A NOTE ON $*$-SEMIMULTIPLIERS IN PRIME RINGS WITH INVOLUTION

KYUNG HO KIM

Abstract

Let R be a $*$-ring and g be a surjective map of R. An additive mapping $F: R \rightarrow R$ is called a $*$-semimultiplier if (1) $F(x y)=F(x) g\left(y^{*}\right)=$ $g\left(x^{*}\right) F(y)(2) F(g(x))=g(F(x))$ for all $x, y \in R$. In this paper, we introduce the notion of $*$-semimultiplier of a ring R, and investigate the commutativity of prime rings satisfying certain identities involving $*$-semimultiplier of R.

1. Introduction

Many considerable works have been done on left (right) multipliers in prime and semiprime rings during the last couple of decades([10-12]). An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+y d(x)$ holds for all $x, y \in R$. Following [5], an additive mapping $F: R \rightarrow R$ is called a generalized derivation on R if there exists a derivation $d: R \rightarrow R$ such that $F(x y)=F(x) y+x d(y)$ for every $x, y \in R$. Obviously, a generalized derivation with $d=0$ covers the concept of left multiplicars. Over the last few decades, several authors have investigated the relationship between the commutativity of the ring R and certain specific types of derivations of R. The first result in this direction is due to E. C. Posner [9] who proved that if a ring R admits a nonzero derivation d such that $[d(x), x] \in Z(R)$ for all $x \in R$, then R is commutative. This result was subsequently, refined and extended by a number of authors. In [7], Bresar and Vuckman showed that a prime ring must be commutative if it admits a nonzero left derivation. Recently, many authors have obtained commutativity theorems for prime and semiprime rings admitting derivation, generalized derivation. In this paper, we introduce the notion of a $*$-semimultiplier of R, and investigate the commutativity of prime $*-$ rings satisfying certain identities involving $*$-semimultiplier of R.

2. Preliminaries

Throughout R will represent an associative ring with center $Z(R)$. For all $x, y \in$ R, as a usual commutator, we shall write $[x, y]=x y-y x$, and $x \circ y=x y+y x$. Also,

[^0]we make use of the following two basic identities without any specific mention:
\[

$$
\begin{gathered}
x \circ(y z)=(x \circ y) z-y[x, z]=y(x \circ z)+[x, y] z \\
(x y) \circ z=x(y \circ z)-[x, z] y=(x \circ z) y+x[y, z] \\
{[x y, z]=x[y, z]+[x, z] y \text { and }[x, y z]=y[x, z]+[x, y] z .}
\end{gathered}
$$
\]

Recall that R is prime if $a R b=\{0\}$ implies $a=0$ or $b=0$. An additive mapping $x \rightarrow x^{*}$ of R into itself is called an involution if the following conditions are satisfied (i) $(x y)^{*}=y^{*} x^{*}$ (ii) $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$. A ring equipped with an involution is called an $*$-ring or ring with involution. Let R is a ring. An additive mapping $F: R \rightarrow R$ is called a left multiplier if $F(x y)=F(x) y$ holds for every $x, y \in R$. Similarly, an additive mapping $F: R \rightarrow R$ is called a right multiplier if $F(x y)=x F(y)$ holds for every $x, y \in R$. If F is both a left and a right multiplier of R, then it is called a multiplier of R.

Definition 2.1. ([8]) Let R be a ring. An additive mapping $F: R \rightarrow R$ is called a semimultiplier associated with a surjective function $g: R \rightarrow R$ if
(a) $F(x y)=F(x) g(y)=g(x) F(y)$,
(b) $F(g(x))=g(F(x))$, for every $x, y \in R$.

3. *-SEMIMULTIPLIERS IN PRIME RINGS WITH INVOLUTION

Definition 3.1. Let R be a *-ring. An additive mapping $F: R \rightarrow R$ is called a *-semimultiplier associated with a surjective function $g: R \rightarrow R$ if
(a) $F(x y)=F(x) g\left(y^{*}\right)=g\left(x^{*}\right) F(y)$,
(b) $F(g(x))=g(F(x))$, for every $x, y \in R$.

