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VALUE DISTRIBUTION OF A ALGEBROID FUNCTION AND

ITS LINEAR COMBINATIONS OF DERIVATIVES ON ANNULI

ASHOK RATHOD

Abstract. In this paper, we establish analogous of Milloux inequality and
Hayman’s alternative for algebroid functions on annuli. As an application of

our results, we deduce some interesting analogous results for algebroid function
on annuli.

1. Introduction

The uniqueness theory of algebroid functions is an interesting problem in
the value distribution theory. The uniqueness problem of algebroid functions was
firstly considered by Valiron, afterwards some scholars have got several uniqueness
theorems of algebroid functions in the complex plane C, (see [1]-[3], [8]-[11], [14],
[16], [18]-[35]). In 2005, Khrystiyanyn and Kondratyuk [6]-[7] gave an extension of
the Nevanlinna value distribution theory for meromorphic functions in annuli. In
their extension the main characteristics of meromorphic function are one-parameter
and posses the same properties as in the classical case of a simply connected domain.
After [6]-[7], Fernandez [5] study the value distribution of meromorphic functions
in the punctured plane.In 2015,Yang Tan [12], Yang Tan and Yue Wang [13] proved
some interesting results on the multiple values and uniqueness of algebroid functions
on annuli. Thus it is interesting to consider the uniqueness problem of algebroid
functions in multiply connected domains. By Doubly connected mapping theorem
[17] each doubly connected domain is conformally equivalent to the annulus {z :
r < |z| < R}, 0 ≤ r < R ≤ +∞. We consider only two cases : r = 0, R = +∞
simultaneously and 0 ≤ r < R ≤ +∞. In the latter case the homothety z 7→ z

rR

reduces the given domain to the annulus A = A
(

1
R0
, R0

)
=
{
z : 1

R0
< |z| < R0

}
,

where R0 =
√

R
r . Thus, in two cases every annulus is invariant with respect to the

inversion z 7→ 1
z .
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2. Definitions and main results

We assume that the reader is familiar with the Nevanlinna theory of meromorphic
functions and algebroid functions (see [4] and [15]).

Let Av(z), Av−1(z), ..., A0(z) be a group of analytic functions which have no

common zeros and define on the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞),

ψ(z,W ) = Av(z)W
v +Av−1(z)W

v−1 + ...+A1(z)W +A0(z) = 0. (1)

Then irreducible equation (1) defines a v-valued algebroid function on the annulus

A
(

1
R0
, R0

)
(1 < R0 ≤ +∞).

LetW (z) be a v-valued algebroid function on the annulus A
(

1
R0
, R0

)
(1 < R0 ≤

+∞), we use the notations

m(r,W ) =
1

ν

ν∑
j=1

m(r, wj) =
1

ν

ν∑
j=1

1

2π

∫ 2π

0
log+ |wj(re

iθ)|dθ,

N1(r,W ) =
1

ν

∫ 1

1
r

n1(t,W )

t
dt, N2(r,W ) =

1

ν

∫ r

1

n2(t,W )

t
dt,

N1

(
r,

1

W − a

)
=

1

ν

∫ 1

1
r

n1

(
t, 1

W−a

)
t

dt, N2

(
r,

1

W − a

)
=

1

ν

∫ r

1

n2

(
t, 1

W−a

)
t

dt,

m0(r,W ) = m(r,W ) +m

(
1

r
,W

)
− 2m(1,W ), N0(r,W ) = N1(r,W ) +N2(r,W ),

N0

(
r,

1

W − a

)
= N1

(
r,

1

W − a

)
+N2

(
r,

1

W − a

)
,

Nx(r,W ) = Nx1 (r,W ) +Nx2 (r,W ).

where wj(z)(j = 1, 2, ..., ν) is one valued branch of W (z), n1(t,W ) is the count-
ing functions of poles of the function W (z) in {z : t < |z| ≤ 1} and n2(t,W ) is the
counting functions of poles of the function W (z) in {z : 1 < |z| ≤ t} (both counting

multiplicity).n1

(
t, 1
W−a

)
is the counting functions of poles of the function 1

W−a in

{z : t < |z| ≤ 1} and n2

(
t, 1
W−a

)
is the counting functions of poles of the function

1
W−a in {z : 1 < |z| ≤ t} (both ignoring multiplicity).

Let W (z) be a v-valued algebroid function which determined by (1) on the

annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞), when a ∈ C, n0

(
r, 1
W−a

)
= n0

(
r, 1
ψ(z,a)

)
,

N0

(
r, 1
W−a

)
= 1

νN0

(
r, 1
ψ(z,a)

)
. In particular, when a = 0, N0

(
r, 1
W

)
= 1

νN0

(
r, 1
A0

)
.

