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ANALYZING THE RELIABILITY OF QUANTUM AMPLITUDE

AMPLIFICATION TECHNIQUES IN THE PRESENCE OF NOISE

S. Q. SALEH AND A. YOUNES

Abstract. This paper studies three different amplitude amplification tech-

niques; solution marking via phase shift, solution marking via entanglement

and solution marking via conditional global phase shift; when the extra qubit
is in different states. The ability of the three techniques to amplify the prob-

ability of solution items is analyzed against the bit-flip error problem on the

auxiliary qubit which is used for oracle evaluation. It is found that the solution
marking via conditional global phase shift is more robust against the bit-flip

error than the other two techniques.

1. Introduction

Quantum computers exploit quantum mechanics to do different calculations with
speed surpass that of classical computers [1]. This computing discipline has gained
intensive attention by research community and many quantum algorithms were pre-
sented for different applications. One of these algorithms is the quantum search
algorithm which utilizes amplitude amplification techniques to amplify the prob-
ability of finding solution items and to de-amplify the probability of non-solution
items in an unstructured database. The quantum search algorithm has been pre-
sented by Grover [2] which comes as a subroutine in different algorithms [3, 4, 5].
This algorithm locates the solution item in a given list of size N with complexity
O(
√
N) better than the classical unstructured search algorithms. The quantum par-

allelism mechanism is used to express the superposition of all states simultaneously.
Then, the algorithm iterates two operators; the oracle operator and the diffusion
operator. The oracle operator marks the solution item by applying a phase shift of
π(eiπ = −1) and does nothing on the non-solution items. The diffusion operator
achieves inversion about the mean of the whole space to magnify the amplitude of
the solution item.

Many researchers generalized Grover’s search operator in several ways for study-
ing the effect of any selective phase shift other than π phase shift on the success
probability of the search algorithm [6, 7, 8, 9, 10]. These ways repeat the operation
HD(φ)HUf (ϕ) on the initial states of the given system where H is the Hadamard
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operator, D(φ) = I − (1− eiφ)|s〉〈s| is the diffusion operator, |s〉 is the initial state
of the system, Uf (ϕ) = I − (1 − eiϕ)|t〉〈t| is the oracle operator, |t〉 is the target
states and I is the identity operator. The researchers used the same phase shift for
the oracle and the diffusion operator. The generalization of the search algorithm
included the study of the arbitrary superposition effect on the algorithm perfor-
mance [6, 11, 12, 13, 14, 15]. All of the above search algorithms used the phase
shift technique for marking the solutions with phase shift ϕ and doing nothing on
other non-solution items.

Younes et al. in [16] proposed quantum search algorithm using local diffusion
operator that resists the de-amplification behavior in Grover algorithm with qua-
dratic speedup. They used entanglement technique for marking the solutions where
solutions are entangled with |1〉 and non-solutions are entangled with |0〉. Yoder et
al. in [17] presented fixed-point amplitude amplification technique that avoids the
overcooking problem by always magnifying the amplitude of solution items with
quadratic speedup. They used conditional global phase shift as a marking solution
technique. Furthermore, many researchers studied Grover search algorithm in the
presence of different errors with noisy environment [18, 19, 20, 21, 22, 23, 24].

This paper studies three different solution marking techniques; solution marking
via phase shift, solution marking via entanglement and solution marking via con-
ditional global phase shift; by assuming the extra qubit is in different states. The
three techniques are analyzed and evaluated in the presence of bit-flip error on the
extra qubit that used for oracle evaluation.

The remainder of the paper is organized as follows. Section 2 introduces unstruc-
tured database search problem. Section 3 presents solution marking techniques in
noiseless environment while section 4 analyzes the three techniques with noisy envi-
ronment. Section 5 discusses the results in details. Finally, this paper is concluded
in section 6.

2. Unstructured Database Search Problem

Suppose an unstructured database of N = 2n items where n is a positive integer
and these items are labelled by an index j where jε[0, 1, ..., N − 1]. Consider an
oracle Uf that maps the database items to either 0 or 1 based on some properties
those items should satisfy,

Uf (x) =

{
|x〉 f(x) = 0

eiϕ|x〉 f(x) = 1.
(1)

The search problem is to find any x in the database where Uf (x) = 1 assuming
that x exists in the database and eiϕ is the phase shift for marking the solution
items i.e. search for M solutions in the database that satisfy the boolean oracle
where 1 ≤M ≤ N . Classical computers solve this problem in O(N/M) calls to the

oracle(query) while the quantum computers solve in O(
√
N/M). Solution marking

using boolean oracle needs an extra qubit for oracle evaluation as in classical search.
The following section evaluates three different solution marking techniques with
noisy environment.
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Figure 1. Quantum circuit for Grover search algorithm [6].

3. Solution Marking Techniques

The amplitude amplification techniques are subjected to different noises. One of
these noises is the bit-flip error on the extra qubit. Here are the solution marking
techniques in the absence of noise on the extra qubit.

3.1. Solution Marking Via Phase Shift. In amplitude amplification corre-
sponds to Grover’s algorithm [6], the oracle operator marks the solution items by
applying a phase shift of π(eiπ = −1) on that items and does nothing on the other
non-solution items. Then, the diffusion operator does inversion operation about
the mean of the whole space to amplify the amplitude of the solution items and
de-amplify the amplitude of the non-solution items. The diagonal representation
that describes the diffusion operator is D = H⊗n[2|0〉〈0|− I]H⊗n. This operator is
applied on n qubits where the vector |0〉 is of length 2n and I is the identity matrix
of size 2n × 2n. Furthermore, the diffusion operator can be written as a 2n × 2n

matrix in the computational basis as follows,

D = H⊗n


1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

H⊗n =


2
N − 1 2

N · · · 2
N

2
N

2
N − 1 · · · 2

N
...

