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A NOTE ON ∗-SEMIMULTIPLIERS IN PRIME RINGS WITH

INVOLUTION

KYUNG HO KIM

Abstract. Let R be a ∗-ring and g be a surjective map of R. An additive
mapping F : R → R is called a ∗-semimultiplier if (1) F (xy) = F (x)g(y∗) =
g(x∗)F (y) (2) F (g(x)) = g(F (x)) for all x, y ∈ R. In this paper, we introduce
the notion of ∗-semimultiplier of a ring R, and investigate the commutativity

of prime rings satisfying certain identities involving ∗-semimultiplier of R.

1. Introduction

Many considerable works have been done on left (right) multipliers in prime and
semiprime rings during the last couple of decades([10-12]). An additive mapping
d : R → R is called a derivation if d(xy) = d(x)y + yd(x) holds for all x, y ∈ R.
Following [5], an additive mapping F : R → R is called a generalized derivation
on R if there exists a derivation d : R → R such that F (xy) = F (x)y + xd(y) for
every x, y ∈ R. Obviously, a generalized derivation with d = 0 covers the concept of
left multiplicars. Over the last few decades, several authors have investigated the
relationship between the commutativity of the ring R and certain specific types of
derivations of R. The first result in this direction is due to E. C. Posner [ 9] who
proved that if a ring R admits a nonzero derivation d such that [d(x), x] ∈ Z(R)
for all x ∈ R, then R is commutative. This result was subsequently, refined and
extended by a number of authors. In [7], Bresar and Vuckman showed that a
prime ring must be commutative if it admits a nonzero left derivation. Recently,
many authors have obtained commutativity theorems for prime and semiprime
rings admitting derivation, generalized derivation. In this paper, we introduce the
notion of a ∗-semimultiplier of R, and investigate the commutativity of prime ∗-
rings satisfying certain identities involving ∗-semimultiplier of R.

2. Preliminaries

Throughout R will represent an associative ring with center Z(R). For all x, y ∈
R, as a usual commutator, we shall write [x, y] = xy−yx, and x◦y = xy+yx. Also,
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we make use of the following two basic identities without any specific mention:

x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z

(xy) ◦ z = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z]

[xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z.

Recall that R is prime if aRb = {0} implies a = 0 or b = 0. An additive
mapping x → x∗ of R into itself is called an involution if the following conditions
are satisfied (i) (xy)∗ = y∗x∗ (ii) (x∗)∗ = x for all x, y ∈ R. A ring equipped with an
involution is called an ∗-ring or ring with involution. Let R is a ring. An additive
mapping F : R → R is called a left multiplier if F (xy) = F (x)y holds for every
x, y ∈ R. Similarly, an additive mapping F : R → R is called a right multiplier if
F (xy) = xF (y) holds for every x, y ∈ R. If F is both a left and a right multiplier
of R, then it is called a multiplier of R.

Definition 2.1. ([8]) Let R be a ring. An additive mapping F : R → R is called
a semimultiplier associated with a surjective function g : R → R if

(a) F (xy) = F (x)g(y) = g(x)F (y),
(b) F (g(x)) = g(F (x)), for every x, y ∈ R.

3. ∗-semimultipliers in prime rings with involution

Definition 3.1. Let R be a ∗-ring. An additive mapping F : R → R is called a
∗-semimultiplier associated with a surjective function g : R → R if

(a) F (xy) = F (x)g(y∗) = g(x∗)F (y),
(b) F (g(x)) = g(F (x)), for every x, y ∈ R.

Lemma 3.2. Let R be a prime ∗-ring and let g be a surjective function. Suppose
that F is a ∗-semimultiplier associated with g and a ∈ R. If aF (x) = 0 for every
x ∈ R, then a = 0 or F = 0.

Proof. By hypothesis, we have aF (x) = 0 for any x ∈ R. Replacing x by xr in the
last relation, we get

ag(x∗)F (r) = 0, ∀ x, r ∈ R. (1)

Replacing x by x∗ in (1), we have ag(x)F (r) = 0 for all x, r ∈ R. Since g is onto,
we have aRF (r) = {0} for all r ∈ R. Using the fact that R is prime, we have a = 0
or F (r) = 0 for all r ∈ R. That is, a = 0 or F = 0.

�

Theorem 3.3. Let R be a semiprime ∗-ring and let g be an automorphism on R.
Suppose that R admits a nonzero ∗-semimultiplier F associated with g. Then F
maps from R to Z(R).

