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AROUND A CONJECTURE OF K. TRAN

I. NDIKUBWAYO

Abstract. We study the root distribution of a sequence of polynomials {Pn(z)}∞n=0

with the rational generating function
∞∑

n=0

Pn(z)tn =
1

1 + B(z)t` + A(z)tk

for (k, `) = (3, 2) and (4, 3) where A(z) and B(z) are arbitrary polynomials
in z with complex coefficients. We show that the zeros of Pn(z) which satisfy

A(z)B(z) 6= 0 lie on a real algebraic curve which we describe explicitly.

1. Introduction

The study of zeros of sequences of polynomials plays an important role in many
areas of mathematics such as analysis, probability theory, combinatorics and geome-
try. In this article, we study the distribution of zeros of polynomials in a polynomial
sequence {Pn}∞n=0 generated by a certain type of three-term recurrence relation.
Such polynomials are of interest due to several remarkable properties they possess.
For example, three-term recurrence relations are useful in numerical mathematics
for producing sequences of orthogonal polynomials. Let Q1(z), Q2(z) . . . , Qk(z) be

fixed complex polynomials and {Pn(z)}∞n=0 be the sequence of polynomials gener-
ated by recurrence relation of the form:

Pn(z) +Q1(z)Pn−1(z) +Q2(z)Pn−2(z) + · · ·+Qk(z)Pn−k(z) = 0, n = 1, 2, . . . (1)

subject to certain initial conditions.
The problem of describing the location of the zeros of polynomials in the sequence

{Pn(z)}∞n=0 might have two different versions. The first is asymptotic and it aims
at finding the limiting curve for the zeros of Pn(z) as n→∞. This is the approach
taken in the papers ( [3], [4], [6] and [12] ). The second is of exact type; it aims at
finding the curve where all the zeros of Pn(z) lie for all n (or at least for all large
n), for example ( [1] and [2] ). For general recurrence relations, such curves do not
exist. However, for three-term recurrences with 2 ≤ k ≤ 5 and appropriate initial
conditions, such a curve containing all the zeros of Pn(z) exists and is given in [1].
More generally in [1, Conjecture 6], K. Tran conjectured existence of such a curve
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for all k ≥ 6. Below we reformulate Tran’s Conjecture.
Conjecture A For an arbitrary pair of complex polynomials A(z) and B(z),
every zero of every polynomial in the sequence {Pn(z)}∞n=1 satisfying the three-
term recurrence relation of length k

Pn(z) +B(z)Pn−1(z) +A(z)Pn−k(z) = 0 for n = 1, 2, . . .

with the standard initial conditions P0(z) = 1, P−1(z) = · · · = P1−k(z) = 0 which
is not a zero of A(z) lies on the portion of the real algebraic curve C ⊂ C given by

=
(
Bk(z)

A(z)

)
= 0 and 0 ≤ (−1)k<

(
Bk(z)

A(z)

)
≤ kk

(k − 1)k−1
.

The first part of the above conjecture explicitly defines the real algebraic curve
on which all the zeros of the polynomials Pn(z) (except the zeros shared with
A(z)) are located. The second part describes the exact portion on this curve where
these zeros lie. In [1], Conjecture A was settled for k ≤ 5. In a subsequent paper
[2], K. Tran proved existence of such a curve containing all the zeros of Pn(z) for
sufficiently large n and arbitrary k. More supporting results can be found in [7].
Additionally, a criterion for the reality of all the zeros of every polynomial in the
sequence {Pn(z)}∞n=0 for k = 2 can be found in [10].

Based on numerical experiments, B. Shapiro has formulated the following gen-
eralization of Conjecture A (private communication).
Conjecture 1 For an arbitrary pair of complex polynomials A(z) and B(z), ev-
ery zero of every polynomial in the sequence {Pn(z)}∞n=0 satisfying the three-term
recurrence relation of length k

Pn(z) +B(z)Pn−`(z) +A(z)Pn−k(z) = 0 for n = 1, 2, . . . (2)

with the standard initial conditions P0(z) = 1, P−1(z) = · · · = P1−k(z) = 0 and
coprime 1 ≤ ` < k which is not a zero of A(z) or B(z) lies on the real algebraic
curve C ⊂ C given by

=
(
Bk(z)

A`(z)

)
= 0.

The purpose of this paper is to prove some specific cases of Conjecture 1 and make
them more precise. It is important to note that the rational function Bk(z)/A`(z)
can be written in terms of the discriminant of the denominator of the generating
function of the polynomial sequence generated by (2). Our approach to the proof
of the specific cases of Conjecture 1 uses the q-analogue of the discriminant of a
polynomial, a concept introduced by Ismail in [9] and used in [1]. In particular, the
ratios of zeros of the denominator of the generating function with equal modulus
will play a fundamental role.

The paper is organized as follows. In Section 2, we review the most important
notions and basic results. In Section 3, we prove some relevant general results.
In Section 4, we prove the main results of the paper. In Section 5, we give some
numerical examples.

2. Discriminants

This paper uses discriminants, and therefore we present below a few key results
about them from the literature. Our initial step is to recall the concept of discrim-
inants of polynomials, both ordinary and q-discriminants.



18 I. NDIKUBWAYO EJMAA-2020/8(2)

Definition 1 (see [11]) Let P (x) be a univariate polynomial of degree n with zeros
x1, . . . , xn and leading coefficient an. The ordinary discriminant of P (x) is defined
as

Discx(P (x)) = a2n−2
n

∏
1≤i<j≤n

(xi − xj)2.