...
. . .

...
2
N

2
N · · · 2

N − 1

 . (2)

Figure 1. Shows the quantum circuit for Grover search algorithm. The algorithm
with first iteration goes through the following steps.

(1) Register Preparation: The quantum register is prepared with n+ 1 qubits.
The first n qubits are in the state |0〉 to represent the initial states and the
last qubit is the ancilla qubit with the state |1〉 to evaluate the oracle Uf .

|ψ0〉 = |0〉⊗n ⊗ |1〉. (3)
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(2) Register Initialization: Hadamard gate is applied on the n + 1 qubits si-
multaneously to represent the initial 2n states with uniform superposition.

|ψ1〉 = H⊗n+1|ψ0〉 = (
1√
N

N−1∑
j=0

|j >)⊗ (|0〉 − |1〉)√
2

. (4)

(3) Applying Oracle: The oracle Uf is applied on |ψ1〉 that change the am-
plitudes of the solution items by phase shift −1 = eiπ i.e. Uf |j〉 →
(−1)f(j)|j〉, so the system is

|ψ2〉 = Uf |ψ1〉

=
1√
N

M−N−1∑
j=0

′′
|j〉 ⊗ (|0〉 − |1〉)√

2
− 1√

N

M−1∑
j=0

′
|j〉 ⊗ (|0〉 − |1〉)√

2
,

(5)

where
∑′

j points to the sum over j for solution items and
∑′′

j points to
the sum over j for non-solution items. The oracle in this algorithm uses
phase shift technique for solution marking where the solutions are marked
by phase shift −1 = eiπ while the non-solutions are not. The system |ψ2〉
can be written as

|ψ2〉 = a0

N−M−1∑
j=0

′′|j〉+ b0

M−1∑
j=0

′|j〉, (6)

where a0 = 1√
N

, b0 = −1√
N

. Notice that, the state of the ancilla qubit will

not change so we can remove it from the system for simplicity.
(4) Applying Diffusion Operator: The inversion about the mean is done on the

whole space of the system using the diffusion operator. This operator is

applied on a general system
∑N−1
x=0 γx|x〉 as follows,

D(

N−1∑
x=0

γx|x〉) =

N−1∑
x=0

(2 < µ > −γx)|j〉, (7)

where < µ >= 1
N

∑N−1
x=0 γx is the mean of the amplitudes of the whole

space. The system after applying the D on |ψ2〉 becomes

|ψ3〉 = Dp|ψ2〉

= a1

N−M−1∑
j=0

′′|j〉+ b1

M−1∑
j=0

′|j〉,
(8)

< µ >=
1

N
(
N −M√

N
− M√

N
) =

1√
N

(1− 2M

N
), (9)

a1 = 2 < µ > −a0 = 2 < µ1 > −
1

N
=

1√
N

(1− 4M

N
), (10)

b1 = 2 < µ > −b0 = 2 < µ1 > +
1

N
=

1√
N

(3− 4M

N
). (11)

The amplitude of the solution items b1 are amplified and becomes larger
than the amplitudes of the non-solution items a1.
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(5) Measurement: After the first iteration, the first n qubits are measured to
calculate the system probability.
• Solutions Probability Ps: The probability of the solutions is computed

as

Ps = M(b21). (12)

• Non-Solutions Probability Pns: The probability of the non-solutions
is computed as

Pns = (N −M)a21, (13)

such that (N −M)a21 +Mb21 = 1.

It is found that the success probability (Ps) is amplified and becomes larger than
the failure probability (Pns) in the absence of noise on the extra qubit.

3.2. Solution Marking Via Entanglement. Younes et al in [16] proposed a
quantum search algorithm based on the entanglement technique and the local dif-
fusion operator which do inversion operation about the mean on a local space. The
local diffusion operator is applied on n + 1 qubits where the last qubit is used for
entanglement purpose. The diagonal representation that describes this local oper-
ator is Y = (H⊗n ⊗ I1)(2|0〉〈0| − I2N )(H⊗n ⊗ I1) where the vector |0〉 is of length
2N = 2n+1. Additionally, this operator can be written as a 2n+1 × 2n+1 matrix in
the computational basis as follows.

Y = H⊗n ⊗ I1


1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

H⊗n ⊗ I1

=



2
N − 1 0 2

N 0 · · · 2
N 0

0 −1 0 0 · · · 0 0
2
N 0 2

N − 1 0 · · · 2
N 0

0 0 0 −1 · · · 0 0
...

...
...

...
. . .

...
...

2
N 0 2

N 0 · · · 2
N − 1 0

0 0 0 0 · · · 0 −1



(14)

It is found that applying the operator Y on a given system will perform the inversion
about the mean only on the subspace entangled with the extra qubit in state |0〉
(even elements) and will only change the sign of the amplitudes for the rest of the
system entangled with the extra qubit in state |1〉 (odd elements). Figure 2. Shows
the circuit of the quantum search algorithm using entanglement in [16].