Lemma 3.2. Let R be a prime *-ring and let g be a surjective function. Suppose that F is $a *$-semimultiplier associated with g and $a \in R$. If $a F(x)=0$ for every $x \in R$, then $a=0$ or $F=0$.

Proof. By hypothesis, we have $a F(x)=0$ for any $x \in R$. Replacing x by $x r$ in the last relation, we get

$$
\begin{equation*}
a g\left(x^{*}\right) F(r)=0, \forall x, r \in R \tag{1}
\end{equation*}
$$

Replacing x by x^{*} in (1), we have $a g(x) F(r)=0$ for all $x, r \in R$. Since g is onto, we have $a R F(r)=\{0\}$ for all $r \in R$. Using the fact that R is prime, we have $a=0$ or $F(r)=0$ for all $r \in R$. That is, $a=0$ or $F=0$.

Theorem 3.3. Let R be a semiprime *-ring and let g be an automorphism on R. Suppose that R admits a nonzero *-semimultiplier F associated with g. Then F maps from R to $Z(R)$.

Proof. By hypothesis,

$$
\begin{equation*}
F(x y)=F(x) g\left(y^{*}\right)=0, \forall x, y \in R \tag{2}
\end{equation*}
$$

Replacing y by $y z$ with $z \in R$, in (2), we obtain

$$
\begin{align*}
F(x y z) & =F(x(y z))=F(x)\left(g(y z)^{*}\right) \\
& =F(x) g\left(z^{*} y^{*}\right)=F(x) g\left(z^{*}\right) g\left(y^{*}\right) \tag{3}
\end{align*}
$$

Also, we have

$$
\begin{align*}
F(x y z) & =F((x y) z)=F(x y) g\left(z^{*}\right) \\
& =F(x) g\left(y^{*}\right) g\left(z^{*}\right) \tag{4}
\end{align*}
$$

Comparing (3) with (4), we get

$$
\begin{equation*}
F(x)\left[g\left(z^{*}\right), g\left(y^{*}\right)\right]=0, \forall x, y, z \in R \tag{5}
\end{equation*}
$$

Substituting z^{*} for z and y^{*} for y in (5), we obtain

$$
\begin{equation*}
F(x)[g(z), g(y)]=0, \forall x, y, z \in R \tag{6}
\end{equation*}
$$

Taking $z F(x)$ in place of z in (6), we get

$$
F(x) g(z)[g(F(x)), g(y)]+F(x)[g(z), g(y)] g(F(x))=0
$$

for all $x, y, z \in R$. By using the relation (6), we get

$$
\begin{equation*}
F(x) g(z)[g(F(x)), g(y)]=0, \forall x, y, z \in R \tag{7}
\end{equation*}
$$

Multiplying by $g(y F(x))$ on left side of (7), we have

$$
\begin{align*}
0 & =g(y F(x)) F(x) g(z)[g(F(x)), g(y)] \\
& =g(y) g(F(x)) F(x) g(z)[g(F(x)), g(y)] \tag{8}
\end{align*}
$$

Multiplying by $g(F(x) y)$ on left side of (7), we have

$$
\begin{align*}
0 & =g(F(x) y) F(x) g(z)[g(F(x)), g(y)] \\
& =g(F(x)) g(y) F(x) g(z)[g(F(x)), g(y)] \tag{9}
\end{align*}
$$

Comparing (8) with (9), we obtain $[g(F(x), g(y)] F(x) g(z)[g(F(x), g(y)]=0$ for all $x, y, z \in R$. That is, $[g(F(x), g(y)] R[g(F(x), g(y)]=\{0\}$ for all $x, y \in R$. Since R is semiprime, we have $[g(F(x), g(y)]=0$ for all $x, y \in R$. Hence we get

$$
\begin{align*}
0 & =[g(F(x), g(y)]=g(F(x)) g(y)-g(y) g(F(x)) \\
& =g(F(x) y)-g(y F(x))=g(F(x) y-y F(x)) \\
& =g[F(x), y] \tag{10}
\end{align*}
$$

for all $x, y \in R$. Since g is an automorphism of R, we get $[F(x), y]=0$ for all $x, y \in R$. Hence F is a mapping from R into $Z(R)$.