This ordinary discriminant of P (x) can also be expressed in terms of the resultant
of P (x) and its derivative. Let P (x), Q(x) be polynomials of degrees n, m and
leading coefficients an, bm respectively. The resultant of P (x) and Q(x) is defined
by

Res(P (x), Q(x)) = amn
∏

P (xi)=0

Q(xi) = bnm
∏

Q(xi)=0

P (xi). (3)

The discriminant of P (x) is then computed as follows

Discx(P (x)) = (−1)
n(n−1)

2
1

an
Res(P (x), P ′(x)). (4)

For more details on the ordinary discriminants and resultants, ( see [5] and [11] ).
Example 1 If f(x) and g(x) are fixed complex polynomials in x with f 6≡ 0, then
the discriminant of P (x, t) = f(x)t3 + g(x)t2 + 1 as a polynomial in t is given by

Disct(P (x, t)) = −27(f(x))2 − 4(g(x))3.

The proof/ verification of the above example follows directly from equation (4).

Generally, the discriminant of a polynomial connects with the ratio of its zeros in
the sense that the discriminant is zero if and only if the polynomial has a multiple
zero. In particular, the discriminant of a polynomial vanishes whenever there exist
at least two zeros that are equal, i.e., zeros whose ratio is 1.
Definition 2 (see [9]) Let P (t) be a polynomial of degree n with zeros x1, . . . , xn
and leading coefficient an. The q-discriminant of P (t) is

Disct(P (t); q) = qn(n−1)/2a2n−2
n

∏
1≤i<j≤n

(q−1/2xi − q1/2xj)(q
1/2xi − q−1/2xj).

In other words,

Disct(P (t); q) = qn(n−1)/2a2n−2
n

∏
1≤i<j≤n

(
x2
i + x2

j − (q−1 + q)xixj
)
. (5)

It is clear from Definition 2 that Disct(P (t); 1) = Disct(P (t)), the ordinary
discriminant of the polynomial. Additionally, the q-discriminant vanishes whenever
there is a pair of zeros with ratio q. Below we give some examples of q-discriminants.
Example 2 Let P (t) = at2 + bt + c be a quadratic polynomial with complex
coefficients. The q-discriminant of P (t) is

Disct(P (t); q) = b2q − (q + 1)2ac.

This case can easily be computed from Equation (5). A similar but tedious

calculation give the q-discriminant of cubic polynomial P (t) = at3 + bt2 + ct+ d as

Disct(P (t); q) = −a2d2(1+q+q2)3−b2q2(−c2q+bd(1+q)2)+acq(−c2q(1+q)2+bdΦ)

where Φ = 1 + 5q + 6q2 + 5q3 + q4.

In general computing q-discriminants using Definition 2 can be a tedious exercise.
However, the following proposition proved in [9] is often used.
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Proposition 1 Let P (t) be a polynomial of degree n with zeros x1, . . . , xn and
leading coefficient an. The q-discriminant of P (t) is given by:

Disct(P (t); q) = (−1)n(n−1)/2an−2
n

n∏
i=1

(DqP )(xi),

where

(DqP )(t) =
P (t)− P (qt)

t− qt
.

Proposition 1 is used in ( [2] and [14] ) to derive the expression of the q-
discriminant of the polynomial D(t, x) = A(x)tn + B(x)t + 1. This is stated in
Proposition 2, (we suppress the parameter x).
Proposition 2 (K. Tran [2]) Let D(t) = Atn + Bt + 1 be a polynomial in t of
degree n where A and B are arbitrary fixed complex functions. The q-discriminant
of D(t) = Atn +Bt+ 1 is given by

Disct(D(t); q) = ±An−2

(
Bn

qn−1(1− qn−1)n−1

(1− q)n−1
+ (−1)n−1 (1− qn)n

(1− q)n
A

)
.

For completeness let us review some definitions (also obtained in [8, 12]) about
the root distribution of a sequence of functions

fm =

n∑
i=1

αi(z)βi(z)
m,

where αi(z) and βi(z) are analytic in a domain D. Let us call an index i dominant
at z if |βi(z)| ≥ |βj(z)| for all j(1 ≤ j ≤ n). Let

Di = {z ∈ D : i is dominant at z}.

Denote the set of zeros of fm(z) by Z(fm).
Definition 3 (see [8]) The set of all z ∈ D such that every neighborhood U of z
has a non-empty intersection with infinitely many of the sets Z(fm) is called limit
superior of Z(fm) and is denoted by lim supZ(fm). On the other hand, the set
of all z ∈ D such that every neighborhood U of z has a non-empty intersection
with all but finitely many of the sets Z(fm) is called limit inferior of Z(fm) and is
denoted by lim inf Z(fm).

We note that both lim inf Z(fm) and lim supZ(fm) always exist. In addition,
it always holds that lim inf Z(fm) ⊂ lim supZ(fm). Moreover, in the event that
both the lim inf Z(fm) and lim supZ(fm) coincide, then we call this set, the limit
of Z(fm), namely, limZ(fm) = lim inf Z(fm) = lim supZ(fm).

The following theorem, see ([8, Theorem 1.5]) will be useful in this work.
Theorem 1 Let D be a domain in C, and let α1, . . . , αn, β1, . . . , βn, (n ≥ 2) be
analytic functions on D, none of which is identically zero. Let us further assume
a “no-degenerate-dominance” condition, that is, there do not exist indices i 6= i′

such that βi ≡ ωβi′ for some constant ω with |ω| = 1 and such that Di(= Di′) has
nonempty interior. For each integer m ≥ 0, define fm by

fm =

n∑
i=1

αi(z)βi(z)
m.
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Then lim inf Z(fm) = lim supZ(fm), and a point z lies in this set if and only if
either
(a) there is a unique dominant index i at z, and αi(z) = 0, or
(b) there are two or more dominant indices at z.
Remark 1

Case (a) of Theorem 1 consists of isolated points in D while case (b) consists of
curves (and possibly isolated points where all the βi vanish simultaneously). The
Beraha-Kahane-Weiss Theorem for finding limits of roots of family of polynomials
is a special case of Theorem 1 in which fm are polynomials satisfying a linear finite-
order recurrence relation. See e.g the papers ( [3] and [4] ) for details. In our case
fm are the polynomials Pn satisfying a three-term recurrence relation.