Their algorithm goes through the following steps:

(1) Register Preparation: The quantum register is prepared with n+ 1 qubits
all in the state |0〉 where the ancilla qubit is used to evaluate the oracle Uf .

|ψ0〉 = |0〉⊗n ⊗ |0〉. (15)
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Figure 2. Quantum circuit for the proposed algorithm in [16].

(2) Register Initialization: Hadamard gate is applied on the first n qubits si-
multaneously to represent the initial 2n states with uniform superposition.

|ψ1〉 = (H⊗n ⊗ I)|ψ0〉 = (
1√
N

N−1∑
j=0

|j >)⊗ |0〉

=
1√
N

N−M−1∑
j=0

′′
(|j〉 ⊗ |0〉) +

1√
N

M−1∑
j=0

′
(|j〉 ⊗ |0〉),

(16)

where
∑′

j refers to the sum of solutions over j and
∑′′

j refers to the sum
of non-solutions.

(3) Applying Oracle: The oracle Uf maps the items to either 0 or 1 simultane-
ously and stores the results in the extra qubit.

|ψ2〉 = Uf |ψ1〉 =
1√
N

N−1∑
j=0

(|j〉 ⊗ |0⊕ f(j)〉) =
1√
N

N−1∑
j=0

(|j〉 ⊗ |f(j)〉). (17)

So the system will be

|ψ2〉 =
1√
N

N−M−1∑
j=0

′′
(|j〉 ⊗ |0〉) +

1√
N

M−1∑
j=0

′
(|j〉 ⊗ |1〉). (18)

where
∑′

j refers to the sum of M states of solutions over j and
∑′′

j refers
to the sum of N −M states of non-solutions.

The oracle in this algorithm uses entanglement for solution marking
where the solutions are entangled with the extra qubit in state |1〉 while
the non-solutions are entangled with the extra qubit in state |0〉.

(4) Applying Local Diffusion Operator: The local diffusion operator does the
inversion about the mean only on local space of the system that entangled
with extra qubit in state |0〉 (even elements) and changes the sign of the
rest system entangled with extra qubit in state |1〉 (odd elements). If the
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general system can be written as

2N−1∑
x=0

γx|x〉 =

N−1∑
j=0

αj(|j〉 ⊗ |0〉) +

N−1∑
j=0

βj(|j〉 ⊗ |1〉), (19)

where αj is the amplitude of the even items of the system and βj is the
amplitude of the odd items, then the local diffusion operator is applied on
the system as follows,

Y (

2N−1∑
x=0

γx|x〉) =

N−1∑
j=0

(2 < µ > −αj)(|j〉 ⊗ |0〉)−
N−1∑
j=0

βj(|j〉 ⊗ |1〉), (20)

where < µ >= 1
N

∑N−1
j=0 αj is the mean of the amplitudes of the local space

which entangled with the extra qubit in state |0〉. If the system before
applying Y operator on |ψ2〉 can be written as

|ψ2〉 = a0

N−M−1∑
j=0

′′(|j〉 ⊗ |0〉) + b0

M−1∑
j=0

′(|j〉 ⊗ |0〉) + c0

M−1∑
j=0

′(|j〉 ⊗ |1〉), (21)

where

a0 =
1√
N
, b0 = 0 and c0 =

1√
N
. (22)

Then the system after applying Y operator becomes

|ψ3〉 = a1

N−M−1∑
j=0

′′(|j〉 ⊗ |0〉) + b1

M−1∑
j=0

′(|j〉 ⊗ |0〉) + c1

M−1∑
j=0

′(|j〉 ⊗ |1〉), (23)

< µ >=
1

N
(
N −M√

N
+M.0) =

N −M
N
√
N

, (24)

a1 = 2 < µ > −a0 = 2 < µ > − 1√
N

=
1√
N

(1− 2M

N
), (25)

b1 = 2 < µ > −b0 = 2 < µ >=
1√
N

(2− 2M

N
), (26)

c1 = −c0 =
−1√
N
. (27)

The amplitude of the solution items (b1 + c1) are amplified and becomes
larger than the amplitudes of the non-solution items a1.

(5) Measurement: After the first iteration, the first n qubits are measured to
get the system probability.
• Solutions Probability Ps: The probability of the solutions is computed

as

Ps = M(b21 + c21) =
M

N
{1 + (2− 2M

N
)2}. (28)

• Non-Solutions Probability Pns: The probability of the non-solutions
is computed as

Pns = (N −M)a21 =
N −M
N

(1− 2M

N
)2, (29)
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Figure 3. Quantum circuit for the proposed algorithm in [17].

Such that (N −M)a21 +M(b21 + c21) = 1. It is noted that the probability of
the solution items is amplified and becomes larger than the probability of
the non-solution items in the absence of noise on the extra qubit.