Theorem 3.4. Let R be a prime *-ring and let g is an automorphism on R. Suppose that R admits a nonzero *-semimultiplier F associated with g, then R is commutative.

Proof. By hypothesis,

$$
\begin{equation*}
F(x y)=F(x) g\left(y^{*}\right)=0, \forall x, y \in R \tag{11}
\end{equation*}
$$

Replacing y by $y z$ with $z \in R$, in (11), we obtain

$$
\begin{align*}
F(x y z) & =F(x(y z))=F(x)\left(g(y z)^{*}\right) \\
& =F(x) g\left(z^{*} y^{*}\right)=F(x) g\left(z^{*}\right) g\left(y^{*}\right) \tag{12}
\end{align*}
$$

Also, we have

$$
\begin{align*}
F(x y z) & =F((x y) z)=F(x y) g\left(z^{*}\right) \\
& =F(x) g\left(y^{*}\right) g\left(z^{*}\right) \tag{13}
\end{align*}
$$

Comparing (12) with (13), we get

$$
\begin{equation*}
F(x)\left[g\left(z^{*}\right), g\left(y^{*}\right)\right]=0, \forall x, y, z \in R \tag{14}
\end{equation*}
$$

Substituting z^{*} for z and y^{*} for y in (14), we obtain

$$
\begin{equation*}
F(x)[g(z), g(y)]=0, \forall x, y, z \in R . \tag{15}
\end{equation*}
$$

Substituting $g^{-1}(z)$ for z and $g^{-1}(y)$ for y in this relation, we get

$$
\begin{equation*}
F(x)[z, y]=0, \forall x, y, z \in R \tag{16}
\end{equation*}
$$

Replacing z by $z r$ in the last equation, we have $F(x) z[r, y]=0$, which implies that $F(y) R[z, y]=\{0\}$ for every $x, y, z \in R$. Since R is prime, we have $F(y)=0$ or $[r, z]=0$ for every $r, y, z \in R$. Since $F \neq 0$, we have $[r, y]=0$ for every $x, z \in R$, which implies that R is commutative.

Theorem 3.5. Let R be a prime *-ring and $a \in R$ and let g be an automorphism on R. If R admits $a *$-semimultiplier F of R and $[F(x), a]=0$, then $F(x)=0$ or $a \in Z(R)$.
Proof. By hypothesis, we have

$$
\begin{equation*}
[F(x y), a]=0, \forall x, y \in R \tag{17}
\end{equation*}
$$

which implies that $\left[F(x) g\left(y^{*}\right), a\right]=0$ for all $x, y \in R$. That is,

$$
\begin{equation*}
F(x)\left[g\left(y^{*}\right), a\right]=0, \forall x, y \in R \tag{18}
\end{equation*}
$$

Substituting y^{*} for y in this relation, we have $F(x)[g(y), a]=0$ for all $y \in R$. Substituting $g^{-1}(y)$ for y in this relation, we have $F(x)[y, a]=0$ for all $y \in R$. Again, taking $y x$ in stead of y in the last relation, we obtain

$$
\begin{equation*}
F(x) y[x, a]=0, \forall x, y \in R \tag{19}
\end{equation*}
$$

This implies that $F(x) R[x, a]=\{0\}$ for all $x \in R$. Since R is prime, we have $F(x)=0$ or $a \in Z(R)$.

Definition 3.6. Let R be a *-ring. An additive mapping $F: R \rightarrow R$ is called a reverse $*$-semimultiplier associated with a surjective function $g: R \rightarrow R$ if
(a) $F(x y)=F(y) g\left(x^{*}\right)=g\left(y^{*}\right) F(x)$,
(b) $F(g(x))=g(F(x))$, for every $x, y \in R$.

