhatt et al. [15] established common fixed point results in complex valued
metric space and as generalizations of these results, Aiman A. Mukheimer [16] ob-
tained common fixed point results in complex valued b-metric space. Recently K.
Anthony Singh and M. R. Singh [17] introduced complex valued Ab-metric space as
further generalization of complex valued metric space. Complex valued Ab-metric
space can also be looked upon as an extension of Ab-metric space introduced by
Manoj Ughade et al. [3].

The aim of this paper is to present two common fixed point results in complex
valued Ab-metric space. Our results generalize the results of Aiman A. Mukheimer
[16].

2. Preliminaries

In this section, we recall some properties of A-metric space, Ab-metric space,
complex valued metric space, complex valued b-metric space and complex valued
Ab-metric space.
Definition 2.1.[13] Let X be a nonempty set. A function A : Xn

→ [0,∞) is called an
A−metric on X if for any xi, a ∈ X, i = 1, 2, 3, . . . ,n,the following conditions hold:
(A1) A(x1, x2, x3, . . . , xn−1, xn) ≥ 0,
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(A2) A(x1, x2, x3, . . . , xn−1, xn) = 0 if and only if x1 = x2 = x3 = · · · = xn−1 = xn,
(A3) A(x1, x2, x3, . . . , xn−1, xn)

≤ A(x1, x1, x1, . . . , (x1)n−1, a)
+ A(x2, x2, x2, . . . , (x2)n−1, a)
+ A(x3, x3, x3, . . . , (x3)n−1, a) + . . .

+ A(xn−1, xn−1, xn−1, . . . , (xn−1)n−1, a)
+ A(xn, xn, xn, . . . , (xn)n−1, a).

The pair (X,A) is called an A −metric space.
Definition 2.2.[3] Let X be a nonempty set and b ≥ 1 be a given number. A function
A : Xn

→ [0,∞) is called an Ab−metric on X if for any xi, a ∈ X, i = 1, 2, 3, . . . ,n, the
following conditions hold:
(Ab1) A(x1, x2, x3, . . . , xn−1, xn) ≥ 0,
(Ab2) A(x1, x2, x3, . . . , xn−1, xn) = 0 if and only if x1 = x2 = x3 = · · · = xn−1 = xn,
(Ab3) A(x1, x2, x3, . . . , xn−1, xn)

≤ b[A(x1, x1, x1, . . . , (x1)n−1, a)
+ A(x2, x2, x2, . . . , (x2)n−1, a)
+ A(x3, x3, x3, . . . , (x3)n−1, a) + . . .

+ A(xn−1, xn−1, xn−1, . . . , (xn−1)n−1, a)
+ A(xn, xn, xn, . . . , (xn)n−1, a)].

The pair (X,A) is called an Ab−metric space.
Remark 2.3. Ab−metric space is more general than A−metric space. Moreover,
A−metric space is a special case of Ab−metric space with b = 1.
Example 2.4.[3] Let X = [1,+∞). Define Ab : Xn

→ [0,∞) by

Ab(x1, x2, x3, . . . , xn−1, xn) =

n∑
i=1

∑
i< j

|xi − x j|
2 (1)

for all xi ∈ X, i = 1, 2, 3, . . . ,n.
Then (X,Ab) is an Ab−metric space with b = 2 > 1.