3.3. Solution Marking Via Conditional Global Phase Shift. Thodor et al.
in [17, 25] proposed quantum search algorithm based on the conditional global
phase shift. They used two boolean oracles where the oracle flips the ancilla qubit
with solution items. The conditional phase shift for all items in the list is done
using Zϕ gate between the two oracles where Zϕ gate represents a rotation about
Z axis by phase ϕ and is represented using the following matrix,

Zϕ =

[
e−iϕ/2 0

0 eiϕ/2

]
. (30)

Figure 3. shows the circuit of the proposed algorithm in [25]. The first part
(before the dotted line) implements the oracle with global phase shift as follows,

e−iϕ/2Uf (ϕ) = e−iϕ/2[I − (1− eiϕ)|t〉〈t|]. (31)

While the second part (after the dotted line) in Figure 3. implements the diffusion
operator that can be performed by the following matrices,

T = H⊗n⊗I1



e−iφ/2 0 0 0 0 0 · · · 0
0 eiφ/2 0 0 0 0 · · · 0
0 0 eiφ/2 0 0 0 · · · 0
0 0 0 e−iφ/2 0 0 · · · 0
0 0 0 0 eiφ/2 0 · · · 0
0 0 0 0 0 e−iφ/2 · · · 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 · · · e−iφ/2


H⊗n⊗I1.

(32)
The behaviour of the diffusion operator with the even elements (entangled with
extra qubit in state |0〉) is expressed using the following equation,

Teven = (H⊗n)eiφ/2[In − (1− e−iφ)|0〉〈0|](H⊗n), (33)
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Teven = H⊗n



e−iφ/2 0 0 0 · · ·
0 eiφ/2 0 0 · · ·
0 0 eiφ/2 0 · · ·
0 0 0 eiφ/2 · · ·
...

...
...

. . .
...

...
...

... · · · eiφ/2


H⊗n. (34)

while, the behaviour of the diffusion operator with the odd elements (entangled
with extra qubit in state |1〉) is shown in the following equation,

Todd = H⊗ne−iφ/2[In − (1− eiφ)|0〉〈0|]H⊗n, (35)

Todd = H⊗n



eiφ/2 0 0 0 · · ·
0 e−iφ/2 0 0 · · ·
0 0 e−iφ/2 0 · · ·
0 0 0 e−iφ/2 · · ·
...

...
...

. . .
...

...
...

... · · · e−iφ/2


H⊗n. (36)

The algorithm without noise goes through the following steps:

(1) Register Preparation: The quantum register is prepared with n+ 1 qubits
all in the state |0〉 where the ancilla qubit is used to evaluate the oracle Uf
but can be reused.

|ψ0〉 = |0〉⊗n ⊗ |0〉. (37)

(2) Register Initialization: Hadamard gate is applied on the first n qubits si-
multaneously to point the initial 2n states with uniform superposition.

|ψ1〉 = (H⊗n ⊗ I)|ψ0〉 = (
1√
N

N−1∑
j=0

|j >)⊗ |0〉

=
1√
N

N−M−1∑
j=0

′′
(|j〉 ⊗ |0〉) +

1√
N

M−1∑
j=0

′
(|j〉 ⊗ |0〉).

(38)

(3) Applying the First Oracle: The oracle Uf will flip the ancilla qubit for
solution items,

|ψ2〉 =
1√
N

N−M−1∑
j=0

′′
(|j〉 ⊗ |0〉) +

1√
N

M−1∑
j=0

′
(|j〉 ⊗ |1〉). (39)

(4) Applying Zϕ Gate: The Zϕ gate is applied on the ancilla qubit as follows,

|ψ3〉 = (In ⊗ Zϕ)|ψ2〉

=
1√
N

N−M−1∑
j=0

′′
(|j〉 ⊗ Zϕ|0〉) +

1√
N

M−1∑
j=0

′
(|j〉 ⊗ Zϕ|1〉)

=
1√
N

N−M−1∑
j=0

′′
(|j〉 ⊗ e−iϕ/2|0〉) +

1√
N

M−1∑
j=0

′
(|j〉 ⊗ eiϕ/2|1〉).

(40)
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(5) Applying the Second Oracle: The oracle Uf will flip again the ancilla qubit
for solution items,

|ψ4〉 =
1√
N

N−M−1∑
j=0

′′
(|j〉 ⊗ e−iϕ/2|0〉) +

1√
N

M−1∑
j=0

′
(|j〉 ⊗ eiϕ/2|0〉), (41)

|ψ4〉 = a0

N−M−1∑
j=0

′′
(|j〉 ⊗ |0〉) + b0

M−1∑
j=0

′
(|j〉 ⊗ |0〉), (42)

where a0 = e−iϕ/2√
N

and b0 = eiϕ/2√
N
.

(6) Applying Diffusion operator: The diffusion operator that is applyied on the
system when extra qubit has |0〉 is

Teven = (H⊗n)eiφ/2[In − (1− e−iφ)|0〉〈0|](H⊗n), (43)

Teven(

N−1∑
x=0

(γx|x〉) = eiφ/2[γx − (1− e−iφ) < µ >]

N−1∑
x=0

|x〉, (44)

where < µ >= 1
N

∑N−1
x=0 γx is the mean of the amplitudes of the subspace

space entangled with |0〉.
The system after applying the diffusion operator Teven on |ψ4〉 becomes

|ψ5〉 = Teven|ψ4〉 = a1

N−M−1∑
j=0

′′
(|j〉 ⊗ |0〉) + b1

M−1∑
j=0

′
(|j〉 ⊗ |0〉), (45)

where

〈µ〉 =
1

N
(
(N −M)e−iϕ/2√

N
+

(M)eiϕ/2√
N

), (46)

a1 = eiφ/2[a0 − (1− e−iφ)〈µ〉]

=
1√
N

[e−i(
φ+ϕ

2 ) − 2i
M

N
(eiφ/2 − e−iφ/2)sin(ϕ/2)]

=
1√
N

[e−i(
φ+ϕ

2 ) + 4
M

N
sin(φ/2)sin(ϕ/2)],

(47)

b1 = eiφ/2[b0 − (1− e−iφ)〈µ〉]

=
1√
N

[e−i(
φ+ϕ

2 ) − 2i
M

N
(eiφ/2 − e−iφ/2)sin(ϕ/2) + 2ieiφ/2sin(ϕ/2)]

=
1√
N

[e−i(
φ+ϕ

2 ) + 4
M

N
sin(φ/2)sin(ϕ/2) + 2ieiφ/2sin(ϕ/2)].