If z∗ ∈ C is a fixed complex number such that the zeros in t of D(t, z∗) =
A(z∗)tk+B(z∗)t`+1 are distinct, then by use of partial fraction decomposition and
Theorem 1, z∗ belongs to lim inf Z(fm) when the two smallest zeros (in modulus)
of D(t, z∗) have the same modulus, [15]. Since the solutions to D(t, z) = 0 never
vanish (identically) in the required domain, it follows that case Theorem 1(a) is
never satisfied (no unique dominant index) and we are left to be in case of Theorem
1(b) where we have some equimodularity condition.

Now with our setup, if we can obtain a point z∗ ∈ C so that the zeros of D(t, z∗)
are distinct and the two smallest (in modulus) zeros of D(t, z∗) have the same
modulus, then for such a point z∗, we have that z∗ ∈ lim inf Z(fm) = lim supZ(fm).
This implies that on a small neighborhood of z∗, there is a zero of fm for all large
m by the Definition 3 of lim inf Z(fm). For details see [15].

It is important to note that Theorem 1 provides a description of the asymptotic
behaviour of the zeros of {Pn(x)} in the general case. On the other hand, Con-
jectures A and 1 describe specific cases where all the zeros z of Pn(x) such that
A(z) 6= 0 for Conjecture A or (A(z)B(z) 6= 0 for Conjecture 1) lie on the curve C
for all n or for all sufficiently large n.

3. GENERAL RESULTS

In order to prove some specific cases of Conjecture 1, we first prove some gen-
eral auxiliary lemmas. The results for cases when (k, `) = (3, 2) and (k, `) = (4, 3)
then fit in as specific cases. In this section among other things, we compute the
q-discriminant of a special polynomial D(t, z) = A(z)tk + B(z)t` + 1 for coprime
1 ≤ ` < k. We begin as follows.
Lemma 1 Let A(z), B(z) be fixed complex polynomials and {Pn(z)}∞n=0 be a se-
quence of polynomials given by linear recurrence relation of length k

Pn(z) +B(z)Pn−`(z) +A(z)Pn−k(z) = 0 (6)

with the standard initial conditions P0(z) = 1, P−1(z) = · · · = P1−k(z) = 0 where
1 ≤ ` < k are coprime. The generating function of {Pn(z)}∞n=0 is given by

∞∑
n=0

Pn(z)tn =
1

1 +B(z)t` +A(z)tk
. (7)

Proof. Let G(t) =
∑
n≥0 Pnt

n be the generating function of {Pn}∞n=0. Multiplying
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(6) by tn and summing over from n = k to infinity, we obtain∑
n≥k

Pnt
n +B

∑
n≥k

Pn−`t
n +A

∑
n≥k

Pn−kt
n = 0.

Simplifying gives(
G(t)−

k−1∑
n=0

Pnt
n

)
+Bt`

(
G(t)−

k−`−1∑
n=0

Pnt
n

)
+AtkG(t) = 0

which is equivalent to

G(t) =
1

1 +B(z)t` +A(z)tk

(
k−1∑
n=0

Pnt
n +Bt`

k−`−1∑
n=0

Pnt
n

)

=
1

1 +B(z)t` +A(z)tk

(
1 +

`−1∑
n=1

Pnt
n +

k−1∑
n=`

(Pn +BPn−`)t
n

)
.

From Equation (6), we have Pn = 0 for 0 < n ≤ ` − 1 and Pn + BPn−` = 0 for

` ≤ n ≤ k − 1. It follows that 1 +
∑`−1
n=1 Pnt

n +
∑k−1
n=`(Pn + BPn−`)t

n = 1, which
proves the required result.

Let us now consider the q-discriminant of D(t, z). In the following theorem, we
shall suppress the variable z.
Theorem 2 For coprime 1 ≤ ` < k, the q-discriminant of D(t) = Atk +Bt` + 1 is
given by

Disct(D(t); q) = (−1)
k(k+1)

2

(
(qk − 1)kA` −Bk(1− q`)`(q` − qk)k−`

)
W (8)

where W = Ak−`−1B`−1(1− q)−k.
Proof. By Proposition 1, we have

Disct(D(t); q) = (−1)k(k−1)/2Ak−2
∏

D(s∗i )=0
1≤i≤k

(DqD)(s∗i ),

where

(DqD)(t) =
D(t)−D(qt)

t− qt
.

Now

(DqD)(t) =
Atk +Bt` + 1− (Aqktk +Bq`t` + 1)

t− qt

= Atk−1 1− qk

1− q
+Bt`−1 1− q`

1− q
. (9)

Using equation (3) with P = D and Q = DqD we obtain

∏
D(s∗i )=0
1≤i≤k

(DqD)(s∗i ) = A

(
1− qk

1− q

)k ∏
(DqD)(t∗i )
1≤i≤k−1

D(t∗i ).
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This implies that

Disct(D(t); q) = (−1)
k(k−1)

2 Ak−1

(
1− qk

1− q

)k ∏
(DqD)(t∗i )
1≤i≤k−1

D(t∗i )

= (−1)
k(k−1)

2 Ak−1

(
1− qk

1− q

) ∏
(DqD)(t∗i )
1≤i≤k−1

1− qk

1− q
D(t∗i ). (10)

Now, D(t) and DqD(t) are related by the equation

(DqD)(t) =
(
D(t)
t −Bt

`−1 − 1
t

)
1−qk
1−q +Bt`−1

(
1−q`
1−q

)
.

Therefore

D(t)

(
1− qk

1− q

)
= (Bt` + 1)

(
1− qk

1− q

)
−Bt`

(
1− q`

1− q

)
+ t(DqD)(t)

= t(DqD)(t) +Bt`
(
q` − qk

1− q

)
+

1− qk

1− q
.

