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BEST APPROXIMATION OF A FUNCTION BY PRODUCT

OPERATOR

H. K. NIGAM

Abstract. In this paper, we, obtain the best approximation of a function in

generalized Zygmund class Z
(λ)
r , r ≥ 1 [22], using C1Np,q operator of Fourier

series. The result obtained in our first theorem generalizes the result of Lal

[15]. Thus, the result of Lal [15] becomes a particular case of our theorem.
Some important corollaries are also deduced from our main theorems.

1. Introduction

The studies of error estimation of a function g in different Lipschitz classes by
a trigonometric polynomial using single summability means have been done by
the researchers [1], [3], [9], [14], [20]-[25] etc. in past few decades. The studies
of error estimation of a function g in different Lipschitz classes by the product
means have been done by the researchers [10]-[12] [16], [18] etc. in recent past.
Dikshit [5], for the first time, studied |C1Np| means of Fourier series. Dikshit [6, 7]
also investigated (F1)-effectiveness of C

1Np method and its necessary condition is
obtained by Kumar and Prasad [13]. Recently, Lal [15] has obtained the error
estimates of a function in generalized Lipschitz class using C1Np means of Fourier
series. The review of the above mentioned research works clearly suggests that the

study of error estimates of a function g in generalized Zygmund class Z
(λ)
r , r ≥ 1

using C1Np,q product means has not been done so far. Therefore, in this paper, we
establish two theorems in order to obtain the best error estimates of a function g in

generalized Zygmund class Z
(λ)
r , r ≥ 1 using C1Np,q means of Fourier series. The

result obtained in Theorem 1 generalizes the result of Lal [15]. Thus, the result of
Lal [15] becomes a particular case of this theorem.
Let g be a 2π-periodic function and Lebesgue integrable on [−π, π]. The Fourier
series of g at a point l is defined by

g(l) =
a0
2

+
∞∑
d=0

(ad cos dl + bd sin dl) (1)
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with dth partial sums sd(l).
By following Hardy ([8], p.96), the C1 transform is defined as the dth partial sum
of C1 means, which is given by

Md =
s0 + s1 + s2 + ...........sd

d+ 1

=
1

d+ 1

d∑
k=0

sk → s as d → ∞. (2)

then the Fourier series (1) is summable to s by C1 method.
By following Borwein [2] , let {pd} and {qd} be the sequence of constants, real or
complex, such that

Pd = p0 + p1 + p2 + ...........pd =

d∑
ν=0

pν → s as d → ∞

Qd = q0 + q1 + q2 + ...........qd =
d∑

ν=0

pν → s as d → ∞

Rd = p0qd + p1qd−1 + p2qd−2 + ...........pdq0 =
d∑

ν=0

pνqd−ν → s as d → ∞.(3)

Given two sequences {pd} and {qd}, convolution (p ∗ q) is defined as

Rd = (p ∗ q)d =

d∑
k=0

pd−kqk.

We write

Mp,q
d =

1

Rd

d∑
k=0

pd−kqksk. (4)

If Rd ̸= 0∀d, then generalized Nörlund (N, p, q) transform of the sequence {sd} is
the sequence {Mp,q

d }. If {Mp,q
d } → s as d → ∞, then the Fourier series (1) is

summable to s by (N, p, q) method.
The product of C1 means with Np,q means defines C1Np,q means and is given by

M
C1Np,q

d =
1

d+ 1

d∑
ν=0

1

Rν

ν∑
k=0

pν−kqksk. (5)

If M
C1Np,q

d → s as d → ∞ then the Fourier series (1) is summable to s by C1Np,q

method.
Since C1 and Np,q are regular methods so the regularity of C1 and Np,q methods
implies regularity of C1Np,q method.
Remark 1: C1Np,q means reduce to C1Np means if qd = 1∀d.
The space of all functions (2π-periodic and integrable) be

Lr[0, 2π] =

{
g : [0, 2π] → R;

∫ 2π

0

| g(x) |rdx < ∞
}
, r ≥ 1.
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We define ∥ · ∥ by

∥g∥r =


{

1
2π

∫ 2π

0
| g(x) |r dx

}1
r

, 1 ≤ r < ∞
ess sup

0<x<2π
|g(x)|, r = ∞.