(48)

There is a condition on the phase shift of the oracle and diffusion operator
for first iteration as shown bellow.

φ = −ϕ = 2cot−1(tan(2pi/3)
√

(1− γ2)), (49)

where γ−1 = T1/3(1/δ) , TL(x) = cos[Lcos−1(x)] is the Lth Chebyshev
polynomial of the first kind and δ is a tunable parameter for bounding the
error success probability [17].

(7) Measurement: After the first iteration, the first n qubits are measured in
order to calculate the system probability.
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• Solutions Probability Ps: The probability of the solutions is computed
as

Ps = M |b1|2. (50)

• Non-Solutions Probability Pns: The probability of the non-solutions
is computed as

Pns = (N −M)|a1|2, (51)

such that (N −M)a21 + Mb21 = 1. The success probability Ps is amplified
and becomes larger than the failure probability Pns in the absence of noise
on the extra qubit.

4. Solution Marking Technique in The Presence of Noise

This section analyzes the three techniques with noisy environment and studies
the effects of the bit-flip error on the success probability of these techniques.

4.1. Solution Marking Via Phase Shift. The following steps describe the al-
gorithm behaviour when the extra qubit is flipped from |1 > to |0 >.

(1) Register Preparation: The quantum register is prepared with n+ 1 qubits
all in the state |0〉 to represent the initial states where the ancilla qubit is
used to evaluate the oracle Uf ,

|ψ0〉 = |0〉⊗n ⊗ |0〉. (52)

(2) Register Initialization: Hadamard gate is applied on the n + 1 qubits si-
multaneously to represent the initial 2n states with uniform superposition,

|ψ1〉 = H⊗n+1|ψ0〉 = (
1√
N

N−1∑
j=0

|j >)⊗ (|0〉+ |1〉)√
2

. (53)

(3) Applying Oracle: The oracle Uf is applied on |ψ1〉 as follows,

|ψ2〉 = Uf |ψ1〉 =
1√
2N

N−1∑
j=0

|j〉(|0⊕ Uf (j)〉+ |1⊕ Uf (j)〉)

=
1√
N

M−N−1∑
j=0

′′
|j〉 ⊗ (|0〉+ |1〉)√

2
+

1√
N

M−1∑
j=0

′
|j〉 ⊗ (|0〉+ |1〉)√

2
.

(54)

The state of the extra qubit is not subjected to change, so we can remove
it from the system for simplicity. The oracle in this state does nothing and
the amplitudes of the solutions and non-solutions are a0 = 1√

N
and b0 =

1√
N
.

(4) Applying Diffusion Operator: The system after applying the D on |ψ2〉
becomes

|ψ3〉 = D|ψ2〉 = a1

N−M−1∑
j=0

′′|j〉+ b1

M−1∑
j=0

′|j〉, (55)

< µ >=
1

N
[(N −M)

1√
N

+
M√
N

] =
1√
N
, (56)

a1 = 2 < µ > −a0 =
2√
N
− 1√

N
=

1√
N
, (57)
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b1 = 2 < µ > −b0 =
2√
N
− 1√

N
=

1√
N
. (58)

The amplitudes of the non-solutions (a1) equal to the amplitudes of the
solutions (b1), so there is no amplification on the solutions probability.

(5) Measurement: The first n qubits are measured to get the system probability.
• Solutions Probability Ps: The probability of the solutions is computed

as

Ps = M(b21) =
M

N
. (59)

• Non-Solutions Probability Pns: The probability of the non-solutions
is computed as

Pns = (N −M)a21 =
N −M
N

. (60)

In reality, the success probability (Ps) equal to the failure probability (Pns) in the
presence of noise. Therefore, the algorithm performance is affected by the value of
the extra qubit due to the bit-flip error and no amplification to the solutions state
occurs.

4.2. Solution Marking Via Entanglement. The following steps describe the
algorithm behaviour when the extra qubit is flipped from |0〉 to |1〉 due to the
bit-flip error.

(1) Register Preparation: The quantum register is prepared with n qubits all
in the state |0〉 and the ancilla qubit is prepared with |1〉 to be used for
evaluating the oracle Uf ,

|ψ0〉 = |0〉⊗n ⊗ |1〉. (61)

(2) Register Initialization: Hadamard gate is applied on the first n qubits si-
multaneously to represent the initial 2n states with uniform superposition,

|ψ1〉 = (H⊗n ⊗ I)|ψ0〉 = (
1√
N

N−1∑
j=0

|j >)⊗ |1〉, (62)

|ψ1〉 = a0

N−M−1∑
j=0

′′
(|j〉 ⊗ |0〉) + b0

N−M−1∑
j=0

′′
(|j〉 ⊗ |1〉)

+c0

M−1∑
j=0

′
(|j〉 ⊗ |0〉) + d0

M−1∑
j=0

′
(|j〉 ⊗ |1〉),

(63)

where

a0 = 0, b0 =
1√
N
, c0 = 0 and d0 =

1√
N
.