When a = ∞, N0 (r,W ) = 1
νN0

(
r, 1
Av

)
; where n0

(
r, 1
W−a

)
and n0

(
r, 1
ψ(z,a)

)
are

the counting function of zeros of W (z)− a and ψ(z, a) on the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞), respectively.

Definition 1. [12] Let W (z) be an algebroid function on the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞), the function

T0(r,W ) = m0(r,W ) +N0(r,W ), 1 ≤ r < R0
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is called Nevanlinna characteristic of W (z).

Lemma 1. [12] (The first fundamental theorem on annuli) Let W (z) be ν-

valued algebroid function which is determined by (1) on the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞), a ∈ C

m0(r, a) +N0(r, a) = T0 (r,W ) +O(1).

Lemma 2. [13] (The second fundamental theorem on annuli). Let W (z) be

ν-valued algebroid function which is determined by (1) on the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞), ak (k = 1, 2, .., p) are p distinct complex numbers (finite or
infinite), then we have

(p− 2v)T0 (r,W ) ≤
p∑
k=1

N0

(
r,

1

W − ak

)
−N1(r,W ) + S0(r,W ) (2)

N1(r,W ) is the density index of all multiple values including finite or infinite, every
τ multiple value counts τ − 1, and

S0(r,W ) = m0

(
r,
W ′

W

)
+

p∑
j=1

m0

(
r,

W ′

W − ak

)
+O(1).

The remainder of the second fundamental theorem is the following formula

S0(r,W ) = O (log T0(r,W )) +O(log r),

outside a set of finite linear measure, if r → R0 = +∞, while

S0(r,W ) = O (log T0(r,W )) +O

(
log

1

R0 − r

)
,

outside a set E of r such that
∫
E

dr
R0−r < +∞, when r → R0 < +∞.

Lemma 3. [12] Let W (z) be ν-valued algebroid function which is determined

by (1) on the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞), if the following conditions are

satisfied

lim inf
r→∞

T0 (r,W )

log r
<∞, R0 = +∞,

lim inf
r→R−

0

T0 (r,W )

log 1
(R0−r)

<∞, R0 < +∞,

then W (z) is an algebraic function.

Lemma 4. [13] Let W (z) be an ν-valued algebroid function defined by (1) on

the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞) respectively, then

Nx(r,W ) ≤ 2(ν − 1)T0(r,W ) +O(1).

Lemma 5. Let W (z) be an ν-valued algebroid function defined by (1) on the

annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞) respectively, then

T0(r,W
′) < 2νT0(r,W ) + S0(r,W ).
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Proof. By Lemma 2 and Lemma 4, we have

T0 (r,W
′) = m0(r,W

′) +N0(r,W
′)

≤ m0 (r,W ) +N0(r,W ) +N(r,W )

+2(ν − 1)T0(r,W ) + S0(r,W )

≤ (2ν − 1)T0 (r,W ) +N0(r,W ) + S0(r,W )

≤ 2νT0 (r,W ) + S0(r,W ).

�

In the value distribution theory, it is very important to introduce and study the
derivative of a given function. It is natural to ask whether can we establish the
analogous of Milloux inequality and Hayman’s alternative for algebroid function on
annuli.

In this paper, we prove the following theorems and establish an interesting and
remarkable result of the Milloux inequality and Heyman’s alternative for algebroid
function on annuli.

Theorem 1. Let W (z) be an ν-valued algebroid function defined by (1) on

the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞) respectively. Let

Θ(z) =
k∑

l=0

al f
(l)(z) (3)

for any positive integer k.Where a0, a1, a2, a3, ....., ak are small functions of W (z).
Then

m0

(
R,

Θ

W

)
= S0(r,W ) (4)

and

T0 (r,Θ) ≤ [2(ν − 1)(2k − 1) + 1]T0 (r,W ) + kN0(r,W ) + S0(r,W ),

≤ [2ν(2k − 1)− 3(k − 1)]T0 (r,W ) + S0(r,W ). (5)

Theorem 2. LetW (z) be an ν-valued algebroid function defined by (1) on the

annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞) respectively and Θ(z) be the function defined

by (2.6). If Θ(z) is not a constant, then

T0(r,W ) < N0(r,W ) + N0

(
r,

1

W

)
+

2ν∑
j=1

N0

(
r,

1

Θ− a

)

+2Nx(r,W )−N
(0)
0

(
r,

1

Θ′

)
+ S0(r,W ) (6)

where (aj ̸= 0,∞) and N
(0)
0

(
r,

1

Θ′

)
counts only zeros of Θ′ but not the repeated

roots of Θ = aj(j = 1, 2, ..., 2ν) in A.