At the zeros t∗i of (DqD)(t) for 1 ≤ i ≤ k − 1, we have (DqD)(t∗i ) = 0, hence

D(t∗i )

(
1− qk

1− q

)
= (t∗i )

`

(
q` − qk

1− q

)
B +

1− qk

1− q
. (11)

Now substituting equation (11) into equation (10) we obtain

Disct(D(t); q) = (−1)
k(k−1)

2 Ak−1

(
1− qk

1− q

) ∏
(DqD)(t∗i )
1≤i≤k−1

(
(t∗i )

`

(
q` − qk

1− q

)
B +

1− qk

1− q

)

= (−1)
k(k−1)

2 (AB)k−1

(
1− qk

1− q

)(
q` − qk

1− q

)k−1

×
∏

(DqD)(t∗i )
1≤i≤k−1

(
(t∗i )

` +
1− qk

B(q` − qk)

)
.

From Equation (9), the condition (DqD)(t∗i ) = 0 for 1 ≤ i ≤ k− 1 implies that 0 is
a root that occurs with multiplicity `− 1. The other zeros satisfy the relation

(t∗i )
k−` = −B

A

(
1− q`

1− qk

)
. (12)

Since the integers k and ` are coprime, which is equivalent k−` and ` being coprime,
we can make the change of variables ξ = t`. We observe that t∗i for 1 ≤ i ≤ k− ` is

a zero to the polynomial r(t) = tk−` + B
A

(
1−q`
1−qk

)
. By the change of variable ξ = t`,

the polynomial r(t) becomes

Ψ(ξ) = ξk−` −
(
−B
A

)`(
1− q`

1− qk

)`
. (13)
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In particular, the solutions ξ∗i to Ψ(ξ) = 0 for 1 ≤ i ≤ k − ` are of the form (t∗i )
`

where t∗i is a solution to r(t) = 0, (nonzero solution to (DqD)(t) = 0). So∏
(DqD)(t∗i )=0

t∗i 6=0
1≤i≤k−`

(
(t∗i )

` +
1− qk

B(q` − qk)

)
=

∏
Ψ(ξ∗i )=0
1≤i≤k−`

(
ξ∗i +

1− qk

B(q` − qk)

)
.

The zero t∗i = 0 for 1 ≤ i ≤ `−1 contributes the following factor to the discriminant(
1− qk

B(q` − qk)

)`−1

The expression for Disct(D(t); q) now has the form

Disct(D(t); q) = (−1)
k(k−1)

2 (AB)k−1

(
1− qk

1− q

)(
q` − qk

1− q

)k−1(
1− qk

B(q` − qk)

)`−1

×
∏

Ψ(ξ∗i )=0
1≤i≤k−`

(
ξ∗i +

1− qk

B(q` − qk)

)
.

We now simplify the remaining product. Consider the following equation:

ξk−` =

(
−B
A

)`(
1− q`

1− qk

)`
. (14)

Using the change of variable

ξ = Y − 1− qk

B(q` − qk)
,

Equation (14) becomes(
Y − 1− qk

B(q` − qk)

)k−`
−
(
−B
A

)`(
1− q`

1− qk

)`
= 0.

Using Binomial Theorem, we get

g(Y ) := Y k−` + · · ·+
(
− (1− qk)

B(q` − qk)

)k−`
−
(
−B
A

)`(
1− q`

1− qk

)`
= 0.

The constant term in g(Y ) is

C =

(
− (1− qk)

B(q` − qk)

)k−`
−
(
−B
A

)`(
1− q`

1− qk

)`
.

For i = 1, 2, . . . , k − `, let yi are the solutions to g(Y ) = 0. Then

ξj = yi −
1− qk

B(q` − qk)

for some j ∈ {1, 2, . . . , k − `}. So we can choose i = j so that ξi = yi − 1−qk
B(q`−qk)

.

Now the product of solutions to g(Y ) = 0 is given by

C = (−1)k−`
k−∏̀
i=1

yi =

[(
− (1− qk)

B(q` − qk)

)k−`
−
(
−B
A

)`(
1− q`

1− qk

)`]
.
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or

k−∏̀
j=1

(
ξj +

1− qk

B(q` − qk)

)
=

k−∏̀
i=1

yi = (−1)k−`C. (15)

Plugging equation (15) into the expression for Disct(D(t); q) gives

Disct(D(t); q) = (−1)
k(k−1)

2
(AB)k−1(ql − qk)k−1(1− qk)

(1− q)k

(
1− qk

B(q` − qk)

)`−1

× (−1)k−`
[

(qk − 1)k−`

Bk−`(ql − qk)k−`
− (−1)`B`(1− q`)`

A`(1− qk)`

]
. (16)

Simplifying equation (16) gives

Disct(D(t); q) = (−1)
k(k+1)

2

(
(qk − 1)kA` −Bk(1− q`)`(q` − qk)k−`

)
W,

where W = Ak−`−1B`−1(1− q)−k. The proof is complete.
Corollary 1 Let A and B be fixed complex polynomials. The q-discriminant of
D(t) = At3 +Bt2 + 1 is

Disct(D(t); q) =
B
(
A2
(
q3 − 1

)3
+B3(q − 1)q2

(
q2 − 1

)2)
(1− q)3

.

Proof. Set k = 3 and ` = 2 in the Theorem 2 above and obtain the result.
The following lemma will be used in the proof of the main results.

Lemma 2 Let k, ` be integers and q ∈ C with |q| = 1. The function defined by

h(q) = (1−qk)k

(1−q`)`(q`−qk)k−`
is real-valued.

Proof. Since |q| = 1, we have qs−q−s = 2i=(qs), for any integer s, (here i2 = −1).
It therefore follows that (1− qs)s = (q

s
2 (q−

s
2 − q s2 ))s = qs(

s
2 )(−2i)s(=(q

s
2 ))s. So,

h(q) =
(1− qk)k

(1− q`)`(q` − qk)k−`

=
qk( k2 )(−2i)k(=(q

k
2 ))k

q`(
`
2 )(−2i)`(=(q

`
2 ))`q`(k−`)q(k−`) (k−`)

2 (−2i)k−`(=(q
k−`
2 ))k−`

=
qk( k2 )−(`( `2 )+`(k−`)+(k−`) (k−`)

2 )(=(q
k
2 )k

(=(q
`
2 ))` · (=(q

k−`
2 ))k−`

=
(=(q

k
2 ))k

(=(q
`
2 ))` · (=(q

k−`
2 ))k−`

.