The concept of complex valued metric space was initiated by Azam et al. [1].
Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order - on C
as follows:
z1 - z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2).
It follows that z1 - z2 if one of the following conditions is satisfied :
(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2),
(C2) Re(z1) < Re(z2) and Im(z1) = Im(z2),
(C3) Re(z1) = Re(z2) and Im(z1) < Im(z2),
(C4) Re(z1) < Re(z2) and Im(z1) < Im(z2).
Particularly, we write z1 � z2 if z1 , z2 and one of (C2),(C3) and (C4) is satisfied and
we write z1 ≺ z2 if only (C4) is satisfied. The following statements hold:
(1) If a, b ∈ R with a ≤ b, then az - bz for all 0 - z ∈ C.
(2) If z1 - z2, then az1 - az2 for all 0 ≤ a ∈ R.
(3) If 0 - z1 - z2, then | z1 |≤| z2 |.
(4) If 0 - z1 � z2, then | z1 |<| z2 |.
(5) If z1 - z2 and z2 ≺ z3, then z1 ≺ z3.
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Definition 2.5.[1] Let X be a nonempty set. A function d : X × X → C is called
a complex valued metric on X if for all x, y, z ∈ X, the following conditions are
satisfied:
(i) 0 - d(x, y) and d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) - d(x, z) + d(z, y).
The pair (X, d) is called a complex valued metric space.
Definition 2.6.[14] Let X be a nonempty set and let s ≥ 1. A function d : X×X→ C is
called a complex valued b−metric on X if for all x, y, z ∈ X, the following conditions
are satisfied:
(i) 0 - d(x, y) and d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) - s[d(x, z) + d(z, y)].
The pair (X, d) is called a complex valued b−metric space.
Definition 2.7.[17] Let X be a nonempty set and b ≥ 1 be a given real number.
Suppose that a mapping A : Xn

→ C satisfies for all xi, a ∈ X, i = 1, 2, 3, . . . ,n:
(CAb1) 0 - A(x1, x2, x3, . . . , xn),
(CAb2) A(x1, x2, x3, . . . , xn) = 0⇔ x1 = x2 = x3 = · · · = xn,
(CAb3) A(x1, x2, x3, . . . , xn)

- b[A(x1, x1, x1, . . . , (x1)n−1, a)
+ A(x2, x2, x2, . . . , (x2)n−1, a) + . . .

+ A(xn−1, xn−1, xn−1, . . . , (xn−1)n−1, a)
+ A(xn, xn, xn, . . . , (xn)n−1, a)].

Then A is called a complex valued Ab-metric on X and the pair (X,A) is called a
complex valued Ab-metric space.
Example 2.8.[17] Let X = R and A : Xn

→ C be such that

A(x1, x2, x3, . . . , xn) = (α + iβ)A∗(x1, x2, x3, . . . , xn), (2)

where α, β ≥ 0 are constants and A∗ is an Ab−metric on X. Then A is a com-
plex valued Ab-metric on X. As a particular case , we have the following exam-
ple of complex valued Ab-metric on X. The mapping A : Xn

→ C defined by
A(x1, x2, x3, . . . , xn) = (1 + i)

∑n
i=1

∑
i< j | xi − x j |

2 is a complex valued Ab−metric on
X = R with b = 2.
Definition 2.9.[17] A complex valued Ab-metric space (X,A) is said to be symmetric
if

A(x1, x1, x1, . . . , (x1)n−1, x2) = A(x2, x2, x2, . . . , (x2)n−1, x1) (3)
for all x1, x2 ∈ X.
Definition 2.10.[17] Let (X,A) be a complex valued Ab-metric space.
(i) A sequence {xp} in X is said to be complex valued Ab-convergent to x if for
every a ∈ C with 0 ≺ a, there exists k ∈ N such that A(xp, xp, . . . , xp, x) ≺ a or
A(x, x, . . . , x, xp) ≺ a for all p ≥ k and is denoted by limp→∞ xp = x or xp → x as
p→∞.
(ii) A sequence {xp} in X is called complex valued Ab−Cauchy if for every a ∈ C
with 0 ≺ a, there exists k ∈N such that A(xp, xp, . . . , xp, xq) ≺ a for each p, q ≥ k.
(iii) If every complex valued Ab-Cauchy sequence is complex valued Ab-convergent
in X, then (X,A) is said to be complex valued Ab-complete.
Lemma 2.11.[17] Let (X,A) be a complex valued Ab−metric space and let {xp} be
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a sequence in X. Then {xp} is complex valued Ab−convergent to x if and only if
| A(xp, xp, . . . , xp, x) |→ 0 as p→∞ or | A(x, x, . . . , x, xp) |→ 0 as p→∞.
Lemma 2.12.[17] Let (X,A) be a complex valued Ab−metric space and let {xp} be
a sequence in X. Then {xp} is complex valued Ab−Cauchy sequence if and only if
| A(xp, xp, . . . , xp, xq) |→ 0 as p, q→∞.
Lemma 2.13.[17] Let (X,A) be a complex valued Ab−metric space. Then