Theorem 3. Let W (z) be an ν-valued algebroid function defined by (1) on

the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞) respectively. Θ =W (k) and N

(0)
0

(
r,

1

Θ′

)
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be defined as in Theorem 2.2. Then

kN1
0 (r,W ) ≤ N

(2
0 (r,W ) + N0

(
r,

1

Θ− a

)
+ N

(0)
0

(
r,

1

Θ′

)
+Nx(r,W ) + S0(r,W ) (7)

where N1
0 (r,W ) counts the simple poles of W and N

(2

0 (r,W ) counts the multiple
poles of W, not including multiplicity in A.

Theorem 4. Let W (z) be an ν-valued algebroid function defined by (1) on

the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞) respectively. Then

T0(r,W ) ≤
(
2 +

1

k

)
N0

(
r,

1

W

)
+

(
2 +

2

k

)
N0

(
r,

1

Θ− a

)
+ 2Nx(r,W ) + S0(r,W ). (8)

By replacing Θ =W (k) in the Theorem 2, we get the following result

Corollary 1. Let W (z) be an ν-valued algebroid function defined by (1) on the

annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞) respectively and k is any positive integer.

Then

T0 (r,W ) ≤ N0 (r,W )+N0

(
r,

1

W

)
+N0

(
r,

1

W (k) − a

)
−N(0)

0

(
r,

1

W (k+1)

)
+Nx(r,W )+S0(r,W ).

By Theorem 2, we get the following Corollary

Corollary 2. Let W (z) be an ν-valued algebroid function defined by (1) on the

annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞) respectively, with only a finite number of zeros

and poles. Then every function Θ as defined in (2.6) assumes every finite complex
value, except possibly zero, infinitely often or else is identically constant.

By replacing Θ =W (k) in the Theorem 4, we get the following result

Corollary 3. Let W (z) be an ν-valued algebroid function defined by (1) on the

annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞) respectively. Then

T0(r,W ) ≤
(
2 +

1

k

)
N0

(
r,

1

W

)
+

(
2 +

2

k

)
N0

(
r,

1

W (k) − a

)
+ 2Nx(r,W ) + S0(r,W ).

By replacing the value of F =
W − ω1

ω2
, where ω1 and ω2 be complex numbers

ω2 ̸= 0 and T0(r, F ) = T0(r,W ) + O(1) in Theorem 4. Then we get the following
result.

Corollary 4. (Hayman’s Alternative on annuli. ) Let W (z) be an ν-valued

algebroid function defined by (1) on the annulus A
(

1
R0
, R0

)
(1 < R0 ≤ +∞)

respectively. Then either W assumes every finite value infinitely often or W (k)

assumes every finite value except possibly zero infinitely often in A.
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3. Proof of Theorems

3.1. Proof of Theorem 1. From Lemma 2, we can get

S0(r,W
(k)) = O(log rT0(r,W

(k))) = O(log rT0(r,W )) = S0(r,W ).

First of all, we consider the special case when Θ(z) =W (k)(z). By Lemma 2.2, we
have

m0

(
r,
W (k)

W

)
= S0(r,W ), (9)

and

T0(r,W
(k)) = m0(r,W

(k)) +N0(r,W
(k))

≤ m0(r,W ) +m0

(
r,
W (k)

W

)
+N0(r,W

(k))

≤ m0(r,W ) +N0(r,W ) + kN0(r,W ) (10)

+2(ν − 1)(2k − 1)T0(r,W ) + S0(r,W )

≤ (k + 1)T0(r,W ) + 2(ν − 1)(2k − 1)T0(r,W ) + S0(r,W )

= [2ν(2k − 1)− 3(k − 1)]T0(r,W ) + S0(r,W ).

In the following, we consider the general case. It is obvious that

m0

(
r,

Θ

W

)
≤

k∑
l=0

m0

(
r,
alW

(l)

W

)
+ log(k + 1)

≤
k∑
l=0

[
m0 (r, al) +m0

(
r,
W (l)

W

)]
+ log(k + 1)

≤ S0(r,W ). (11)

Thus, we have

m0 (r,Θ) ≤ m0

(
r,

Θ

W

)
+ m0 (r,W ) ≤ m0(r,W ) + S0(r,W ). (12)

On the other hand, we have

N0 (r,Θ) ≤ N0

(
r,W (k)

)
≤ N0 (r,W ) + kN0 (r,W ) (13)

+2(ν − 1)(2k − 1)T0(r,W ) + S0(r,W ).

it follows from (12) and (13) that

T0 (r,Θ) = m0 (r,Θ) + N0 (r,Θ)

≤ m0 (r,W ) + N0 (r,W ) + kN0 (r,W ) + S0(r,W )

≤ T0 (r,W ) + kN0 (r,W ) + 2(ν − 1)(2k − 1)T0(r,W ) + S0(r,W )

≤ [2ν(2k − 1)− 3(k − 1)]T0 (r,W ) + S0(r,W ).