Since the expressions =(q
k
2 ), =(q

`
2 ) and =(q

k−`
2 ) are all real, the result follows.

4. Specific cases of conjecture 1 when (k, `) = (3, 2) and (k, `) = (4, 3)

In this section, we settle the specific cases of (k, `) = (3, 2) and (k, `) = (4, 3)
completely by showing that the zeros of Pn(z) lie on a portion of real algebraic

curve =
(
Bk(z)
A`(z)

)
= 0. We also provide the relevant inequality constraint.
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Figure 1. Distribution of the quotients of zeros of D(t) = At3 +
Bt2 + 1. C1 (blue), C2 (orange) and C3 (green).

For the case (k, `) = (3, 2), we begin with the following lemma.
Lemma 3 Suppose ξ2, ξ3 6= 0 are complex numbers such that ξ2 + ξ3 + 1 = 0 and

ξn+1
2 − 1

ξ2 − 1
=
ξn+1
3 − 1

ξ3 − 1

for some positive integer n. Then ξ2 and ξ3 lie on the curve Γ = C1 ∪C2 ∪C3 and
are dense there as n → ∞. Here the equations of C1, C2 and C3 (see Fig. 1) are
given by

Γ =


C1 : x2 + y2 = 1, x ≤ − 1

2 ,

C2 : (x+ 1)2 + y2 = 1, x ≥ − 1
2 ,

C3 : x = − 1
2 + iy, |y| ≥

√
3

2 .

The proof is similar to the one given in [2, Lemma 2] by letting ξ 7→ 1
ξ .

Remark 2 Note that t1, t2 and t3 are zeros of D(t, z) = A(z)t3 + B(z)t2 + 1. By
Vieta’s formulae we have t1t2 + t1t3 + t2t3 = 0. Dividing by t21 and letting qi = ti/t1
and qi = 1/ξi, i = 2, 3 gives q2q3 + q2 + q3 = 0 if and only if ξ2 + ξ3 + 1 = 0, the
first condition in Lemma 3.
Theorem 3 Let {Pn(z)} be a polynomial sequence whose generating function is

∞∑
n=0

Pn(z)tn =
1

1 +B(z)t2 +A(z)t3
,

where B(z) and A(z) are polynomials in z with complex coefficients. Given any
n ∈ N, those zeros z of Pn(z) for which A(z)B(z) 6= 0 lie on the curve defined by

=
(
B3(z)

A2(z)

)
= 0 and 0 ≤ <

(
B3(z)

A2(z)

)
<∞.
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Proof. Let z0 be a zero of Pn(z) such that A(z0)B(z0) 6= 0 and let t1 = t1(z0), t2 =
t2(z0), t3 = t3(z0) be the zeros of D(t, z0) = A(z0)t3 + B(z0)t2 + 1. There are two
cases we shall consider; namely, the case of repeated zeros and the case of distinct
zeros of D.

Case 1: Suppose D(t, z0) has repeated zeros. The ordinary discriminant of
D(t, z0) is

Disct(D(t, z0)) = −27A2(z0)− 4B3(z0).

For repeated zeros, Disct(D(t, z0)) = 0 which is equivalent to

B3(z0)

A2(z0)
= −27

4
∈ R.

Therefore, the point z0 lies on the curve given by

=
(
B3(z)

A2(z)

)
= 0.

Case 2: Suppose all the zeros of D(t, z0) are distinct, i.e., Disct(D(t, z0)) 6= 0.
In this situation, let t1, t2 and t3 be the three distinct zeros of D(t, z). We first
consider the distribution of quotients of zeros qi = ti/t1, 1 ≤ i ≤ 3. Then we
examine the root distribution of Pn(z) using q-discriminants. We show that these
quotients qi = ti/t1, 1 ≤ i ≤ 3 lie on the curve in Fig. 1.

Let z0 be a root of Pn(z) which satisfies A(z0)B(z0) 6= 0 and let t1 = t1(z0), t2 =
t2(z0), t3 = t3(z0) be the zeros of D(t, z0) = A(z0)t3 +B(z0)t2 + 1.
By partial fraction decomposition, we have

1

1 +B(z0)t2 +A(z0)t3
=

1

A(z0)

(
1

(t− t1)(t− t2)(t− t3)

)
=

1

A(z0)

3∑
i=1

1

t− ti

∏
i6=j

1

ti − tj
.

By using geometric progression, we get

1

t− ti
= − 1

ti

∞∑
n=0

tn

tni
= −

∞∑
n=0

1

tn+1
i

tn (|t| < |ti|).

Hence we obtain

1

D(t, z0)
= − 1

A(z0)

∞∑
n=0

 3∑
i=1

1

tn+1
i

∏
i 6=j

1

ti − tj

 tn. (17)

Comparing coefficients of tn in equations (7) and (17) we obtain

Pn(z0) = − 1

A(z0)

3∑
i=1

1

tn+1
i

∏
i 6=j

1

ti − tj
.

Let qi = ti/t1, i = 2, 3. Now for any n ≥ 0, the equation Pn(z0) = 0 is equivalent
to

qn2 q
n
3 (q2 − q3)− qn2 (q2 − 1) + qn3 (q3 − 1) = 0. (18)

Since q2 − q3 = q2 − 1− q3 + 1 it follows that

qn2 q
n
3 (q2 − q3) = qn2 q

n
3 (q2 − 1)− qn2 qn3 (q3 − 1).

