PARTIAL SUMS OF τ - CONFLUENT HYPERGEOMETRIC FUNCTION

AMIT SONI AND DEEPAK BANSAL

Abstract

In the present investigation, τ-confluent hypergeometric function with their normalization are considered. In this paper, we will study the ratio of a function of the form (4) to its sequence of partial sums $\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}=z+$ $\frac{\Gamma(c)}{\Gamma(b)} \sum_{k=1}^{n} \frac{\Gamma(b+k \tau)}{\Gamma(c+k \tau)} \frac{z^{k+1}}{k!}$. We will determine the lower bounds for $\Re\left\{\frac{1 \Phi_{1}^{\tau}(b ; c ; z)}{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}}\right\}$, $\Re\left\{\frac{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}}{\left.1 \Phi_{1}^{\tau}(b ; c ; z)\right)}\right\}, \Re\left\{\frac{\left(\Phi_{1}^{\tau}(b ; c ; z)\right)^{\prime}}{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}^{\prime}}\right\}$ and $\Re\left\{\frac{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}^{\prime}}{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)^{\prime}}\right\}$.

1. Introduction

Let \mathcal{H} denote the class of analytic functions f defined in the open unit disk $\mathbb{D}=$ $\{z \in \mathbb{C}:|z|<1\}$ and \mathcal{A} denote the subclass of \mathcal{H}, which are normalized by the condition $f(0)=0=f^{\prime}(0)-1$ and have representation of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{D} \tag{1}
\end{equation*}
$$

It is well known that the series

$$
\begin{equation*}
{ }_{1} \phi_{1}(b ; c ; z)=\sum_{n=0}^{\infty} \frac{(b)_{n} z^{n}}{(c)_{n} n!} \tag{2}
\end{equation*}
$$

in which c is neither zero nor a negative integer is convergent for all finite z. Here $(b)_{n}$ denotes the Pochhammer (or Appell) symbol which is defined by

$$
(b)_{n}:= \begin{cases}1, & (n=0) \\ b(b+1) \ldots(b+n-1), & (n \in \mathbb{N})\end{cases}
$$

The Pochhammer symbol is related to the gamma functions by the relation

$$
(b)_{n}=\frac{\Gamma(b+n)}{\Gamma(b)}
$$

where b is neither zero nor a negative integer. The function ${ }_{1} \phi_{1}(b ; c ; z)$ is known as a confluent hypergeometric function for more details one can refer [7]. In 1999

[^0]Virchenko [11] introduced τ-confluent hypergeometric function which is defined by (see also [12]):

$$
\begin{gather*}
{ }_{1} \phi_{1}^{\tau}(b ; c ; z)=\frac{\Gamma(c)}{\Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(b+\tau n) z^{n}}{\Gamma(c+\tau n) n!}, \tag{3}\\
(\tau>0, \Re(c)>\Re(b)>0)
\end{gather*}
$$

For $\tau=1$,

$$
{ }_{1} \phi_{1}^{\tau}(b ; c ; z)={ }_{1} \phi_{1}(b ; c ; z) .
$$

As the function ${ }_{1} \phi_{1}^{\tau}(b, c ; z)$ does not belong to the family \mathcal{A}, thus it is natural to consider the following normalization of function ${ }_{1} \phi_{1}^{\tau}(b, c ; z)$ in \mathbb{D} :

$$
\begin{align*}
{ }_{1} \Phi_{1}^{\tau}(b ; c ; z) & =z_{1} \phi_{1}^{\tau}(b, c ; z) \\
& =z+\frac{\Gamma(c)}{\Gamma(b)} \sum_{n=2}^{\infty} \frac{\Gamma(b+\tau(n-1))}{\Gamma(c+\tau(n-1))} \frac{z^{n}}{(n-1)!} . \tag{4}
\end{align*}
$$

For the present investigation we will study ${ }_{1} \Phi_{1}^{\tau}(b, c ; z)$ for real values of b and c satisfying $c \geq b>0$ only.