(3) Applying Oracle: The oracle Uf will swap the amplitudes of the solution
items, so the system after applying the oracle will be

|ψ2〉 = Uf |ψ1〉 = a0

N−M−1∑
j=0

′′
(|j〉 ⊗ |0〉) + b0

N−M−1∑
j=0

′′
(|j〉 ⊗ |1〉)

+c0

M−1∑
j=0

′
(|j〉 ⊗ |0〉) + d0

M−1∑
j=0

′
(|j〉 ⊗ |1〉),

(64)



174 S. Q. SALEH AND A. YOUNES EJMAA-2020/8(1)

where

a0 = 0, b0 =
1√
N
, c0 =

1√
N

and d0 = 0

(4) Applying Local Diffusion Operator: The system after applying the Y op-
erator on |ψ2〉 becomes

|ψ3〉 = Y |ψ2〉 = a1

N−M−1∑
j=0

′′
(|j〉 ⊗ |0〉) + b1

N−M−1∑
j=0

′′
(|j〉 ⊗ |1〉)

+c1

M−1∑
j=0

′
(|j〉 ⊗ |0〉) + d1

M−1∑
j=0

′
(|j〉 ⊗ |1〉),

(65)

< µ >=
1

N
(
N −M

0
+M(

1√
N

)) =
M

N
√
N
, (66)

a1 = 2 < µ > −a0, b1 = −b0, c1 = 2 < µ > −c0 and d1 = −d0

a1 =
2M

N
√
N
, b1 =

−1√
N
, c1 =

2M

N
√
N
− 1√

N
and d1 = 0. (67)

The amplitude of the non-solutions (a1 + b1) is larger than the ampli-
tudes of the solutions (c1 + d1), so there is de-amplification on solutions
probability.

(5) Measurement: The first n qubits are measured in order to calculate the
system probability.
• Solutions Probability Ps: The probability of the solutions is computed

as

Ps = M(c21 + d21) =
M

N
(−1 +

2M

N
)2. (68)

• Non-Solutions Probability Pns: The probability of the non-solutions
is computed as

Pns = (N −M)(a21 + b21) =
N −M
N

(1 + 4(
M

N
)2). (69)

It is found that the success probability (Ps) is de-amplified while the fail-
ure probability (Pns) is amplified in the presence of noise. Therefore, the
algorithm performance is affected by the value of the extra qubit due to
the bit-flip error.

4.3. Solution Marking Via Conditional Global Phase Shift. The following
steps describe the algorithm behaviour when the extra qubit is flipped from |0〉 to
|1〉 due to the bit-flip error.

(1) Register Preparation: The quantum register is prepared with n qubits all
in the state |0〉 and the ancilla qubit is in the state |1〉.

|ψ0〉 = |0〉⊗n ⊗ |1〉. (70)

(2) Register Initialization: Hadamard gate is applied on the first n qubits si-
multaneously to acts the initial 2n states with uniform superposition.
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|ψ1〉 =
1√
N

N−M−1∑
j=0

′′
(|j〉 ⊗ |1〉) +

1√
N

M−1∑
j=0

′
(|j〉 ⊗ |1〉). (71)

(3) Applying the First Oracle: The oracle Uf will flip the ancilla qubit for
solution items

|ψ2〉 =
1√
N

N−M−1∑
j=0

′′
(|j〉 ⊗ |1〉) +

1√
N

M−1∑
j=0

′
(|j〉 ⊗ |0〉). (72)

(4) Applying Zϕ Gate: The Zϕ gate is applied on the ancilla qubit as follows.

|ψ3〉 =
1√
N

N−M−1∑
j=0

′′
(|j〉 ⊗ eiϕ/2|1〉) +

1√
N

M−1∑
j=0

′
(|j〉 ⊗ e−iϕ/2|0〉). (73)

(5) Applying the Second Oracle: The oracle Uf will flip again the ancilla qubit
for solution items

|ψ4〉 =
eiϕ/2√
N

N−M−1∑
j=0

′′
(|j〉 ⊗ |1〉) +

e−iϕ/2√
N

M−1∑
j=0

′
(|j〉 ⊗ |1〉). (74)

The system can be written as

|ψ4〉 = a0

N−M−1∑
j=0

′′
(|j〉 ⊗ |1〉) + b0

M−1∑
j=0

′
(|j〉 ⊗ |1〉). (75)

where a0 = eiϕ/2√
N

and b0 = e−iϕ/2√
N

.

(6) Applying Diffusion Operator: The diffusion operator that is applied on the
system when extra qubit has |1〉 is

Todd = (H⊗n)e−iφ/2[In − (1− eiφ)|0〉〈0|](H⊗n)

Todd(

N−1∑
x=0

(γx|x〉) = e−iφ/2[γx − (1− eiφ) < µ >]

N−1∑
x=0

|x〉 (76)

where < µ >= 1
N

∑N−1
x=0 γx is the mean of the amplitudes of the subspace

entangled with |1〉.
The system after applying the diffusion operator Todd on |ψ4〉 becomes

|ψ5〉 = Todd|ψ4〉 = a1

N−M−1∑
j=0

′′
(|j〉 ⊗ |0〉) + b1

M−1∑
j=0

′
(|j〉 ⊗ |0〉) (77)

where

〈µ〉 =
1

N
(
(N −M)eiϕ/2√

N
+

(M)e−iϕ/2√
N

), (78)
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a1 = e−iφ/2[a0 − (1− eiφ)〈µ〉]