Therefore equation (18) can be rewritten as

qn2 q
n
3 (q2 − 1)− qn2 qn3 (q3 − 1) = qn2 (q2 − 1)− qn3 (q3 − 1)
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and consequently since q2, q3 6= 0, 1 we obtain

qn2 − 1

qn2 (q2 − 1)
=

qn3 − 1

qn3 (q3 − 1)
. (19)

If we add 1 on both sides of the equation (19) and set qi = 1/ξi, i = 2, 3 we obtain
[one side]

qn2 − 1

qn2 (q2 − 1)
+ 1 =

qn+1
2 − 1

qn2 (q2 − 1)
=
qn+1
2 (1− (1/q2)n+1)

qn+1
2 (1− 1/q2)

=
ξn+1
2 − 1

ξ2 − 1
.

Similarly on the other side of equation (19) we obtain

qn3 − 1

qn3 (q3 − 1)
+ 1 =

ξn+1
3 − 1

ξ3 − 1
.

Thus equation (19) becomes

ξn+1
2 − 1

ξ2 − 1
=
ξn+1
3 − 1

ξ3 − 1
,

the second condition in Lemma 3.
Next, we need show that ξi, i = 2, 3 being on the curve Γ implies that qi ∈ Γ as

well. In particular, if ξi ∈ C1 then the corresponding qi ∈ C1. If ξi ∈ C2 then the
corresponding qi ∈ C3 and for ξi ∈ C3, the corresponding qi ∈ C2. To do this, it
is enough to show that Γ is invariant under the Möbius inversion z 7→ 1

z . This is
shown as follows.

(i) For any z = x+ iy ∈ C1, we have |z| = 1 with <(z) ≤ − 1
2 . In addition, z 6= 0

and so the image of z under inversion w = 1
z is w = 1

z . Note that |w| = | 1z | =
1
|z| = 1.

Furthermore, <(w) = <( 1
z ) = x

x2+y2 ≤ −
1
2 . Hence w ∈ C1.

(ii) For any z = x + iy ∈ C2, we have (x + 1)2 + y2 = 1 where x ≥ − 1
2 . Under

the inversion w = 1
z , we have

w =
1

z
=

z̄

|z|2
=

x− iy
x2 + y2

=
x− iy

(x+ 1)2 + y2 − 2x− 1
= −1

2
+

y

2x
i.

Note that on C2, − 1
2 ≤ x ≤ 0 and −

√
3

2 ≤ y ≤
√

3
2 . With these ranges on x and y,

we obtain |=(w)| = | y2x | ≥
√

3
2 . Clearly <(w) = − 1

2 . Hence w ∈ C3.

(iii) For any z = x + iy ∈ C3, we have z = − 1
2 + yi where |y| ≥

√
3

2 . Clearly

z 6= 0. So |z̄| = |z|. Under the inversion w = 1
z , we have

w =
1

z
=

z̄

|z|2
=

x

x2 + y2
+ i

−y
x2 + y2

=
−1/2

1/4 + y2
+ i

−y
1/4 + y2

.

With the ranges of x and y for z ∈ C3, we obtain

0 ≥ <(w) =
−1/2

1/4 + y2
≥ −1/2

1/4 + 3/4
≥ −1

2
. (20)

In addition, since =(w) = −y
1/4+y2 and |y| ≥

√
3

2 , we have 0 ≤ |=(w)| ≤
√

3
2 .

Therefore w ∈ C2.
The conclusion that Γ is invariant under the Möbius inversion z 7→ 1

z thus follows.
Therefore q2 and q3 lie on the curve Γ given in Lemma 3. The proof is complete.
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Now we know that q2 and q3 are given by the ratio of zeros of D and are therefore
the zeros of the discriminant. (Recall from Ismail [9] that the q-discriminant equals
zero if there is a pair of zeros with the ratio q). From Corollary 1, we know that
the q-discriminant of D(t, z) = 1 +B(z)t2 +A(z)t3 is given by

Disct(D(z, q)) =
B
(
A2
(
q3 − 1

)3
+B3(q − 1)q2

(
q2 − 1

)2)
(1− q)3

.

Since q2 and q3 are the zeros of the discriminant then

B
(
A2
(
q3
i − 1

)3
+B3(qi − 1)q2

i

(
q2
i − 1

)2)
(1− qi)3

= 0

with i = 2, 3. Consequently since qi 6= 0, 1 we have

B3(z)

A2(z)
=
−(1 + qi + q2

i )3

q2
i (1 + qi)2

.

It remains to show that

f(q) =
B3(z)

A2(z)
=
−(1 + q + q2)3

q2(1 + q)2

maps the curve Γ to a real interval so that we conclude =(f) = 0.
Now since q lies on the curve in Fig. 1, we have three possibilities below.

(a) |q| = 1, and this corresponds to the points ξ on the curve C1.
(b) q + q̄ = −1, and this corresponds to the points ξ on the curve C2.
(c)| − 1− q| = 1, and this corresponds to the points ξ on the curve C3.

For part (a)

f(q) = − (1 + q + q2)3

q2(1 + q)2
= −

q3( 1
q + 1 + q)3

q3( 1
q + 2 + q)

∈ R

since 1
q + q ∈ R. Hence =(f) = 0.

For part (b), note that q̄ = −1− q. Therefore

− (1 + q̄ + q̄2)3

q̄2(1 + q̄)2
= − (1 + (−1− q) + (−1− q)2)3

(−1− q)2(1 + (−1− q))2

= − (−q + 2q + q2 + 1)3

(−1− q)2q2

= − (1 + q + q2)3

q2(1 + q)2

Consequently f(q̄) = f(q) = f(q), and we conclude that =(f) = 0.

For Part (c), | − 1− q| = 1⇒ q̄ = − q
1+q . Therefore

f(q̄) = − (1 + q̄ + q̄2)3

q̄2(1 + q̄)2
= −

(1 + −q
1+q + ( −q1+q )2)3

( −q1+q )2(1 + −q
1+q )2

= − (1 + q + q2)3

q2(1 + q)2
= f(q).