Therefore

T0 (R,Θ) ≤ [2ν(2k − 1)− 3(k − 1)]T0 (r,W ) + S(r,W )

which completes the proof of Theorem 1.
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3.2. Proof of Theorem 2. By the Second Fundamental theorem for algebroid
functions on annuli, we have

m0 (r,Θ)+m0

(
r,

1

Θ

)
+m0

(
r,

1

Θ − a

)
≤ (2ν+1)T0 (r,Θ)−N(1)

0 (r,W )−Nx(r,Θ)+ S0(R,Θ). (14)

By the First Fundamental theorem for algebroid functions on annuli, we have

(2ν + 1)T0 (r,Θ) − N
(1)
0 (r,W )

= m0 (r,Θ) +
2ν∑
j=1

m0 (r, aj ,Θ) +N0 (r,Θ) +
2ν∑
j=1

N0 (r, aj ,Θ) −
[
2N0 (r,Θ) − N0

(
r,Θ

′)
+N0

(
r,

1

Θ′

)]

= m0 (r,Θ) + m0 (r, a,Θ) + N0 (r, aj ,Θ) − N0

(
r,

1

Θ′

)
+N0

(
r,Θ

′)− N0 (r,Θ) . (15)

It is obvious that

N0

(
R,Θ′)− N0 (R,Θ) ≤ N0(r,Θ) +Nx(r,Θ) +O(1)

≤ N0 (r,W ) + 2Nx(r,W ) + S0(r,W ) (16)

and
2ν∑
j=1

N0

(
r,

1

Θ − aj

)
− N0

(
r,

1

Θ′

)
≤

2ν∑
j=1

N0

(
R,

1

Θ − aj

)
+Nx(r,W ) − N

(0)
0

(
r,

1

Θ′

)
. (17)

Hence it follows from (14), (15), (16) and (17) that

m0

(
r,

1

Θ

)
≤ N0 (r,W ) +

2ν∑
j=1

N0

(
r,

1

Θ− a

)
+ 2Nx(r,W )− N0

0

(
r,

1

Θ′

)
+ S0(r,Θ). (18)

From (2.8), we have

S0(r,Θ) = S0(r,W ).

By First fundamental Theorem for algebroid function on annuli, we have

T0 (r,W ) = m0

(
r,

1

W

)
+ N0

(
r,

1

W

)
+ O(1)

≤ m0

(
r,

1

Θ

)
+ m0

(
r,

Θ

W

)
+ N0

(
r,

1

W

)
+ O(1)

≤ m0

(
r,

1

Θ

)
+ N0

(
r,

1

W

)
+ S0(r,W ). (19)

From (18) and (19), we have

T0 (r,W ) ≤ N0 (r,W ) + N0

(
r,

1

W

)
+

2ν∑
j=1

N0

(
r,

1

Θ − aj

)
+ 2Nx(r,W ) − N

(0)
0

(
r,

1

Θ′

)
+ S0(R,W )

which completes the Proof of Theorem 2.

3.3. Proof of Theorem 3. We first define the function

Ŵ (z) =

(
W (k+1)

)k+1(
a−W (k)

)k+2
=

(Θ′)k+1

(a−Θ)k+2
. (20)

Suppose W has a simple pole at z0, i,e W (z) = b(z− z0)
−1 + O(1) for some b ̸= 0.

Then differentiating k times,

W (k)(z) =
(−1)ka k!

(z − z0)k+1

(
1 +O((z − z0)

k+1)
)
.

Differentiating again and then substituting it into Ŵ , we find that

Ŵ (z) =
(−1)k(k + 1)k+1

a k!

(
1 +O((z − z0)

k+1)
)
.
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Thus, at a simple pole of W, Ŵ ̸= 0, ∞, but Ŵ ′ has a zero of order at least k.