As defined in Zygmund [27], λ1 : [0, 2π] → R be an arbitrary function with λ1(l) > 0
for 0 < l ≤ 2π and lim

l→0+
λ1(l) = λ1(0) = 0.

We also define

Z(λ1)
r =

{
g ∈ Lr[0, 2π] : r ≥ 1, sup

l ̸=0

∥g(·+ l) + g(· − l)− 2g(·)∥r
λ1(l)

< ∞

}
and

∥g∥(λ1)
r = ∥g∥r + sup

l ̸=0

∥g(·+ l) + g(· − l)− 2g(·)∥r
λ1(l)

, r ≥ 1.

Hence, the space Z
(λ1)
r is a Banach space under the norm ∥∥(λ1)

r .

The completeness of the space Z
(λ1)
r can be understood by considering the com-

pleteness of Lr, r ≥ 1.
Now, We define

∥g∥(λ2)
r = ∥g∥r + sup

l ̸=0

∥g(·+ l) + g(· − l)− 2g(·)∥r
λ2(l)

, r ≥ 1.

Remark 2: λ1(l) and λ2(l) denote moduli of continuity of order two ([27]).

If λ1(l)
λ2(l)

be positive and non-decreasing, then

∥g∥(λ2)
r ≤ max

(
1,

λ1(2π)

λ2(2π)

)
∥g∥(λ1)

r < ∞.

We observe that
Z(λ1)
r ⊂ Z(λ2)

r ⊂ Lr, r ≥ 1.

Remark 3:
(i) If we take r → ∞ in Z

(λ1)
r then Z

(λ1)
r reduces to Z(λ1).

(ii) If we take λ1(l) = lα in Z(λ1) then Z(λ1) reduces to Zα.

(iii) If we take λ1(l) = lα in Z
(λ1)
r then Z

(λ1)
r reduces to Zα,r.

(iv) If we take r → ∞ in Zα,r then Zα,r reduces to Zα.

(v) Let 0 ≤ δ2 < δ1 < 1, if λ1(l) = lδ1 and λ2(l) = lδ2 then λ1(l)
λ2(l)

is increasing, while
λ1(l)
lλ2(l)

is decreasing.

The error estimation of function g is given by

Er(g) = min ∥g − ld∥r,
where ld is a trigonometric polynomial of degree d, [27].
We use the following notations:

α(x)(l) = g(x+ l) + g(x− l)− 2g(x)

Dd(l) =
1

2π(d+ 1)

d∑
ν=0

1

Rν

ν∑
k=0

pν−kqk
sin(ν − k + 1

2 )l

sin l
2

τ

(
Integral part of

1

l

)
=

[
1

l

]
, Rτ = R(1/l)
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2. Main Theorems

Theorem 1 Error estimation of the function g (2π-periodic) in generalized Zyg-

mund class Z
(λ1)
r , r ≥ 1, by C1Np,q means of Fourier series is given by

inf
M

C1Np,q
d

∥MC1Np,q

d (g, ·)− g(·)∥(λ2)
r = O

[∫ π

1
d+1

λ1(l)

l2λ2(l)

{
1

d+ 1
+ l

}
dl

]
,

where λ1(l) and λ2(l) are as defined in remark 2 and λ1(l)
λ2(l)

is positive, non-decreasing.

Theorem 2 Error estimation of the function g (2π-periodic) in generalized Zyg-

mund class Z
(λ1)
r , r ≥ 1, by C1Np,q means of Fourier series is given by

inf
M

C1Np,q
d

∥MC1Np,q

d (g, ·)− g(·)∥(λ2)
r = O

λ1

(
1

d+1

)
λ2

(
1

d+1

){log(d+ 1) + d(d+ 1)}

 ,

where λ1(l)
lλ2(l)

is non-decreasing in addition to the condition of Theorem 1.

3. Lemmas

Lemma 1 [17]: Let g ∈ Z
(λ1)
r , then for 0 < l ≤ π.

If λ1(l) and λ2(l) are as defined in remark 2, then

∥ α(·+z)(l) + α(·−z)(l)− 2α(·)(l) ∥r= O
(
λ2(|z|)λ1(l)

λ2(l)

)
.