If f, g are analytic functions in \mathbb{D}, then f is said to be subordinate to g, written as $f(z) \prec g(z) \quad(z \in \mathbb{D})$, if there exists an analytic function w with $w(0)=0$ and $|w(z)| \leq 1(z \in \mathbb{D})$ such that $f(z)=g(w(z))$. In particular, if g is univalent in \mathbb{D}, then we have the following equivalence:

$$
f(z) \prec g(z) \quad \Longleftrightarrow \quad f(0)=g(0) \quad \text { and } \quad f(\mathbb{D}) \subset g(\mathbb{D}) .
$$

For more details one can refer [4]. In the present paper, we will study the ratio of a function of the form (4) to its sequence of partial sums

$$
\begin{gather*}
\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}=z+\frac{\Gamma(c)}{\Gamma(b)} \sum_{k=1}^{n} \frac{\Gamma(b+k \tau)}{\Gamma(c+k \tau)} \frac{z^{k+1}}{k!}=z+\sum_{k=1}^{n} b_{k} z^{k+1} \tag{5}\\
\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}^{\prime}=1+\frac{\Gamma(c)}{\Gamma(b)} \sum_{k=1}^{n} \frac{(k+1) \Gamma(b+k \tau)}{\Gamma(c+k \tau)} \frac{z^{k}}{k!}=1+\sum_{k=1}^{n}(k+1) b_{k} z^{k} \tag{6}\\
\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{0}=z \text { and }\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{0}^{\prime}=1 . \tag{7}
\end{gather*}
$$

We will determine lower bounds for $\Re\left\{\frac{1 \Phi_{1}^{\tau}(b ; c ; z)}{\left(1 \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}}\right\}, \Re\left\{\frac{\left(\Phi_{1}^{\tau}(b ; c ; z)\right)_{n}}{\left.1 \Phi_{1}^{\tau}(b ; c ; z)\right)}\right\}, \Re\left\{\frac{\left(1 \Phi_{1}^{\tau}(b ; c ; z)\right)^{\prime}}{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}^{\prime}}\right\}$ and $\Re\left\{\frac{\left(1 \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}^{\prime}}{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)^{\prime}}\right\}$. For various known results concerning with partial sums of analytic univalent functions one can refer the works of Bansal and Orhan [1], Çağlar and Deniz [2], Choi [3], Orhan and Yağmur [5], Owa et. al [6], Sheil-Small [8], Silverman [9] and Silvia [10].
To prove main results we need following Lemma:
Lemma 1. If $\tau>0$ and $c \geq b>\max \{2-\tau, 0\}$ then,

$$
\begin{equation*}
\left.\right|_{1} \Phi_{1}^{\tau}(b ; c ; z) \left\lvert\, \leq 1+\frac{2 \Gamma(c)}{\Gamma(b)}(z \in \mathbb{D})\right. \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|{ }_{1} \Phi_{1}^{\tau}(b ; c ; z)^{\prime}\right| \leq 1+\frac{11}{2} \frac{\Gamma(c)}{\Gamma(b)}(z \in \mathbb{D}) \tag{9}
\end{equation*}
$$

Proof. To prove this lemma, we use the following inequalities

$$
\frac{n}{(n-1)!} \leq\left(\frac{2}{3}\right)^{n-3} \quad \forall n \geq 4
$$

$\Gamma(c+\tau(n-1)) \geq \Gamma(b+\tau(n-1))($ for $\tau>0, c \geq b>\max \{2-\tau, 0\}$ and $n \in\{2,3,4 \ldots\})$ and $n!\geq 2^{n-1}$ for all $n \in \mathbb{N}$. Using (4), we have

$$
\begin{aligned}
\left.\right|_{1} \Phi_{1}^{\tau}(b ; c ; z) \mid & \leq|z|+\frac{\Gamma(c)}{\Gamma(b)} \sum_{n=2}^{\infty} \frac{1}{(n-1)!} \frac{\Gamma(b+\tau(n-1))}{\Gamma(c+\tau(n-1))}|z|^{n} \\
& \leq 1+\frac{\Gamma(c)}{\Gamma(b)}\left[\sum_{n=2}^{\infty}\left(\frac{1}{2}\right)^{n-2}\right] \\
& =1+\frac{2 \Gamma(c)}{\Gamma(b)}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\left|{ }_{1} \Phi_{1}^{\tau}(b ; c ; z)^{\prime}\right| & \leq 1+\frac{\Gamma(c)}{\Gamma(b)} \sum_{n=2}^{\infty} \frac{n}{(n-1)!} \frac{\Gamma(b+\tau(n-1))}{\Gamma(c+\tau(n-1))}|z|^{n-1} \\
& <1+\frac{\Gamma(c)}{\Gamma(b)}\left[\frac{7}{2}+\sum_{n=4}^{\infty}\left(\frac{2}{3}\right)^{n-3}\right] \\
& =1+\frac{11}{2} \frac{\Gamma(c)}{\Gamma(b)}
\end{aligned}
$$