A(x, x, . . . , x, y) - bA(y, y, . . . , y, x) (4)

for all x, y ∈ X.
Theorem 2.14.[16] Let (X, d) be a complete complex valued b−metric space with
the coefficient s ≥ 1 and let S,T : X→ X be mappings satisfying

d(Sx,Ty) - λd(x, y) +
µd(x,Sx)d(y,Ty)

1 + d(x, y)
(5)

for all x, y ∈ X where λ, µ are nonnegative reals with sλ + µ < 1. Then S,T have a
unique common fixed point in X.
Theorem 2.15.[16] Let (X, d) be a complete complex valued b−metric space with
the coefficient s ≥ 1 and let S,T : X→ X be mappings satisfying

d(Sx,Ty) -
a[d(x,Sx)d(x,Ty) + d(y,Ty)d(y,Sx)]

d(x,Ty) + d(y,Sx)
(6)

for all x, y ∈ X where sa ∈ [0, 1). Then S,T have a unique common fixed point in X.

3. Main Results

We now state and prove our main results. Our next Theorem is a generalization
of Theorem 2.14. in complex valued Ab-metric space. But in order to compensate
for the condition of symmetry in complex valued b-metric space which is required
in the proof of the Theorem, we make our space symmetric.
Theorem 3.1. Let (X,A) be a complete complex valued Ab-metric space which is
symmetric and let f , 1 : X→ X be mappings satisfying

A( f x, f x, . . . , f x, 1y) - λA(x, x, . . . , x, y) +
µA(x, x, . . . , x, f x)A(y, y, . . . , y, 1y)

1 + A(x, x, . . . , x, y)
(7)

for all x, y ∈ X, where λ, µ are nonnegative reals with bλ + µ < 1. Then f and 1
have a unique common fixed point in X.
Proof. Let x0 ∈ X be an arbitrary point. And let a sequence {xp} in X be defined as
x2p+1 = f x2p and x2p+2 = 1x2p+1 for p = 0, 1, 2, 3, . . . Then we show that the sequence
{xp} is complex valued Ab−Cauchy.
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From (7), we have

A(x2p+1, x2p+1, . . . , x2p+1, x2p+2)
= A( f x2p, f x2p, . . . , f x2p, 1x2p+1)
- λA(x2p, x2p, . . . , x2p, x2p+1)

+
µA(x2p, x2p, . . . , x2p, f x2p)A(x2p+1, x2p+1, . . . , x2p+1, 1x2p+1)

1 + A(x2p, x2p, . . . , x2p, x2p+1)
= λA(x2p, x2p, . . . , x2p, x2p+1)

+
µA(x2p, x2p, . . . , x2p, x2p+1)A(x2p+1, x2p+1, . . . , x2p+1, x2p+2)

1 + A(x2p, x2p, . . . , x2p, x2p+1)
⇒ | A(x2p+1, x2p+1, . . . , x2p+1, x2p+2) |
≤ λ | A(x2p, x2p, . . . , x2p, x2p+1) |

+
µ | A(x2p, x2p, . . . , x2p, x2p+1) || A(x2p+1, x2p+1, . . . , x2p+1, x2p+2) |

| 1 + A(x2p, x2p, . . . , x2p, x2p+1) |
≤ λ | A(x2p, x2p, . . . , x2p, x2p+1) | +µ | A(x2p+1, x2p+1, . . . , x2p+1, x2p+2) |

(since | 1 + A(x2p, x2p, . . . , x2p, x2p+1) |>| A(x2p, x2p, . . . , x2p, x2p+1) |)