Proof. By hypothesis,

F (xy) = F (x)g(y∗) = 0, ∀ x, y ∈ R. (2)

Replacing y by yz with z ∈ R, in (2), we obtain

F (xyz) = F (x(yz)) = F (x)(g(yz)∗)

= F (x)g(z∗y∗) = F (x)g(z∗)g(y∗) (3)
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Also, we have

F (xyz) = F ((xy)z) = F (xy)g(z∗)

= F (x)g(y∗)g(z∗) (4)

Comparing (3) with (4), we get

F (x)[g(z∗), g(y∗)] = 0,∀ x, y, z ∈ R. (5)

Substituting z∗ for z and y∗ for y in (5), we obtain

F (x)[g(z), g(y)] = 0,∀ x, y, z ∈ R. (6)

Taking zF (x) in place of z in (6), we get

F (x)g(z)[g(F (x)), g(y)] + F (x)[g(z), g(y)]g(F (x)) = 0

for all x, y, z ∈ R. By using the relation (6), we get

F (x)g(z)[g(F (x)), g(y)] = 0,∀ x, y, z ∈ R. (7)

Multiplying by g(yF (x)) on left side of (7), we have

0 = g(yF (x))F (x)g(z)[g(F (x)), g(y)]

= g(y)g(F (x))F (x)g(z)[g(F (x)), g(y)]. (8)

Multiplying by g(F (x)y) on left side of (7), we have

0 = g(F (x)y)F (x)g(z)[g(F (x)), g(y)]

= g(F (x))g(y)F (x)g(z)[g(F (x)), g(y)]. (9)

Comparing (8) with (9), we obtain [g(F (x), g(y)]F (x)g(z)[g(F (x), g(y)] = 0 for all
x, y, z ∈ R. That is, [g(F (x), g(y)]R[g(F (x), g(y)] = {0} for all x, y ∈ R. Since R is
semiprime, we have [g(F (x), g(y)] = 0 for all x, y ∈ R. Hence we get

0 = [g(F (x), g(y)] = g(F (x))g(y)− g(y)g(F (x))

= g(F (x)y)− g(yF (x)) = g(F (x)y − yF (x))

= g[F (x), y] (10)

for all x, y ∈ R. Since g is an automorphism of R, we get [F (x), y] = 0 for all
x, y ∈ R. Hence F is a mapping from R into Z(R).

�

Theorem 3.4. Let R be a prime ∗-ring and let g is an automorphism on R.
Suppose that R admits a nonzero ∗-semimultiplier F associated with g, then R
is commutative.

Proof. By hypothesis,

F (xy) = F (x)g(y∗) = 0, ∀ x, y ∈ R. (11)

Replacing y by yz with z ∈ R, in (11), we obtain

F (xyz) = F (x(yz)) = F (x)(g(yz)∗)

= F (x)g(z∗y∗) = F (x)g(z∗)g(y∗) (12)

Also, we have

F (xyz) = F ((xy)z) = F (xy)g(z∗)

= F (x)g(y∗)g(z∗) (13)
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Comparing (12) with (13), we get

F (x)[g(z∗), g(y∗)] = 0,∀ x, y, z ∈ R. (14)

Substituting z∗ for z and y∗ for y in (14), we obtain

F (x)[g(z), g(y)] = 0,∀ x, y, z ∈ R. (15)

Substituting g−1(z) for z and g−1(y) for y in this relation, we get

F (x)[z, y] = 0,∀ x, y, z ∈ R. (16)

Replacing z by zr in the last equation, we have F (x)z[r, y] = 0, which implies that
F (y)R[z, y] = {0} for every x, y, z ∈ R. Since R is prime, we have F (y) = 0 or
[r, z] = 0 for every r, y, z ∈ R. Since F ̸= 0, we have [r, y] = 0 for every x, z ∈ R,
which implies that R is commutative.

�
Theorem 3.5. Let R be a prime ∗-ring and a ∈ R and let g be an automorphism
on R. If R admits a ∗-semimultiplier F of R and [F (x), a] = 0, then F (x) = 0 or
a ∈ Z(R).

Proof. By hypothesis, we have

[F (xy), a] = 0, ∀ x, y ∈ R, (17)

which implies that [F (x)g(y∗), a] = 0 for all x, y ∈ R. That is,

F (x)[g(y∗), a] = 0, ∀ x, y ∈ R. (18)

Substituting y∗ for y in this relation, we have F (x)[g(y), a] = 0 for all y ∈ R.
Substituting g−1(y) for y in this relation, we have F (x)[y, a] = 0 for all y ∈ R.
Again, taking yx in stead of y in the last relation, we obtain

F (x)y[x, a] = 0, ∀ x, y ∈ R. (19)

This implies that F (x)R[x, a] = {0} for all x ∈ R. Since R is prime, we have
F (x) = 0 or a ∈ Z(R).