Lemma 2 For l ∈
(
0, 1

d+1

)
, |Dd(l)| = O(d+ 1)

Proof. For l ∈
(
0, 1

d+1

)
, sin dl ≤ dl, sin(l/2) ≥ l/π ([27]).

|Dd(l)| =
1

2π(d+ 1)

∣∣∣∣∣
d∑

ν=0

1

Rν

ν∑
k=0

pν−kqk
sin
(
ν − k + 1

2

)
l

sin(l/2)

∣∣∣∣∣
≤ 1

2(d+ 1)

d∑
ν=0

1

Rν

ν∑
k=0

pν−kqk

(
ν − k + 1

2

)
l

l

=
1

4(d+ 1)

d∑
ν=0

1

Rν

ν∑
k=0

pν−kqk(2ν − 2k + 1)

≤ 1

4(d+ 1)

d∑
ν=0

2ν + 1

Rν

ν∑
k=0

pν−kqk

=
1

4(d+ 1)

d∑
ν=0

(2ν + 1)

=O(d+ 1).
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Lemma 3 For l ∈
[

1
d+1 , π

]
, |Dd(l)| = O

(
τ2

d+1

)
+O

(
τRτ

d+1

d∑
ν=τ

1
Rν

)
.

Proof. For l ∈
[

1
d+1 , π

]
, sin(l/2) ≥ l/π ([27]).

|Dd(l)| =
1

2π(d+ 1)

∣∣∣∣∣
d∑

ν=0

1

Rν

ν∑
k=0

pν−kqk
sin
(
ν − k + 1

2

)
l

sin(l/2)

∣∣∣∣∣
≤ 1

2l(d+ 1)

∣∣∣∣∣Im
d∑

ν=0

1

Rν

ν∑
k=0

pν−kqke
i(ν−k+ 1

2 )

∣∣∣∣∣
Using Abel’s lemma,

≤ 1

2l(d+ 1)

[∣∣∣∣∣
τ−1∑
ν=0

1

Rν

ν∑
k=0

pν−kqk | ei(ν−k)l |

∣∣∣∣∣+
d∑

ν=τ

1

Rν
max

0≤m≤ν

∣∣∣∣∣
m∑

k=0

pν−kqke
i(ν−k)l

∣∣∣∣∣
]

≤ 1

2l(d+ 1)

[
τ +Rτ

d∑
ν=τ

1

Rν

]

=O

(
τ2

d+ 1

)
+O

(
τRτ

d+ 1

d∑
ν=τ

1

Rν

)
.

4. Proof of the Main Theorems

4.1. Proof of Theorem 1. Following [26], the integral representation of sd(g;x)
is given by

sd(g;x)− g(x) =
1

2π

∫ π

0

ϕx(l)
sin(d+ 1

2 )l

sin l
2

dl

Now denoting C1Np,q transform of sd(g;x) by MC1Np,q , we get

M
C1Np,q

d (x)− g(x) =

∫ π

0

α(x)(l)

2π(d+ 1)

{
d∑

ν=0

1

Rν

ν∑
k=0

pν−kqk
sin
(
ν − k + 1

2

)
l

sin(l/2)

}
dl

=

∫ π

0

α(x)(l)Dd(l) = ρd(l)(say). (6)

Now,

ρd(x+ z) + ρd(x− z)− 2ρd(x) =

∫ π

0

{
α(x+z)(l)− α(x−z)(l)− 2α(x)(l)

}
Dd(l)dl.

Using generalized Minkowski inequality [4], we can write

∥ ρd(·+ z) + ρd(· − z)− 2ρd(·) ∥r

≤
∫ 1

d+1

0

∥ α(·+z)(l)− α(·−z)(l)− 2α(·)(l) ∥r| Dd(l) | dl

+

∫ π

1
d+1

∥ α(·+z)(l)− α(·−z)(l)− 2α(·)(l) ∥r| Dd(l) | dl

= I1 + I2. (7)
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Now, using Lemmas 1 and 2,

I1 =O

[∫ 1
d+1

0

λ2(|z|)
λ1(l)

λ2(l)
(d+ 1)dl

]

=O

[
(d+ 1)λ2(|z|)

∫ 1
d+1

0

λ1(l)

λ2(l)
dl

]