⇒| A(x2p+1, x2p+1, . . . , x2p+1, x2p+2) |≤
λ

1 − µ
| A(x2p, x2p, . . . , x2p, x2p+1) | (8)

Similarly, using the symmetry of X, we obtain

| A(x2p+2, x2p+2, . . . , x2p+2, x2p+3) |≤
λ

1 − µ
| A(x2p+1, x2p+1, . . . , x2p+1, x2p+2) | (9)

From (8) and (9), we have

| A(xp, xp, . . . , xp, xp+1) |≤ α | A(xp−1, xp−1, . . . , xp−1, xp) |,∀p ∈N (10)

where α = λ
1−µ < 1.

By repeatedly applying (10), we get

| A(xp, xp, . . . , xp, xp+1) |≤ αp
| A(x0, x0, . . . , x0, x1) | (11)
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Using (CAb3) and (11), we have for all p, q ∈N with p < q

| A(xp, xp, . . . , xp, xq) |
≤ (n − 1)b | A(xp, xp, . . . , xp, xp+1) | +b | A(xp+1, xp+1, . . . , xp+1, xq) |

≤ (n − 1)b | A(xp, xp, . . . , xp, xp+1) | +(n − 1)b2
| A(xp+1, xp+1, . . . , xp+1, xp+2) |

+ b2
| A(xp+2, xp+2, . . . , xp+2, xq) |

≤ (n − 1)b | A(xp, xp, . . . , xp, xp+1) | +(n − 1)b2
| A(xp+1, xp+1, . . . , xp+1, xp+2) |

+(n − 1)b3
| A(xp+2, xp+2, . . . , xp+2, xp+3) + . . .

+(n − 1)bq−p−1
| A(xq−2, xq−2, . . . , xq−2, xq−1) | +bq−p−1

| A(xq−1, xq−1, . . . , xq−1, xq) |

≤ [(n − 1)bαp + (n − 1)b2αp+1 + . . .

+(n − 1)bq−p−1αq−2 + bq−p−1αq−1] | A(x0, x0, . . . , x0, x1) |
≤ [(n − 1)bαp + (n − 1)b2αp+1 + · · · + (n − 1)bq−p−1αq−2 + (n − 1)bq−pαq−1]
| A(x0, x0, . . . , x0, x1) |

≤ (n − 1)[(bα)p + (bα)p+1 + · · · + (bα)q−2 + (bα)q−1] | A(x0, x0, . . . , x0, x1) |
≤ (n − 1)[(bα)p + (bα)p+1 + (bα)p+2 + . . .∞] | A(x0, x0, . . . , x0, x1) |

=
(n − 1)(bα)p

1 − (bα)
| A(x0, x0, . . . , x0, x1) |→ 0

as p, q→∞ since bα = bλ
1−µ < 1 which follows from bλ + µ < 1.

Therefore, | A(xp, xp, . . . , xp, xq) |→ 0 as p, q → ∞ and hence the sequence {xp} is
complex valued Ab−Cauchy.
Since X is complete, there exists u ∈ X such that the sequence {xp} is complex valued
Ab−convergent to u. We show that u is a common fixed point of f and 1.
We have

A( f u, f u, . . . , f u,u)
- (n − 1)bA( f u, f u, . . . , f u, x2p+2) + bA(u,u, . . . ,u, x2p+2)
= (n − 1)bA( f u, f u, . . . , f u, 1x2p+1) + bA(u,u, . . . ,u, x2p+2)
- (n − 1)bλA(u,u, . . . ,u, x2p+1)

+
(n − 1)bµA(u,u, . . . ,u, f u)A(x2p+1, x2p+1, . . . , x2p+1, 1x2p+1)

1 + A(u,u, . . . ,u, x2p+1)
+bA(u,u, . . . ,u, x2p+2)