�
Definition 3.6. Let R be a ∗-ring. An additive mapping F : R → R is called a
reverse ∗-semimultiplier associated with a surjective function g : R → R if

(a) F (xy) = F (y)g(x∗) = g(y∗)F (x),
(b) F (g(x)) = g(F (x)), for every x, y ∈ R.

Theorem 3.7. Let R be a prime ∗-ring and let g is an automorphism on R. Suppose
that R admits a reverse ∗-semimultiplier F associated with g. If F ([x, y]) = 0 for
all x, y ∈ R, then F (x) = 0 or R is commutative.

Proof. By hypothesis, we have

F ([x, y]) = 0, ∀ x, y ∈ R. (20)

Replacing x by xz in (20), we have

0 = F ([xz, y]) = F (x[z, y] + [x, y]z)

= F ([z, y])g(x∗) + F (z)g([x, y]∗)

= F (z)g([x, y]∗) (21)

for all x, y, z ∈ R. Substituting g−1([x, y]∗) for [x, y] in (21), we have F (z)[x, y] = 0
for all x, y, z ∈ R. Also, replacing y by yr in this relation, we have F (z)y[x, r] = 0
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for all r, x, y ∈ R. This implies that F (z)R[x, r] = {0} for all r, x ∈ R. Since R is
prime, we have F (z) = 0 or [x, r] = 0 for all r, x ∈ R. Let K = {z ∈ R|F (z) = 0}
and L = {x ∈ R|[x, r] = 0,∀ r ∈ R}. Then K and L are both additive subgroups
and K ∪L = R, but (R,+) is not union of two its proper subgroups, which implies
that either K = R or L = R. In the former case, we have F = 0. If L = R, then R
is commutative.

�
Theorem 3.8. Let R be a prime ∗-ring and let g is an automorphism on R. Suppose
that R admits a reverse ∗-semimultiplier F associated with g. If F (x ◦ y) = 0 for
all x, y ∈ R, then F (x) = 0 or R is commutative.

Proof. By hypothesis, we have

F (x ◦ y) = 0, ∀ x, y ∈ R. (22)

Replacing x by xy in (22), we have

0 = F (xy ◦ y) = F ((x ◦ y)y)
= F (y)g((x ◦ y)∗) (23)

for all x, y ∈ R. Substituting (x ◦ y)∗ for (x ◦ y) in (23), we have F (y)g(x ◦ y) = 0
for all x, y, z ∈ R. Also, replacing x ◦ y by g−1(x ◦ y) in this relation, we have
F (y)(x ◦ y) = 0 for all x, y ∈ R. Replacing x by yx in the last equation, we have
F (y)y(x◦y) = 0, which implies that F (y)R(x◦y) = {0} for every x, y ∈ R. Since R
is prime, we have x ◦ y = 0 or F (y) = 0 for all x, y ∈ R. Let K = {y ∈ R|F (y) = 0}
and L = {y ∈ R|x ◦ y = 0} for all x, y ∈ R. Then K and L are both additive
subgroups and K ∪ L = R, but (R,+) is not union of two its proper subgroups,
which implies that either K = R or L = R. In first case, F = 0. In second case, If
R = L, we have x ◦ y = 0 for all x, y ∈ R. Replacing x by xz in the last relation
and using the fact that yx = −xy, we obtain x[z, y] = 0 for all x, y, z ∈ R. That
is, R[z, y] = {0}. This implies that [z, y]R[z, y] = {0} for all y, z ∈ R. Since R is
prime, we have [z, y] = 0 for all y, z ∈ R, which means that R is commutative.

�
Theorem 3.9. Let R be a prime ∗-ring and let g is an automorphism on R. Suppose
that R admits a reverse ∗-semimultiplier F associated with g. If [F (x), y] = 0 for
all x, y ∈ R, then F (x) = 0 or R is commutative.