2. Main Results

Theorem 1. If $\tau>0, c \geq b>\max \{2-\tau, 0\}$ and $\Gamma(b) \geq 2 \Gamma(c)$, then

$$
\begin{equation*}
\Re\left\{\frac{{ }_{1} \Phi_{1}^{\tau}(b ; c ; z)}{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}}\right\} \geq\left(1-\frac{2 \Gamma(c)}{\Gamma(b)}\right)(z \in \mathbb{D}) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left\{\frac{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}}{{ }_{1} \Phi_{1}^{\tau}(b ; c ; z)}\right\} \geq \frac{\Gamma(b)}{\Gamma(b)+2 \Gamma(c)}(z \in \mathbb{D}) \tag{11}
\end{equation*}
$$

Proof. It is easy to see from (8) of Lemma 1 that

$$
1+\sum_{k=1}^{\infty} b_{k} \leq \frac{\Gamma(b)+2 \Gamma(c)}{\Gamma(b)}
$$

which is equivalent to

$$
\begin{equation*}
\frac{\Gamma(b)}{2 \Gamma(c)} \sum_{k=1}^{\infty} b_{k} \leq 1\left(\text { where } b_{k}=\frac{\Gamma(c) \Gamma(b+\tau n)}{n!\Gamma(b) \Gamma(c+\tau n)}\right) \tag{12}
\end{equation*}
$$

To prove 10, we have to show that

$$
\begin{equation*}
\frac{\Gamma(b)}{2 \Gamma(c)}\left[\frac{{ }_{1} \Phi_{1}^{\tau}(b ; c ; z)}{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}}-\left(\frac{\Gamma(b)-2 \Gamma(c)}{\Gamma(b)}\right)\right] \prec \frac{1+z}{1-z} \tag{13}
\end{equation*}
$$

Using definition of subordination, and putting the values of ${ }_{1} \Phi_{1}^{\tau}(b ; c ; z)$ and $\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}$, we have

$$
\frac{1+\sum_{k=1}^{n} b_{k} z^{k}+\frac{\Gamma(b)}{2 \Gamma(c)} \sum_{k=n+1}^{\infty} b_{k} z^{k}}{1+\sum_{k=1}^{n} b_{k} z^{k}}=\frac{1+w(z)}{1-w(z)}
$$

Our assertion 10 is true if we show that $w(0)=0$ and $|w(z)|<1$ provided $z \in \mathbb{D}$. Simplifying for $w(z)$, we get

$$
w(z)=\frac{\frac{\Gamma(b)}{2 \Gamma(c)} \sum_{k=n+1}^{\infty} b_{k} z^{k}}{2+2 \sum_{k=1}^{n} b_{k} z^{k}+\frac{\Gamma(b)}{2 \Gamma(c)} \sum_{k=n+1}^{\infty} b_{k} z^{k}}
$$

Obviously $w(0)=0$ and

$$
|w(z)| \leq \frac{\frac{\Gamma(b)}{2 \Gamma(c)} \sum_{k=n+1}^{\infty} b_{k}}{2-2 \sum_{k=1}^{n} b_{k}-\frac{\Gamma(b)}{2 \Gamma(c)} \sum_{k=n+1}^{\infty} b_{k}} \leq 1
$$

provided

$$
\begin{equation*}
\sum_{k=1}^{n} b_{k}+\frac{\Gamma(b)}{2 \Gamma(c)} \sum_{k=n+1}^{\infty} b_{k} \leq 1 \tag{14}
\end{equation*}
$$

It suffices to show that the left hand side of (14) is bounded above by left hand side of (12), which is equivalent to

$$
\left(\frac{\Gamma(b)}{2 \Gamma(c)}-1\right) \sum_{k=1}^{n} b_{k} \geq 0
$$

This is true as $\Gamma(b) \geq 2 \Gamma(c)$.
To prove the result (11), we write

$$
\frac{\Gamma(b)+2 \Gamma(c)}{2 \Gamma(c)}\left[\frac{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}}{{ }_{1} \Phi_{1}^{\tau}(b ; c ; z)}-\frac{\Gamma(b)}{\Gamma(b)+2 \Gamma(c)}\right]=\frac{1+w(z)}{1-w(z)}
$$