⇒ | A( f u, f u, . . . , f u,u) |
≤ (n − 1)bλ | A(u,u, . . . ,u, x2p+1) |

+
(n − 1)bµ | A(u,u, . . . ,u, f u) || A(x2p+1, x2p+1, . . . , x2p+1, x2p+2) |

| 1 + A(u,u, . . . ,u, x2p+1) |
+b | A(u,u, . . . ,u, x2p+2) |→ 0 as p→∞

⇒ A( f u, f u, . . . , f u,u) = 0
⇒ f u = u.
Similarly, we can show that 1u = u. Therefore, f and 1 have a common fixed point
u ∈ X. Finally, to show the uniqueness of the common fixed point of f and 1, let us
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assume that v ∈ X is another common fixed point of f and 1. Then, we have

A(u,u, . . . ,u, v) = A( f u, f u, . . . , f u, 1v)

- λA(u,u, . . . ,u, v) +
µA(u,u, . . . ,u, f u)A(v, v, . . . , v, 1v)

1 + A(u,u, . . . ,u, v)
= λA(u,u, . . . ,u, v)

⇒| A(u,u, . . . ,u, v) | ≤ λ | A(u,u, . . . ,u, v) |
Since λ < 1, we have
A(u,u, . . . ,u, v) = 0⇒ u = v
which proves the uniqueness of the common fixed point of f and 1.
Corollary 3.2. Let (X,A) be a complete complex valued Ab-metric space which is
symmetric and let f : X→ X be a mapping satisfying

A( f x, f x, . . . , f x, f y) - λA(x, x, . . . , x, y) +
µA(x, x, . . . , x, f x)A(y, y, . . . , y, f y)

1 + A(x, x, . . . , x, y)
(12)

for all x, y ∈ X , where λ, µ are nonnegative reals with bλ + µ < 1. Then f has a
unique fixed point in X.
Proof. Follows from the proof of Theorem 3.1. by taking 1 = f .
Corollary 3.3. Let (X,A) be a complete complex valued Ab-metric space which is
symmetric and let f : X→ X be a mapping satisfying for some positive integer m

A( f mx, f mx, . . . , f mx, f my) - λA(x, x, . . . , x, y)+
µA(x, x, . . . , x, f mx)A(y, y, . . . , y, f my)

1 + A(x, x, . . . , x, y)
(13)

for all x, y ∈ X , where λ, µ are nonnegative reals with bλ + µ < 1. Then f has a
unique fixed point in X.
Proof. From Corollary 3.2., we have f m has a unique fixed point u ∈ X. And we
have f ( f mu) = f u⇒ f m( f u) = f u.
This implies that f u is a fixed point of f m.
Since u is the unique fixed point of f m, we must have f (u) = u. Therefore, u is a
fixed point of f . Further to show the uniqueness of the fixed point of f we see that
a fixed point of f is also a fixed point of f m since f v = v⇒ f 2v = f v = v and so on,
thus giving f mv = v. And the uniqueness of the fixed point of f m implies the fixed
point of f is also unique.
Our next Theorem is a generalization of Theorem 2.15. in complex valued Ab-
metric space.
Theorem 3.4. Let (X,A) be a complete complex valued Ab-metric space which is
symmetric and let f , 1 : X→ X be mappings satisfying

A( f x, f x, . . . , f x, 1y) (14)

-
α[A(x, x, . . . , x, f x)A(x, x, . . . , x, 1y) + A(y, y, . . . , y, 1y)A(y, y, . . . , y, f x)]

A(x, x, . . . , x, 1y) + A(y, y, . . . , y, f x)

for all x, y ∈ X and α ∈
[
0,

1
b

)
. Then f and 1 have a unique common fixed point in

X.
Proof. Let x0 ∈ X be an arbitrary point and let us define a sequence {xp} in X as

x2p+1 = f x2p and x2p+2 = 1x2p+1, for p = 0, 1, 2, 3, . . .
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Then we show that the sequence {xp} is complex valued Ab-Cauchy.
From (14), we have
A(x2p+1, x2p+1, . . . , x2p+1, x2p+2)
= A( f x2p, f x2p, . . . , f x2p, 1x2p+1)