Proof. By hypothesis, we have

[F (x), y] = 0, ∀ x, y ∈ R. (24)

Replacing x by xz in (24), we have

0 = [F (xz), y] = [F (z)g(x∗), y]

= F (z)[g(x∗), y] + [F (z), y]g(x∗)

= F (z)[g(x∗), y] (25)

for all x, y, z ∈ R. Substituting x∗ for x in (25), we have F (z)[g(x), y] = 0 for all
x, y, z ∈ R. Since g is onto, we have F (z)[x, y] = 0 for all x, y, z ∈ R. Also, replacing
y by yr in this relation, we have F (z)y[x, r] = 0 for all r, x, y, z ∈ R. This implies
that F (z)R[x, r] = {0} for all r, x, z ∈ R. Since R is prime, we have F (z) = 0 or
[x, r] = 0 for all r, x, z ∈ R. Let K = {z ∈ R|F (z) = 0} and L = {x ∈ R|[x, r] =
0,∀ r ∈ R}. Then K and L are both additive subgroups and K ∪ L = R, but



EJMAA-2020/8(1) A NOTE ON SEMIMULTIPLIERS IN PRIME RINGS 197

(R,+) is not union of two its proper subgroups, which implies that either K = R
or L = R. In the former case, we have F = 0. If L = R, then R is commutative.

�

Theorem 3.10. Let R be a prime ∗-ring and let g is an automorphism on R.
Suppose that R admits a reverse ∗-semimultiplier F associated with g. If F (x)◦y = 0
for all x, y ∈ R, then F (x) = 0 or R is commutative.

Proof. By hypothesis, we have

F (x) ◦ y = 0, ∀ x, y ∈ R. (26)

Replacing x by xz in (26), we have

0 = F (xz) ◦ y = F (z)g(x∗) ◦ y
= (F (z) ◦ y)g(x∗) + F (z)[g(x∗), y]

= F (z)[g(x∗), y] (27)

for all x, y, z ∈ R. Substituting x∗ for x in (27), we have F (z)[g(x), y] = 0 for all
x, y, z ∈ R. Since g is onto, we have F (z)[x, y] = 0 for all x.y, z ∈ R.Also, replacing y
by yr in this relation, we have F (z)y[x, r] = 0 for all r, x, y, z ∈ R. This implies that
F (z)R[x, r] = {0} for all r, x, z ∈ R. Since R is prime, we have F (z) = 0 or [x, r] = 0
for all r, x, z ∈ R. Let K = {z ∈ R|F (z) = 0} and L = {x ∈ R|[x, r] = 0,∀ r ∈ R}.
Then K and L are both additive subgroups and K∪L = R, but (R,+) is not union
of two its proper subgroups, which implies that either K = R or L = R. In the
former case, we have F = 0. If L = R, then R is commutative.

�

Theorem 3.11. Let R be a prime ∗-ring and let g is an automorphism on R.
Suppose that R admits a reverse ∗-semimultiplier F ̸= 0 associated with g. If
[F (x), F (y)] = 0 for all x, y ∈ R, then R is commutative.

Proof. By hypothesis, we have

[F (x), F (y)] = 0, ∀ x, y ∈ R. (28)

Replacing x by xz in (28), we have

0 = [F (xz), F (y)] = [F (z)g(x∗), F (y)]

= F (z)[g(x∗), F (y)] + [F (z), F (y)]g(x∗)

= F (z)[g(x∗), F (y)] (29)

for all x, y, z ∈ R. Substituting x∗ for x in (29), we have F (z)[g(x), F (y)] = 0
for all x, y, z ∈ R. Since g is onto, we have F (z)[x, F (y)] = 0 for all x, y, z ∈ R.
Also, replacing x by xr in this relation, we have F (z)x[r, F (y)] + F (z)[x, F (y)]r =
F (z)x[r, F (y)] = 0 for all r, x, y, z ∈ R. This implies that F (z)R[r, F (y)] = {0} for
all r, y, z ∈ R. Since R is prime, we have F (z) = 0 or [r, F (y)] = 0 for all r, y, z ∈ R.
Since F ̸= 0, we have [r, F (y)] = 0 for all r, y ∈ R. By the same methods as we
used in the last part proof of Theorem 3.9, we get the required result.

�

Theorem 3.12. Let R be a prime ∗-ring and let g is an automorphism on R.
Suppose that R admits a reverse ∗-semimultiplier F ̸= 0 associated with g. If F (x)◦
F (y) = 0 for all x, y ∈ R, then R is commutative.
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Proof. By hypothesis, we have

F (x) ◦ F (y) = 0, ∀ x, y ∈ R. (30)

Replacing x by xz in (30), we have

0 = F (xz) ◦ F (y) = F (z)g(x∗) ◦ F (y)

= (F (z) ◦ F (y))x∗ + F (z)[g(x∗), F (y)]

= F (z)[g(x∗), F (y)] (31)

for all x, y, z ∈ R. Substituting x∗ for x in (31), we have F (z)[g(x), F (y)] = 0 for
all x, y, z ∈ R. Since g is onto, we obtain F (z)[x, F (y)] = 0 for all x, y, z ∈ R. By
the same methods as we used in the last part proof of Theorem 3.11, we get the
required result.

�
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