Theorem 3.7. Let R be a prime $*$-ring and let g is an automorphism on R. Suppose that R admits a reverse *-semimultiplier F associated with g. If $F([x, y])=0$ for all $x, y \in R$, then $F(x)=0$ or R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
F([x, y])=0, \forall x, y \in R . \tag{20}
\end{equation*}
$$

Replacing x by $x z$ in (20), we have

$$
\begin{align*}
0 & =F([x z, y])=F(x[z, y]+[x, y] z) \\
& =F([z, y]) g\left(x^{*}\right)+F(z) g\left([x, y]^{*}\right) \\
& =F(z) g\left([x, y]^{*}\right) \tag{21}
\end{align*}
$$

for all $x, y, z \in R$. Substituting $g^{-1}\left([x, y]^{*}\right)$ for $[x, y]$ in (21), we have $F(z)[x, y]=0$ for all $x, y, z \in R$. Also, replacing y by $y r$ in this relation, we have $F(z) y[x, r]=0$
for all $r, x, y \in R$. This implies that $F(z) R[x, r]=\{0\}$ for all $r, x \in R$. Since R is prime, we have $F(z)=0$ or $[x, r]=0$ for all $r, x \in R$. Let $K=\{z \in R \mid F(z)=0\}$ and $L=\{x \in R \mid[x, r]=0, \forall r \in R\}$. Then K and L are both additive subgroups and $K \cup L=R$, but $(R,+)$ is not union of two its proper subgroups, which implies that either $K=R$ or $L=R$. In the former case, we have $F=0$. If $L=R$, then R is commutative.

Theorem 3.8. Let R be a prime $*$-ring and let g is an automorphism on R. Suppose that R admits a reverse $*$-semimultiplier F associated with g. If $F(x \circ y)=0$ for all $x, y \in R$, then $F(x)=0$ or R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
F(x \circ y)=0, \forall x, y \in R . \tag{22}
\end{equation*}
$$

Replacing x by $x y$ in (22), we have

$$
\begin{align*}
0 & =F(x y \circ y)=F((x \circ y) y) \\
& =F(y) g\left((x \circ y)^{*}\right) \tag{23}
\end{align*}
$$

for all $x, y \in R$. Substituting $(x \circ y)^{*}$ for $(x \circ y)$ in (23), we have $F(y) g(x \circ y)=0$ for all $x, y, z \in R$. Also, replacing $x \circ y$ by $g^{-1}(x \circ y)$ in this relation, we have $F(y)(x \circ y)=0$ for all $x, y \in R$. Replacing x by $y x$ in the last equation, we have $F(y) y(x \circ y)=0$, which implies that $F(y) R(x \circ y)=\{0\}$ for every $x, y \in R$. Since R is prime, we have $x \circ y=0$ or $F(y)=0$ for all $x, y \in R$. Let $K=\{y \in R \mid F(y)=0\}$ and $L=\{y \in R \mid x \circ y=0\}$ for all $x, y \in R$. Then K and L are both additive subgroups and $K \cup L=R$, but $(R,+)$ is not union of two its proper subgroups, which implies that either $K=R$ or $L=R$. In first case, $F=0$. In second case, If $R=L$, we have $x \circ y=0$ for all $x, y \in R$. Replacing x by $x z$ in the last relation and using the fact that $y x=-x y$, we obtain $x[z, y]=0$ for all $x, y, z \in R$. That is, $R[z, y]=\{0\}$. This implies that $[z, y] R[z, y]=\{0\}$ for all $y, z \in R$. Since R is prime, we have $[z, y]=0$ for all $y, z \in R$, which means that R is commutative.