-
α[A(x2p,...,x2p, f x2p)A(x2p,...,x2p,1x2p+1)+A(x2p+1,...,x2p+1,1x2p+1)A(x2p+1,...,x2p+1, f x2p)]

A(x2p,x2p,...,x2p,1x2p+1)+A(x2p+1,x2p+1,...,x2p+1, f x2p)

=
α[A(x2p,x2p,...,x2p,x2p+1)A(x2p,x2p,...,x2p,x2p+2)+A(x2p+1,x2p+1,...,x2p+1,x2p+2)A(x2p+1,x2p+1,...,x2p+1,x2p+1)]

A(x2p,x2p,...,x2p,x2p+2)+A(x2p+1,x2p+1,...,x2p+1,x2p+1)

=
α[A(x2p,x2p,...,x2p,x2p+1)A(x2p,x2p,...,x2p,x2p+2)]

A(x2p,x2p,...,x2p,x2p+2)
= αA(x2p, x2p, . . . , x2p, x2p+1).
And this implies∣∣∣A(x2p+1, x2p+1, . . . , x2p+1, x2p+2)

∣∣∣ ≤ α ∣∣∣A(x2p, x2p, . . . , x2p, x2p+1)
∣∣∣ . (15)

Similarly, using the symmetry of X, we obtain∣∣∣A(x2p+2, x2p+2, . . . , x2p+2, x2p+3)
∣∣∣ ≤ α ∣∣∣A(x2p+1, x2p+1, . . . , x2p+1, x2p+2)

∣∣∣ (16)

Combining (15) and (16), we get∣∣∣A(xp, xp, . . . , xp, xp+1)
∣∣∣ ≤ α ∣∣∣A(xp−1, xp−1, . . . , xp−1, xp)

∣∣∣ , ∀ p ∈N. (17)

By repeatedly applying (17), we get∣∣∣A(xp, xp, . . . , xp, xp+1)
∣∣∣ ≤ αp

|A(x0, x0, . . . , x0, x1)| . (18)

Using (CAb3) and (18), we have, for all p, q ∈N with p < q

|A(xp, xp, . . . , xp, xq)|
≤ (n − 1)b|A(xp, xp, . . . , xp, xp+1)| + b|A(xp+1, xp+1, . . . , xp+1, xq)|

≤ (n − 1)b|A(xp, xp, . . . , xp, xp+1)| + (n − 1)b2
|A(xp+1, xp+1, . . . , xp+1, xp+2)|

+b2
|A(xp+2, xp+2, . . . , xp+2, xq)|

≤ (n − 1)b|A(xp, xp, . . . , xp, xp+1)| + (n − 1)b2
|A(xp+1, xp+1, . . . , xp+1, xp+2)|

+(n − 1)b3
|A(xp+2, xp+2, . . . , xp+2, xp+3)| + · · ·

+(n − 1)bq−p−1
|A(xq−2, xq−2, . . . , xq−2, xq−1)|

+bq−p−1
|A(xq−1, xq−1, . . . , xq−1, xq)|

≤ [(n − 1)bαp + (n − 1)b2αp+1 + · · · + (n − 1)bq−p−1αq−2

+bq−p−1αq−1]|A(x0, x0, . . . , x0, x1)|
≤ [(n − 1)bαp + (n − 1)b2αp+1 + · · · + (n − 1)bq−p−1αq−2

+(n − 1)bq−pαq−1]|A(x0, x0, . . . , x0, x1)|
≤ (n − 1)[(bα)p + (bα)p+1 + · · · + (bα)q−2 + (bα)q−1]|A(x0, x0, . . . , x0, x1)|
≤ (n − 1)[(bα)p + (bα)p+1 + · · ·∞]|A(x0, x0, . . . , x0, x1)|

=
(n − 1)(bα)p

1 − bα
|A(x0, x0, . . . , x0, x1)| → 0 as p, q→∞.