=
1√
N

[ei(
φ+ϕ

2 ) − 2i
M

N
(eiφ/2 − e−iφ/2)sin(ϕ/2)]

=
1√
N

[ei(
φ+ϕ

2 ) + 4
M

N
sin(φ/2)sin(ϕ/2)],

(79)

b1 = e−iφ/2[b0 − (1− eiφ)〈µ〉]

=
1√
N

[ei(
φ+ϕ

2 ) − 2i
M

N
(eiφ/2 − e−iφ/2)sin(ϕ/2)− 2ie−iφ/2sin(ϕ/2)]

=
1√
N

[ei(
φ+ϕ

2 ) + 4
M

N
sin(φ/2)sin(ϕ/2)− 2ie−iφ/2sin(ϕ/2)]

(80)

(7) Measurement: The first n qubits are measured for getting the system prob-
ability.
• Solutions Probability Ps: The probability of the solutions is computed

as

Ps = M |b1|2 (81)

• Non-Solutions Probability Pns: The probability of the non-solutions
is computed as

Pns = (N −M)|a1|2 (82)

The success probability Ps is amplified and becomes larger than the failure
probability Pns in the presence of noise on the extra qubit.

5. Results and Discussion

This section evaluates the performance of the three amplitude amplification tech-
niques for quantum search algorithms in the absence and presence of noise on the
extra qubit.

5.1. Experiment in the Absence of Noise. The performance of the three am-
plitude amplification techniques is evaluated and compared with three different
values of M/N in case of no error that occurs on the extra qubit.

(1) Solution Marking via Phase Shift: When the value of M/N = 25/100,
then the amplitude of solution items is b1 = 0.2 and the amplitude of non-
solution items is a1 = 0. Therefore, the probability of solution items is
amplified and becomes one while the probability of non-solution items is
de-amplified and becomes zero. When the value of M/N = 50/100, then the
amplitude of solution items is b1 = 0.1 and the amplitude of non-solution
items is a1 = −0.1. Therefore, the probability of solution items equals
to the probability of non-solution items which is 0.5. When the value of
M/N = 75/100, then the amplitude of solution items is b1 = 0 and the
amplitude of non-solution items is a1 = −0.2. Therefore, the probability
of solution items is de-amplified and becomes zero while the probability of
non-solution items is amplified and becomes one.

(2) Solution Marking via Entanglement: When the value of M/N = 25/100,
then the amplitudes of solution items are b1 = 0.15, c1 = −0.1 and the
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Table 1. Comparing the success probability of the three ampli-
tude amplification techniques with three different values of M/N
in the absence of noise.

Success Probability% of
M/N Phase Shift Entanglement Conditional Global

Phase Shift
0.25 100.00% 81.25% 78.44%
0.50 50.00% 100.00% 99.70%
0.75 00.00% 93.75% 96.17%

amplitude of non-solution items is a1 = 0.05. Therefore, the probabil-
ity of solution items is amplified and becomes 0.8125 while the proba-
bility of non-solution items is de-amplified and becomes 0.1875. When
the value of M/N = 50/100, then the amplitudes of solution items are
b1 = 0.1, c1 = −0.1 and the amplitude of non-solution items is a1 = 0.
Therefore, the probability of solution items is amplified and becomes one
while the probability of non-solution items is de-amplified and becomes
zero. When the value of M/N = 75/100, then the amplitudes of solution
items are b1 = 0.05, c1 = −0.1 and the amplitude of non-solution items is
a1 = −0.05. Therefore, the probability of solution items is amplified and
becomes 0.9375 while the probability of non-solution items is de-amplified
and becomes 0.0625.

(3) Solution Marking via conditional phase shift: When the value of M/N =
25/100, then the amplitude of solution items is b1 = 0.1464 and the am-
plitude of non-solution items is a1 = 0.0536. Therefore, the probability
of solution items is amplified and becomes 0.7844 while the probability of
non-solution items is de-amplified and becomes 0.2156. When the value of
M/N = 50/100, then the amplitude of solution items is b1 = 0.1 and the
amplitude of non-solution items is a1 = 0.0072. Therefore, the probability
of solution items is amplified and becomes 0.9974 while the probability of
non-solution items is de-amplified and becomes 0.0026. When the value of
M/N = 75/100, then the amplitude of solution items is b1 = 0.0536 and the
amplitude of non-solution items is a1 = −0.0392. Therefore, the probabil-
ity of solution items is amplified and becomes 0.9617 while the probability
of non-solution items is de-amplified and becomes 0.0383.

Table 1. summarises the success probability of the three amplitude amplification
techniques with three different values of M/N in the absence of noise. Figure
4. shows the behaviour of the success probability for the three techniques in the
absence of noise. Solution marking via phase shift solves the case where M = N/4
with certainty. Then the success probability is below one-half for M > N/2 and fails
with certainty for M = 3N/4. Solution marking via entanglement solves the case
where M = N/2 with certainty. Then the success probability stays more reliable
with probability at least 92.6%. Additionally, Solution marking via conditional
global phase shift solves the case where M = N/2 with certainty. Then the success
probability stays more reliable with probability at least 95.00% with the phase shift
1.4985 for oracle operator and −1.4985 for diffusion operator.
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Figure 4. Success probability of the three algorithms in the ab-
sence of noise.