Hence f(q̄) = f(q) = f(q), and we conclude that =(f) = 0.
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The conclusion =(f) = 0 follows. Therefore, the point z0 lies on the curve given
by

=
(
B3(z)

A2(z)

)
= 0. (21)

Next we prove the inequality constraint. From the recurrence relation with
` = 2, k = 3 we have

Pn(z) +B(z)Pn−2(z) +A(z)Pn−3(z) = 0

whose characteristic equation is t3 +B(z)t+A(z) = 0. The corresponding denom-
inator of the generating function is D(t, z) = A(z)t3 + B(z)t2 + 1. Suppressing z,
we can write D(t) = At3 +Bt2 + 1.

Let t1, t2, t3 be the zeros of D(t) labelled so that 0 < |t1| ≤ |t2| ≤ |t3| and set
qi := ti/t1 for i = 1, 2, 3. Note these are functions of z. Vieta’s formulae give
t1t2 + t1t3 + t2t3 = 0. This implies that q3 = − u

1+u where u = q2.

Equation (21) describes the algebraic closure of the Beraha-Kahane-Weiss limit
(which is a real semialgebraic closure in R2). In other words the condition (21)
describes the set of all z for which D(t, z) has two roots with coinciding absolute
values. In terms of the quantities q1, q2 and q3, the later condition is given by
q1 = 1, |q2| = |u| = 1. Thus if z0 is a zero of Pn(z) and A(z0)B(z0) 6= 0 then
q1 = 1, |u| = 1. The Beraha-Kahane-Weiss theorem limit is given by the extra
condition that |q3| ≥ 1.

So, we search for an u such that the above conditions are satisfied. Let u = eiθ

where θ ∈ [0, 2π]. It follows from |q3| ≥ 1 that 1 = |u| ≥ |1 +u| = 2(1 + cos θ). This
implies that θ ∈

[
2π
3 ,

4π
3

]
.

Let Ω =
{
eiθ : 2π

3 ≤ θ ≤
4π
3

}
. Since q ∈ Ω ⊂ Γ, it follows that

f(q) = − (1 + q + q2)3

q2(1 + q)2
.

We now compute the range of f on Ω. To do this, we let q = eiθ where θ ∈
[ 2π

3 ,
4π
3 ]. After this parametrization we obtain

f(q) = F (θ) = − (2 cos(θ) + 1)3

2 cos(θ) + 2
.

It is clear that F is well-defined and continuous on the union [ 2π
3 , π) ∪ (π, 4π

3 ].

Observe that for θ ∈ [ 2π
3 ,

4π
3 ], we have −1 ≤ 2 cos(θ)+1 ≤ 0 and 0 ≤ 2 cos(θ)+2 ≤ 1

hence F (θ) ≥ 0. Moreover, F attains its minimal values equal to 0 at θ = 2π
3 and

at θ = 4π
3 . Since limθ→π F (θ) = +∞, it follows from continuity and non-negativity

of F that the range of f is R≥0. This proves the inequality condition that

0 ≤ <
(
B3(z)

A2(z)

)
<∞.

Next we settle the specific case of Conjecture 1 where (k, `) = (4, 3). We begin with

the following lemma.
Lemma 4 Let z0 be a zero of Pn(z) and q = q(z0) be a quotient of two zeros in
t of D(t, z0) = A(z0)t4 +B(z0)t3 + 1. Then the set of all such quotients belongs to



30 I. NDIKUBWAYO EJMAA-2020/8(2)

Figure 2. Distribution of the quotients of zeros of the D(t) =
At4 +Bt3 + 1.

the curve depicted in Fig. 2 where the equation of the quartic curve C5 (see the
left part of Fig. 2) is

1 + 2x+ 2x2 + 2x3 + x4 − 2y2 + 2xy2 + 2x2y2 + y4 = 0,

and the other curve C4 (see the right part of Fig. 2) is the segment of the unit
circle with real part at least −1/3. Proof. Let z0 be a zero of Pn(z) such that
A(z0)B(z0) 6= 0 and let t1 = t1(z0), t2 = t2(z0), t3 = t3(z0) and t4 = t4(z0) be the
zeros of D(t, z0) = A(z0)t4 +B(z0)t3 + 1.

By partial fraction decomposition, we have

1

1 +B(z0)t3 +A(z0)t4
=

1

A(z0)

(
1

(t− t1)(t− t2)(t− t3)(t− t4)

)
=

1

A(z0)

4∑
i=1

1

t− ti

∏
i 6=j

1

ti − tj
.

By using geometric progression, we get

1

t− ti
= − 1

ti

∞∑
n=0

tn

tni
= −

∞∑
n=0

1

tn+1
i

tn (|t| < |ti|).

Hence we obtain

1

D(t, z0)
= − 1

A(z0)

∞∑
n=0

 4∑
i=1

1

tn+1
i

∏
i 6=j

1

ti − tj

 tn. (22)

Comparing coefficients of tn in Equation (7) and Equation (22) we obtain

Pn(z0) = − 1

A(z0)

4∑
i=1

1

tn+1
i

∏
i 6=j

1

ti − tj
.

Let qi = ti/t1, i = 2, 3, 4. Now for any n ≥ 0, the equation Pn(z0) = 0 is
equivalent to

qn+1
2 qn+3

3 qn+2
4 −qn+1

2 qn+2
3 qn+3

4 −qn+2
2 qn+3

3 qn+1
4 +qn+2

2 qn+1
3 qn+3

4 +qn+3
2 qn+2

3 qn+1
4 −qn+3

2 qn+1
3 qn+2

4

+qn+1
2 qn+2

3 −qn+1
2 qn+3

3 +qn+2
2 qn+3

3 +qn+3
2 qn+1

3 −qn+3
2 qn+2

3 −qn+2
2 qn+1

3 −qn+1
2 qn+2

4 +qn+1
2 qn+3

4
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+qn+2
2 qn+1

4 −qn+2
2 qn+3

4 −qn+3
2 qn+1

4 +qn+3
2 qn+2

4 −qn+2
3 qn+1

4 +qn+3
3 qn+1

4 +qn+1
3 qn+2

4 −qn+3
3 qn+2

4

−qn+1
3 qn+3

4 + qn+2
3 qn+3

4 = 0.