Theorem 3.9. Let R be a prime $*$-ring and let g is an automorphism on R. Suppose that R admits a reverse $*$-semimultiplier F associated with g. If $[F(x), y]=0$ for all $x, y \in R$, then $F(x)=0$ or R is commutative.
Proof. By hypothesis, we have

$$
\begin{equation*}
[F(x), y]=0, \forall x, y \in R \tag{24}
\end{equation*}
$$

Replacing x by $x z$ in (24), we have

$$
\begin{align*}
0 & =[F(x z), y]=\left[F(z) g\left(x^{*}\right), y\right] \\
& =F(z)\left[g\left(x^{*}\right), y\right]+[F(z), y] g\left(x^{*}\right) \\
& =F(z)\left[g\left(x^{*}\right), y\right] \tag{25}
\end{align*}
$$

for all $x, y, z \in R$. Substituting x^{*} for x in (25), we have $F(z)[g(x), y]=0$ for all $x, y, z \in R$. Since g is onto, we have $F(z)[x, y]=0$ for all $x, y, z \in R$. Also, replacing y by $y r$ in this relation, we have $F(z) y[x, r]=0$ for all $r, x, y, z \in R$. This implies that $F(z) R[x, r]=\{0\}$ for all $r, x, z \in R$. Since R is prime, we have $F(z)=0$ or $[x, r]=0$ for all $r, x, z \in R$. Let $K=\{z \in R \mid F(z)=0\}$ and $L=\{x \in R \mid[x, r]=$ $0, \forall r \in R\}$. Then K and L are both additive subgroups and $K \cup L=R$, but
$(R,+)$ is not union of two its proper subgroups, which implies that either $K=R$ or $L=R$. In the former case, we have $F=0$. If $L=R$, then R is commutative.

Theorem 3.10. Let R be a prime *-ring and let g is an automorphism on R. Suppose that R admits a reverse $*$-semimultiplier F associated with g. If $F(x) \circ y=0$ for all $x, y \in R$, then $F(x)=0$ or R is commutative.
Proof. By hypothesis, we have

$$
\begin{equation*}
F(x) \circ y=0, \forall x, y \in R . \tag{26}
\end{equation*}
$$

Replacing x by $x z$ in (26), we have

$$
\begin{align*}
0 & =F(x z) \circ y=F(z) g\left(x^{*}\right) \circ y \\
& =(F(z) \circ y) g\left(x^{*}\right)+F(z)\left[g\left(x^{*}\right), y\right] \\
& =F(z)\left[g\left(x^{*}\right), y\right] \tag{27}
\end{align*}
$$

for all $x, y, z \in R$. Substituting x^{*} for x in (27), we have $F(z)[g(x), y]=0$ for all $x, y, z \in R$. Since g is onto, we have $F(z)[x, y]=0$ for all $x . y, z \in R$. Also, replacing y by $y r$ in this relation, we have $F(z) y[x, r]=0$ for all $r, x, y, z \in R$. This implies that $F(z) R[x, r]=\{0\}$ for all $r, x, z \in R$. Since R is prime, we have $F(z)=0$ or $[x, r]=0$ for all $r, x, z \in R$. Let $K=\{z \in R \mid F(z)=0\}$ and $L=\{x \in R \mid[x, r]=0, \forall r \in R\}$. Then K and L are both additive subgroups and $K \cup L=R$, but $(R,+)$ is not union of two its proper subgroups, which implies that either $K=R$ or $L=R$. In the former case, we have $F=0$. If $L=R$, then R is commutative.

Theorem 3.11. Let R be a prime *-ring and let g is an automorphism on R. Suppose that R admits a reverse *-semimultiplier $F \neq 0$ associated with g. If $[F(x), F(y)]=0$ for all $x, y \in R$, then R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
[F(x), F(y)]=0, \forall x, y \in R \tag{28}
\end{equation*}
$$