=O

(d+ 1)λ2(|z|)
λ1

(
1

d+1

)
λ2

(
1

d+1

) ∫ 1
d+1

0

dl


=O

λ2(|z|)
λ1

(
1

d+1

)
λ2

(
1

d+1

)
 . (8)

Now, using Lemmas 1 and 3,

I2 =O

[∫ π

1
d+1

λ2(|z|)
λ1(l)

λ2(l)

{(
τ2

d+ 1

)
+

(
τRτ

d+ 1

) d∑
ν=τ

1

Rν

}
dl

]

=O

[
λ2(|z|)
(d+ 1)

∫ π

1
d+1

λ1(l)

λ2(l)

{
τ2 + τRτ

d∑
ν=τ

1

Rν

}
dl

]
. (9)

Combining (7), (8) and (9), we have

∥ ρd(·+ z) + ρd(· − z)− 2ρd(·) ∥r

= O

λ2(|z|)
λ1

(
1

d+1

)
λ2

(
1

d+1

)
+O

[
λ2(|z|)
(d+ 1)

∫ π

1
d+1

λ1(l)

λ2(l)

{
τ2 + τRτ

d∑
ν=τ

1

Rν

}
dl

]
.

sup
z ̸=0

∥ ρd(·+ z) + ρd(· − z)− 2ρd(·) ∥r
λ2(|z|)

= O

λ1

(
1

d+1

)
λ2

(
1

d+1

)
+O

[
1

(d+ 1)

∫ π

1
d+1

λ1(l)

λ2(l)

{
τ2 + τRτ

d∑
ν=τ

1

Rν

}
dl

]

= O

λ1

(
1

d+1

)
λ2

(
1

d+1

)
+O

[
1

(d+ 1)

∫ π

1
d+1

λ1(l)

λ2(l)

{
1

l2
+

1

l
Rτ

(d+ 1)

Rτ

}
dl

]

= O

λ1

(
1

d+1

)
λ2

(
1

d+1

)
+O

[∫ π

1
d+1

λ1(l)

λ2(l)

{
1

l2(d+ 1)
+

1

l

}
dl

]
. (10)
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Again using Lemmas 2 and 3,

∥ ρd(·) ∥r≤

[∫ 1
d+1

0

+

∫ π

1
d+1

]
∥ α(·)(l) ∥r| Dd(l) | dl

=O

[
(d+ 1)

∫ 1
d+1

0

λ1(l)dl

]
+O

[
1

(d+ 1)

∫ π

1
d+1

{
τ2 + τRτ

d∑
ν=τ

1

Rν

}
λ1(l)dl

]

=O

[
λ1

(
1

d+ 1

)]
+O

[
1

(d+ 1)

∫ π

1
d+1

{
1

l2
+

1

l
Rτ

(d+ 1)

Rτ

}
λ1(l)dl

]

=O

[
λ1

(
1

d+ 1

)]
+O

[∫ π

1
d+1

λ1(l)

l2(d+ 1)
dl +

∫ π

1
d+1

λ1(l)

l
dl

]
. (11)

Now, we have

∥ ρd(·) ∥(λ2)
r =∥ ρd(·) ∥r +sup

z ̸=0

∥ ρd(·+ z) + ρd(· − z)− 2ρd(·) ∥r
λ2(z)

.

From (10) and (11), we get

∥ ρd(·) ∥(λ2)
r =O

λ1

(
1

d+1

)
λ2

(
1

d+1

)
+O

[∫ π

1
d+1

λ1(l)

λ2(l)

{
1

l2(d+ 1)
+

1

l

}
dl

]

+O

[
λ1

(
1

d+ 1

)]
+O

[∫ π

1
d+1

λ1(l)

l2(d+ 1)
dl +

∫ π

1
d+1

λ1(l)

l
dl

]
.

In view of monotonicity of λ2(l), we have

λ1(l) =
λ1(l)
λ2(l)

λ2(l) ≤ λ2(π)
λ1(l)
λ2(l)

= O
(

λ1(l)
λ2(l)

)
for 0 < l ≤ π. Hence

∥ ρd(·) ∥(λ2)
r =O

λ1

(
1

d+1

)
λ2

(
1

d+1

)
+O

[∫ π

1
d+1

λ1(l)

λ2(l)

{
1

l2(d+ 1)
+

1

l

}
dl

]

=O

λ1

(
1

d+1

)
λ2

(
1

d+1

)
+O

[
1

d+ 1

∫ π

1
d+1

λ1(l)

l2λ2(l)
dl

]
+O

[∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]
.