Substituting the values of ${ }_{1} \Phi_{1}^{\tau}(b ; c ; z)$ and $\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}$ and simplifying for $w(z)$, we have

$$
w(z)=\frac{-\frac{\Gamma(b)+2 \Gamma(c)}{2 \Gamma(c)} \sum_{k=n+1}^{\infty} b_{k} z^{k}}{2+2 \sum_{k=1}^{n} b_{k} z^{k}-\frac{\Gamma(b)-2 \Gamma(c)}{2 \Gamma(c)} \sum_{k=n+1}^{\infty} b_{k} z^{k}}
$$

Obviously $w(0)=0$ and

$$
\begin{equation*}
|w(z)| \leq \frac{\frac{\Gamma(b)+2 \Gamma(c)}{2 \Gamma(c)} \sum_{k=n+1}^{\infty} b_{k}}{2-2 \sum_{k=1}^{n} b_{k}-\frac{\Gamma(b)-2 \Gamma(c)}{2 \Gamma(c)} \sum_{k=n+1}^{\infty} b_{k}} \leq 1 \tag{15}
\end{equation*}
$$

as (14) is true for $\Gamma(b) \geq 2 \Gamma(c)$.

Theorem 2. If $\tau>0, c \geq b>\max \{2-\tau, 0\}$ and $2 \Gamma(b) \geq 11 \Gamma(c)$, then

$$
\begin{equation*}
\Re\left\{\frac{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)^{\prime}}{\left.{ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}^{\prime}}\right\} \geq \frac{2 \Gamma(b)-11 \Gamma(c)}{2 \Gamma(b)} \quad(z \in \mathbb{D}) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left\{\frac{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}^{\prime}}{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)^{\prime}}\right\} \geq \frac{2 \Gamma(b)}{2 \Gamma(b)+11 \Gamma(c)} \quad(z \in \mathbb{D}) \tag{17}
\end{equation*}
$$

Proof. It is easy to see from (9) of Lemma 1 that

$$
1+\sum_{k=1}^{\infty} b_{k}(k+1) \leq \frac{2 \Gamma(b)+11 \Gamma(c)}{2 \Gamma(b)}
$$

which is equivalent to

$$
\begin{equation*}
\frac{2}{11} \frac{\Gamma(b)}{\Gamma(c)} \sum_{k=1}^{\infty} b_{k}(k+1) \leq 1 \quad\left(\text { where } b_{k}=\frac{\Gamma(c) \Gamma(b+\tau n)}{\Gamma(b) n!\Gamma(c+\tau n)}\right) \tag{18}
\end{equation*}
$$

To prove (16), we have to show that

$$
\begin{equation*}
\frac{2}{11} \frac{\Gamma(b)}{\Gamma(c)}\left[\frac{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)^{\prime}}{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}^{\prime}}-\left(\frac{2 \Gamma(b)-11 \Gamma(c)}{2 \Gamma(b)}\right)\right] \prec \frac{1+z}{1-z} . \tag{19}
\end{equation*}
$$

Using definition of subordination, and putting the values of ${ }_{1} \Phi_{1}^{\tau}(b ; c ; z)$ and $\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}$, we have

$$
\frac{1+\sum_{k=1}^{n} b_{k}(k+1) z^{k}+\frac{2 \Gamma(b)}{11 \Gamma(c)} \sum_{k=n+1}^{\infty}(k+1) b_{k} z^{k}}{1+\sum_{k=1}^{n}(k+1) b_{k} z^{k}}=\frac{1+w(z)}{1-w(z)}
$$

Our assertion (10) is ture if we show that $w(0)=0$ and $|w(z)|<1$ provided $z \in \mathbb{D}$. Simplifying for $w(z)$, we get

$$
w(z)=\frac{\frac{2}{11} \frac{\Gamma(b)}{\Gamma(c)} \sum_{k=n+1}^{\infty}(k+1) b_{k} z^{k}}{2+2 \sum_{k=1}^{n}(k+1) b_{k} z^{k}+\frac{2}{11} \frac{\Gamma(b)}{\Gamma(c)} \sum_{k=n+1}^{\infty}(k+1) b_{k} z^{k}}
$$

Obviously $w(0)=0$ and

$$
|w(z)| \leq \frac{\frac{2}{11} \frac{\Gamma(b)}{\Gamma(c)} \sum_{k=n+1}^{\infty}(k+1) b_{k}}{2-2 \sum_{k=1}^{n}(k+1) b_{k}-\frac{2}{11} \frac{\Gamma(b)}{\Gamma(c)} \sum_{k=n+1}^{\infty}(k+1) b_{k}} \leq 1
$$

provided

$$
\begin{equation*}
\sum_{k=1}^{n}(k+1) b_{k}+\frac{2}{11} \frac{\Gamma(b)}{\Gamma(c)} \sum_{k=n+1}^{\infty}(k+1) b_{k} \leq 1 \tag{20}
\end{equation*}
$$