Replacing x by $x z$ in (28), we have

$$
\begin{align*}
0 & =[F(x z), F(y)]=\left[F(z) g\left(x^{*}\right), F(y)\right] \\
& =F(z)\left[g\left(x^{*}\right), F(y)\right]+[F(z), F(y)] g\left(x^{*}\right) \\
& =F(z)\left[g\left(x^{*}\right), F(y)\right] \tag{29}
\end{align*}
$$

for all $x, y, z \in R$. Substituting x^{*} for x in (29), we have $F(z)[g(x), F(y)]=0$ for all $x, y, z \in R$. Since g is onto, we have $F(z)[x, F(y)]=0$ for all $x, y, z \in R$. Also, replacing x by $x r$ in this relation, we have $F(z) x[r, F(y)]+F(z)[x, F(y)] r=$ $F(z) x[r, F(y)]=0$ for all $r, x, y, z \in R$. This implies that $F(z) R[r, F(y)]=\{0\}$ for all $r, y, z \in R$. Since R is prime, we have $F(z)=0$ or $[r, F(y)]=0$ for all $r, y, z \in R$. Since $F \neq 0$, we have $[r, F(y)]=0$ for all $r, y \in R$. By the same methods as we used in the last part proof of Theorem 3.9, we get the required result.

Theorem 3.12. Let R be a prime $*$-ring and let g is an automorphism on R. Suppose that R admits a reverse $*$-semimultiplier $F \neq 0$ associated with g. If $F(x) \circ$ $F(y)=0$ for all $x, y \in R$, then R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
F(x) \circ F(y)=0, \forall x, y \in R . \tag{30}
\end{equation*}
$$

Replacing x by $x z$ in (30), we have

$$
\begin{align*}
0 & =F(x z) \circ F(y)=F(z) g\left(x^{*}\right) \circ F(y) \\
& =(F(z) \circ F(y)) x^{*}+F(z)\left[g\left(x^{*}\right), F(y)\right] \\
& =F(z)\left[g\left(x^{*}\right), F(y)\right] \tag{31}
\end{align*}
$$

for all $x, y, z \in R$. Substituting x^{*} for x in (31), we have $F(z)[g(x), F(y)]=0$ for all $x, y, z \in R$. Since g is onto, we obtain $F(z)[x, F(y)]=0$ for all $x, y, z \in R$. By the same methods as we used in the last part proof of Theorem 3.11, we get the required result.

References

[1] H. E. Bell and M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math, Bull 37 (1994), 443-447.
[2] H. E. Bell, W. S. Martindale III Centralizing mappings of semi-prime rings, Canad. Math, Bull 30 (1987), 92-101.
[3] J. Bergen and P. Przesczuk, Skew derivations with central invariants, J. London Math. Soc, 59 (2) (1999), 87-99.
[4] M. Bresar, On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc, 114 (1992), 641-649.
[5] M. Bresar, On the distance the composition of two derivation to the generalized derivations, Glasgow Math. J. 33 (1991), 89-93.
[6] M. Bresar, Semiderivations of prime rings, Proc. Amer. Math. Soc, 108 (4) (1990), 859-860.
[7] M. Bresar and J. Vukman, A left derivations and related mappings, Proc. Amer. Math. Soc, 110 (1990), 7-16.
[8] K. H. Kim A note on semimultipliers in prime rings, Electronic journal of Mathematical Analysis and Applications, 6 (1) (2018), 204-212.
[9] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc, 8 (1957), 1093-1100.
[10] J. Vukman, Centralizer on semiprime rings, Comment. Math. Univ. Carolinae, 42 (2001), 237-245.
[11] J. Vukman, Identity related to centralizer in semiprime rings, Comment. Math. Univ. Carolinae, 40 (1999), 447-456.
[12] B. Zalar, On centralizer of semiprime rings, Comment. Math. Univ. Carolinae, 32 (1991), 609-614.

KYUNG HO KIM
Department of Mathematics, Korea Kyotong National University, Chunguu 27469, KoREA

E-mail address: ghkim@ut.ac.kr

[^0]: 2010 Mathematics Subject Classification. Primary 16Y30.
 Key words and phrases. Ring, involution, *-semimultiplier, multiplier, prime, commutative. Submitted Jan. 3, 2019. Revised June 18, 2019.