(12)

Since λ1 and λ2 are as defined in remark 2 and λ1(l)
λ2(l)

is positive, non-decreasing,

therefore,∫ π

1
d+1

λ1(l)

λ2(l)

{
1

l2(d+ 1)

}
dl ≥

λ1

(
1

d+1

)
λ2

(
1

d+1

) ∫ π

1
d+1

{
1

l2(d+ 1)

}
dl ≥

λ1

(
1

d+1

)
2λ2

(
1

d+1

) .
Then

λ1

(
1

d+1

)
λ2

(
1

d+1

) = O

[
1

d+ 1

∫ π

1
d+1

λ1(l)

l2λ2(l)
dl

]
. (13)
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From (12) and (13), we get

∥ ρd(·) ∥(λ2)
r = O

[
1

d+ 1

∫ π

1
d+1

λ1(l)

l2λ2(l)
dl

]
+O

[∫ π

1
d+1

λ1(l)

lλ2(l)
dl

]

Ed(g) = O

[∫ π

1
d+1

λ1(l)

l2λ2(l)

(
1

d+ 1
+ l

)
dl

]
This completes the proof of Theorem 1.

4.2. Proof of Theorem 2. Following the proof of Theorem 1,

Ed(g) = O

[∫ π

1
d+1

λ1(l)

l2λ2(l)

(
1

d+ 1
+ l

)
dl

]
Since λ1(l)

lλ2(l)
is positive, non-decreasing, therefore by second mean value theorem of

integral calculus,

Ed(g) =

λ1

(
1

d+1

)
λ2

(
1

d+1

) ∫ π

1
d+1

1

l
dl +

(d+ 1)λ1

(
1

d+1

)
λ2

(
1

d+1

) ∫ π

1
d+1

1 dl


=O

λ1

(
1

d+1

)
λ2

(
1

d+1

) {log(d+ 1) + (d+ 1)}


This completes the proof of Theorem 2.

5. Corollaries

Corollary 1 Error estimates of function g (2π-periodic) in the class Zα,r, r ≥ 1,
using C1Np,q means of Fourier Series is given by

inf
M

C1Np,q
d

∥MC1Np,q

d (g, ·)−g(·)∥(λ2)
r =

{
O
{
(d+ 1)δ1−δ2

}
, 0 ≤ δ2 < δ1 < 1

O
{
(d+ 1)−1 log(d+ 1) + 1

}
, δ2 = 0, δ1 = 1

Proof. Putting λ1(l) = lδ1 and λ2(l) = lδ2 in Theorems 1 and 2, the result follows.
Corollary 2 If qd = 1 for all d in Theorem 1, then error estimates of function g

(2π-periodic) in the generalized Zygmund class Z
(λ2)
r , r ≥ 1, using C1Np means of

Fourier Series is given by

inf
M

C1Np
d

∥MC1Np

d (g, ·)− g(·)∥(λ2)
r = O

[∫ π

1
d+1

λ1(l)

l2λ2(l)

(
1

d+ 1
+ l

)
dl

]
,

where λ1(l) and λ2(l) are as defined in remark 2 and λ1(l)
λ2(l)

is positive, non-decreasing.

Corollary 3 If qd = 1 for all d in Theorems 1 and 2, then error estimates of function
g (2π-periodic)in the class Zα,r, r ≥ 1, using C1Np means of Fourier Series is given
by

inf
M

C1Np
d

∥MC1Np

d (g, ·)−g(·)∥(λ2)
r =

{
O
{
(d+ 1)δ1−δ2

}
, 0 ≤ δ2 < δ1 < 1

O
{
(d+ 1)−1 (log(d+ 1) + 1)

}
, δ2 = 0, δ1 = 1

Proof. Putting λ1(l) = lδ1 and λ2(l) = lδ2 in Theorems 1 and 2, the result follows.
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6. Particular Case

1. If we take λ1(l) = lδ1 and λ2(l) = lδ2 , r → ∞ and δ2 = 0 in Theorem 1 and
also as per remark ([23], p. 6870), Theorem 1 of Lal [15] becomes a particular case
of our Theorem 1.
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