Therefore, |A(xp, xp, . . . , xp, xq)| → 0 as p, q → ∞ and hence the sequence {xp} is
complex valued Ab-Cauchy. Since X is complete, there exists u ∈ X such that the
sequence {xp} is complex valued Ab-convergent to u. We show that u is a common
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fixed point of f and 1.
Let us assume that f u , u so that

|A( f u, f u, . . . , f u,u)| > 0. (19)

Then we have
A( f u, f u, . . . , f u,u)
- (n − 1)bA( f u, f u, . . . , f u, x2p+2) + bA(u,u, . . . ,u, x2p+2)
= (n − 1)bA( f u, f u, . . . , f u, 1x2p+1) + bA(u,u, . . . ,u, x2p+2)

-
(n−1)bαA(u,u,...,u, f u)A(u,u,...,u,1x2p+1)+(n−1)bαA(x2p+1,x2p+1,...,x2p+1,1x2p+1)A(x2p+1,x2p+1,...,x2p+1, f u)

A(u,u,...,u,1x2p+1)+A(x2p+1,x2p+1,...,x2p+1, f u)

+ bA(u,u, . . . ,u, x2p+2).
And this implies
|A( f u, f u, . . . , f u,u)|
≤

(n−1)bα|A(u,u,...,u, f u)||A(u,u,...,u,x2p+2)|+(n−1)bα|A(x2p+1,x2p+1,...,x2p+1,x2p+2)||A(x2p+1,x2p+1,...,x2p+1, f u)|
|A(u,u,...,u,x2p+2)+A(x2p+1,x2p+1,...,x2p+1, f u)|

+ b|A(u,u, . . . ,u, x2p+2)|
→ 0 as p→∞.
Thus we have
|A( f u, f u, . . . , f u,u)| = 0, which contradicts (19).
Therefore, we must have f u = u.
Similarly, we can show that 1u = u.
Therefore, f and 1 have a common fixed point u ∈ X.
Finally to show the uniqueness of the common fixed point of f and 1, let v ∈ X
be another common fixed point of f and 1. And let us assume that u , v so that
A(u,u, . . . ,u, v) , 0.
Then we have

A(u,u, . . . ,u, v)
= A( f u, f u, . . . , f u, 1v)

-
α[A(u,u, . . . ,u, f u)A(u,u, . . . ,u, 1v) + A(v, v, . . . , v, 1v)A(v, v, . . . , v, f u)]

A(u,u, . . . ,u, 1v) + A(v, v, . . . , v, f u)

=
α[A(u,u, . . . ,u,u)A(u,u, . . . ,u, v) + A(v, v, . . . , v, v)A(v, v, . . . , v,u)]

A(u,u, . . . ,u, v) + A(v, v, . . . , v,u)
= 0

⇒ A(u,u, . . . ,u, v) = 0, which is a contradiction.
Therefore, we must have u = v, which proves the uniqueness of the common fixed
point of f and 1.
Corollary 3.5. Let (X,A) be a complete complex valued Ab-metric space which is
symmetric and let f : X→ X be a mapping satisfying

A( f x, f x, . . . , f x, f y)

-
α[A(x, x, . . . , x, f x)A(x, x, . . . , x, f y) + A(y, y, . . . , y, f y)A(y, y, . . . , y, f x)]

A(x, x, . . . , x, f y) + A(y, y, . . . , y, f x)
(20)

for all x, y ∈ X and α ∈
[
0,

1
b

)
. Then f has a unique fixed point in X.

Corollary 3.6. Let (X,A) be a complete complex valued Ab-metric space which is
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symmetric and let f : X→ X be a mapping satisfying for some positive integer m

A( f mx, f mx, . . . , f mx, f my)

-
α[A(x, x, . . . , x, f mx)A(x, x, . . . , x, f my) + A(y, y, . . . , y, f my)A(y, y, . . . , y, f mx)]

A(x, x, . . . , x, f my) + A(y, y, . . . , y, f mx)
(21)

for all x, y ∈ X and α ∈
[
0,

1
b

)
. Then f has a unique fixed point in X.
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