Now we apply first fundamental theorem for algebroid function on annulus to
Ŵ ′

Ŵ
,

assuming Ŵ to be non constant, giving

m0

(
r,

Ŵ ′

Ŵ

)
− m0

(
r,

Ŵ

Ŵ ′

)
+ O(1)

= N0

(
r,

Ŵ

Ŵ ′

)
− N0

(
r,

Ŵ ′

Ŵ

)

= N0

(
r, Ŵ

)
+ N0

(
r,

1

Ŵ ′

)
− N0

(
r, Ŵ ′

)
− N0

(
r,

1

Ŵ

)
= N0

(
r,

1

Ŵ ′

)
− N0

(
r,

1

Ŵ

)
− N0

(
r, Ŵ

)
−Nx(r,W )

= N
(0)
0

(
r,

1

Ŵ ′

)
− N0

(
r,

1

Ŵ

)
− N0

(
r, Ŵ

)
−Nx(r,W ). (21)

Thus using (21) and the property that m0

(
r,
Ŵ

Ŵ ′

)
is non negative, we have

kN
1
0 (r,W ) ≤ N

(0)
0

(
r,

1

Ŵ ′

)
≤ N0

(
r,

1

Ŵ

)
+ N0

(
r, Ŵ

)
+Nx(r,W ) + m0

(
r,
Ŵ ′

Ŵ

)
+ O(1)

≤ N0

(
r,

1

Ŵ

)
+ N0

(
r, Ŵ

)
+Nx(r,W ) + S0(r, Ŵ ). (22)

By (22) and zeros and poles of g can only occur at multiple poles of f, a-points
of Θ or zeros of Θ′ which are not a-points of Θ and so

N0

(
R,

1

Ŵ

)
+ N0

(
R, Ŵ

)
≤ N0

(
r,

1

Θ− a

)
+ N

(2
0 (r,W ) + N

(0)
0

(
r,

1

Θ′

)
.

Hence by (19), we have

kN1
0 (r,W ) ≤ N

(2
0 (r,W ) + N0

(
r,

1

Θ− a

)
+ N

(0)
0

(
r,

1

Θ′

)
+Nx(r,W ) + S0(r,W ).

3.4. Proof of Theorem 4. We start by noting that in N0(R, f), multiple poles
are counted at least twice and then apply (2.9)

N
1
0 (r,W )+ 2N

(2
0 (r,W ) ≤ T0(r,W ) ≤ N0 (r, f)+N0

(
r,

1

W

)
+N0

(
r,

1

Θ − a

)
−N

(0)
0

(
r,

1

Θ′

)
+2Nx(r,W )+S0(r,W ).

(23)

Since N0(r,W ) = N1
0 (r,W ) + N

(2

0 (r,W ), hence by (3.15), we get

N
(2
0 (r,W ) ≤ N0

(
r,

1

W

)
+ N0

(
R,

1

Θ − a

)
− N

(0)
0

(
R,

1

Θ′

)
+ 2Nx(r,W ) + S0(r,W ). (24)

By (24) and (2.10), we get

kN
1
0 (r,W ) ≤ N0

(
r,

1

W

)
+ N0

(
r,

1

Θ − a

)
− N

(0)
0

(
r,

1

Θ′

)
+ N0

(
r,

1

Θ − a

)
+ N

(0)
0

(
r,

1

Θ′

)
+ S0(r,W )

≤ N0

(
r,

1

W

)
+ 2N0

(
r,

1

Θ − a

)
+ S0(r,W ). (25)
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By (24) and (25), we can write

N0(r,W ) = N1
0 (r,W ) + N

(2
0 (r,W )

≤
1

k
N0

(
r,

1

W

)
+

2

k
N0

(
r,

1

Θ− a

)
+ N0

(
r,

1

W

)
+ N0

(
r,

1

Θ− a

)
−N

(0)
0

(
r,

1

Θ′

)
+Nx(r,W ) + S0(r,W )

N0(r,W ) ≤
(
1 +

1

k

)
N0

(
r,

1

W

)
+

(
1 +

2

k

)
N0

(
r,

1

Θ− a

)
−N

(0)
0

(
r,

1

Θ′

)
+2Nx(r,W )+S0(r,W ).

(26)

Since N
(0)
0

(
r,

1

Θ′

)
≥ 0, we substitute this and (26) into (2.9), we get

T0(r,W ) ≤
(
2 +

1

k

)
N0

(
r,

1

W

)
+

(
2 +

2

k

)
N0

(
r,

1

Θ− a

)
+ S0(r,W ).

4. Open questions

Can we use Milloux inequality and Hayman’s alternative for algebroid functions
for more general differential polynomials on annuli and use those to prove results
related to sharing of two differential polynomials of algebroid functions on annuli.
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