It suffices to show that the left hand side of (20) is bounded above by left hand side of (18), which is equivalent to

$$
\left(\frac{2}{11} \frac{\Gamma(b)}{\Gamma(c)}-1\right) \sum_{k=1}^{n} b_{k} \geq 0
$$

This is true in view of hypothesis.
To prove the result (17), we write

$$
\frac{2 \Gamma(b)+11 \Gamma(c)}{11 \Gamma(c)}\left[\frac{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}^{\prime}}{\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)^{\prime}}-\left(\frac{2 \Gamma(b)}{2 \Gamma(b)+11 \Gamma(c)}\right)\right]=\frac{1+w(z)}{1-w(z)}
$$

Substituting the values of $\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)^{\prime}$ and $\left({ }_{1} \Phi_{1}^{\tau}(b ; c ; z)\right)_{n}^{\prime}$ and simplifying for $w(z)$, we have

$$
w(z)=\frac{-\left(1+\frac{2}{11} \frac{\Gamma(b)}{\Gamma(c)}\right) \sum_{k=n+1}^{\infty}(k+1) b_{k} z^{k}}{2+2 \sum_{k=1}^{n}(k+1) b_{k} z^{k}+\left(1-\frac{2}{11} \frac{\Gamma(b)}{\Gamma(c)}\right) \sum_{k=n+1}^{\infty}(k+1) b_{k} z^{k}}
$$

Obviously $w(0)=0$ and

$$
\begin{equation*}
|w(z)| \leq \frac{\left(1+\frac{2}{11} \frac{\Gamma(b)}{\Gamma(c)}\right) \sum_{k=n+1}^{\infty}(k+1) b_{k} z^{k}}{2-2 \sum_{k=1}^{n}(k+1) b_{k} z^{k}-\left(\frac{2}{11} \frac{\Gamma(b)}{\Gamma(c)}-1\right) \sum_{k=n+1}^{\infty}(k+1) b_{k} z^{k}} \leq 1 \tag{21}
\end{equation*}
$$

as (20) is true under the hypothesis.

References

[1] D. Bansal and H. Orhan, Partial sums of Mittag-Leffler function, J. Math. Inequ. 12(2) (2018), 423-431.
[2] M. Çağlar and E. Deniz, Partial sums of the normalized Lommel functions, Math. Ineq. Appl. 18(3) (2015), 1189-1199.
[3] J. H. Choi, Univalent functions with positive coefficients involving a certain fractional integral operator and its partial sums, Frac. Calc. Appl. Anal. 1(1998), 311-318.
[4] S. S. Miller and P. T. Mocanu, Differential Subordinations, Theory and Applications, New York-Basel, Marcel Dekker, 2000.
[5] H. Orhan and N. Yağmur, Partial sums of generalized Bessel functions, J. Math. Inequal. 8(4) (2014), 863-877.
[6] S. Owa, H.M. Srivastava and N. Saito, Partial sums of certain classes of analytic functions, Int. J. Comput. Math. 81(10) (2004), 12391256.
[7] E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
[8] T. Sheil-Small, A note on partial sums of convex schlicht functions, Bull. London Math. Soc. 2 (1970), 165168.
[9] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl. 209 (1997), 221227.
[10] E.M. Silvia, On partial sums of convex functions of order α, Houston J. Math. 11 (1985), 397404.
[11] N. Virchenko, On some generalizations of the functions of hypergeometric type, Fract. Calc. Appl. Anal., 2(3) (1999), 233-244.
[12] N. Virchenko, S. L. Kalla and A. Al-Zamel, Some results on a generalized hypergeometric function, Integral Transform Spec. Funct., 12(1)(2001), 89-100.

Department of Mathematics, Govt. Engineering College Bikaner 334004, Rajasthan, India

E-mail address: aamitt1981@gmail.com
Department of Mathematics, College of Engineering and Technology, Bikaner 334004, Rajasthan, India

E-mail address: deepakbansal_79@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 33E12, 30C45.
 Key words and phrases. τ-Confluent Hypergeometric Function, Analytic Function, Univalent Function.

 Submitted Dec. 10, 2017. Revised Jan. 30, 2018.