5.2. Experiment in the Presence of Noise. The performance of the three am-
plitude amplification techniques is evaluated and compared with three different
values of M/N in case of bit-flip error that occurs on the extra qubit.

(1) Solution Marking via Phase Shift: The amplitude of solution items equals to
the amplitude of non-solution items which is 0.1 in three cases of M/N =
25/100, 50/100 and 75/100. Therefore, there is no amplification on the
amplitude of solution items so the probability of solution items equals to
the value of M/N .

(2) Solution Marking via Entanglement: When the value of M/N = 25/100,
then the amplitudes of solution items are c1 = −0.05, d1 = 0 and the
amplitudes of non-solution items are a1 = 0.05, b1 = −0.1. Therefore, the
probability of solution items is de-amplified and becomes 0.0625 while the
probability of non-solution items is amplified and becomes 0.9375. When
the value of M/N = 50/100, then the amplitudes of solution items are c1 =
0, d1 = 0 and the amplitudes of non-solution items are a1 = 0.1, b1 = −0.1.
Therefore, the probability of solution items is de-amplified and becomes
zero while the probability of non-solution items is amplified and becomes
one. When the value of M/N = 75/100, then the amplitudes of solution
items are c1 = 0.05, d1 = 0 and the amplitudes of non-solution items are
a1 = 0.15, b1 = −0.1. Therefore, the probability of solution items is de-
amplified and becomes 0.1875 while the probability of non-solution items
is amplified and becomes 0.8125.

(3) Solution Marking via conditional phase shift: The same results are obtained
when the extra qubit is in different states (|0〉 or |1〉). When the value of
M/N = 25/100, 50/100 and 75/100, then the success probability of solution
items is amplified and become 0.7844, 0.9974 and 0.9617 respectively.

Table 2. summarises the success probability of the three amplitude amplification
techniques with three different values of M/N in the presence of noise. Figure 5.
describes the success probability of the three techniques in the presence of noise.
In Solution marking technique via phase shift, there is no amplification for the so-
lutions probability and the amplitudes of the solutions and non-solutions are equal.
Therefore, the algorithm has the same behaviour of the classical search algorithm.
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Table 2. Comparing the success probability of the three ampli-
tude amplification techniques with three different values of M/N
in the presence of noise.

Success Probability% of
M/N Phase Shift Entanglement Conditional Global

Phase Shift
0.25 25.00% 6.25% 78.44%
0.50 50.00% 0.00% 99.70%
0.75 75.00% 18.75% 96.17%
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Figure 5. Success probability of the three algorithms in the pres-
ence of noise.

In solution marking technique via entanglement, there is de-amplification on the
solutions probability with bit-flip error problem on the extra qubit contrary to the
behaviour of the same algorithm without bit-flip error. While solution marking
technique via conditional global phase shift maintains the same behaviour which is
the amplification on the solutions probability in both cases.

Table 3. summarises the probability of the three techniques with/without noise
on the extra qubit. It is noted that the success probability (Ps) of the three tech-
niques is amplified and becomes larger than the failure probability (Pns) in the
absence of noise on the extra qubit. On the other hand, the behaviour of the suc-
cess probability becomes different in the presence of noise with solution marking
via phase shift and solution marking via entanglement. In solution marking via
phase shift, the success probability (Ps) equal to the failure probability (Pns) in
the presence of noise where the algorithm performance is affected by the bit-flip
error of the extra qubit and no amplification to the solutions state occurs. In so-
lution marking via entanglement, the success probability (Ps) is de-amplified and
becomes smaller than the failure probability (Pns) that is amplified in the presence
of noise. On the other hand, the success probability Ps is amplified and becomes
larger than the failure probability Pns in the absence/presence of noise on the extra
qubit with solution marking technique via conditional global phase shift.
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Table 3. Comparing the probability (P) of the three algorithms
in both cases.

Solution Marking Technique P without noise P with noise
Via Phase Shift Ps > Pns Ps = Pns

Via Entanglement Ps > Pns Ps < Pns
Via Conditional Global Phase Shift Ps > Pns Ps > Pns

6. Conclusion

Quantum search algorithms are very important due to their superiority over the
classical search algorithms. Those algorithms depend on amplitudes amplification
of the solutions in the database. This paper reviewed three different marking solu-
tion techniques for quantum search algorithms and described the system in terms
of N-dimensional Hilbert space. The three techniques are solutions marking via en-
tanglement, solutions marking via phase shift and solutions marking via conditional
phase shift. The three quantum search algorithms are analyzed and evaluated with
bit-flip error problem on the extra qubit that used for oracle evaluation. In the
case of non-noise on the extra qubit, the success probability of solution items is
larger than the failure probability (Ps > Pns) of non-solution items. Whereas in
case of noise on the extra qubit, the success probability equals to the failure prob-
ability (Ps = Pns) with solution marking via phase shift. Additionally, the success
probability is smaller than the failure probability (Ps < Pns) with solution mark-
ing via entanglement. The solution marking via conditional global phase shift is
robust against bit-flip error and preserves its behaviour which is the amplification
of solutions probability (Ps > Pns).

In the future, we will compare the performance of the three techniques against
the bit-flip error on the initial states of the system (arbitrary initial states). Ad-
ditionally, we will study the performance of the three techniques against of phase
shift errors.
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