Observe that since D(t, z0) = A(z0)t4 +B(z0)t3 + 1, Vieta’s formulae give

t1t2 + t1t3 + t1t4 + t2t3 + t2t4 + t3t4 = 0, (23)

and

t1t2t3 + t1t3t4 + t1t2t4 + t2t3t4 = 0. (24)

Divide Equation (23) by t21 and (24) by t31 and solve the resulting equations simul-
taneously to get q3 and q4 in terms of q2 = u as follows. Either

q3 =
u(u+ 1) + iu

√
3u2 + 3 + 2u

2 (u2 + u+ 1)
and q4 =

u(u+ 1)− iu
√

3u2 + 3 + 2u

2 (u2 + u+ 1)
, (25)

or

q3 =
u(u+ 1)− iu

√
3u2 + 3 + 2u

2 (u2 + u+ 1)
and q4 =

u(u+ 1) + iu
√

3u2 + 3 + 2u

2 (u2 + u+ 1)
. (26)

Observe that the product and sum of the roots q3 and q4 are respectively

q3q4 =
u2

u2 + u+ 1
and q3 + q4 =

−u(u+ 1)

u2 + u+ 1
. (27)

From (27), we have that q3 and q4 are two roots of the equation

G(q) := q2 +
u(u+ 1)

u2 + u+ 1
q +

u2

u2 + u+ 1
= 0. (28)

Let u = eiθ be a point on the unit circle such that −1/3 ≤ cos θ ≤ 1. The quadratic
formula (28) thus gives

q =
1

2

(
−1 +

e−iθ

2 cos θ + 1
± ie−iθ/2

√
6 cos θ + 2

2 cos θ + 1

)
. (29)

Splitting the real and imaginary parts of Equation (29), using Mathematica we
obtain that G maps the interval − 1

3 ≤ cos θ ≤ 1 to the quartic curve

1 + 2x+ 2x2 + 2x3 + x4 − 2y2 + 2xy2 + 2x2y2 + y4 = 0.

Theorem 4 Let {Pn(z)} be a polynomial sequence whose generating function is
∞∑
n=0

Pn(z)tn =
1

1 +B(z)t3 +A(z)t4
,

where B(z) and A(z) are polynomials in z with complex coefficients. Given any
n ∈ N, those zeros z of Pn(z) which satisfy A(z)B(z) 6= 0 lie on the real algebraic
curve defined by

=
(
B4(z)

A3(z)

)
= 0 and 0 ≤ <

(
B4(z)

A3(z)

)
<∞.

Proof. Let z0 be a zero of Pn(z) such that A(z0)B(z0) 6= 0 and let t1 = t1(z0), t2 =
t2(z0), t3 = t3(z0), t4 = t4(z0) be the zeros of D(t, z0) = A(z0)t4 + B(z0)t3 + 1. As
above, we consider two cases.
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Case 1: Suppose D(t, z0) has repeated zeros. The ordinary discriminant of
D(t, z0) is

Disct(D(t, z0)) = 44A3(z0)− 33B4(z0).

For repeated zeros, Disct(D(t, z0)) = 0 which is equivalent to

B4(z0)

A3(z0)
=

44

33
=

256

27
∈ R.

Therefore, the point z0 lies on the curve given by

=
(
B4(z)

A3(z)

)
= 0 and <

(
B4(z)

A3(z)

)
> 0.

Case 2: Suppose all the zeros of D(t, z0) are distinct, i.e., Disct(D(t, z0)) 6= 0.
Let t1, t2, t3 and t4 be the distinct zeros of D(t, z). As above, we consider the
distribution of quotients of zeros qi = ti/t1, 1 ≤ i ≤ 4. Then we examine the root
distribution of Pn(z) using q-discriminants and show that the quotient of zeros
qi = ti/t1, 1 ≤ i ≤ 4 lie on the curve given in Fig. 2.

By Theorem 2, the q-discriminant of D(t, z) = 1 +B(z)t3 +A(z)t4 is given by

Disct(D(t); q) =
B2
(
A3
(
q4 − 1

)4 −B4(q − 1)q3
(
q3 − 1

)3)
(q − 1)4

.

If q is a quotient of two distinct zeros of D(t, z0) = 1 + B(z0)t3 + A(z0)t4 then
Disct(D(t); q) = 0 which implies

B2
(
A3
(
q4 − 1

)4 −B4(q − 1)q3
(
q3 − 1

)3)
(q − 1)4

= 0.

Since q 6= 0, 1, we have

B4(z0)

A3(z0)
=

(q4 − 1)4

(q3 − 1)3(q3 − q4)
=: f(q) (30)

It remains to show that for q on the curve depicted in Fig. 2, we have =(f(q)) = 0.
To do this, let u = eiθ be a point on a unit circle with − 1

3 ≤ cos θ ≤ 1. Then
u ∈ C4. To each u, there are two possible values of q. Moreover, u 6= q since this
would imply that u = −1 ± i

√
2 contradicting that u is a point on the segment of

the unit circle with real part at least −1/3. Now, let u ∈ C4 with the property that
q(u) ∈ C5(the quartic curve). Then q and u are related by the equation

q2 +
u(u+ 1)

u2 + u+ 1
q +

u2

u2 + u+ 1
= 0. (31)

Multiplying Equation (31) by u− q, we obtain

q3 + q3u+ q3u2 = u3 + qu3 + q2u3. (32)
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From (30) and the identity (32) we show that f(q) = f(u) as follows.

f(q) =
(q4 − 1)4

(q3 − 1)3(q3 − q4)
= − (q + 1)4(q2 + 1)4

(q2 + q + 1)3q3
= − (q + 1)4(q2 + 1)4u12

q12(u2 + u+ 1)3u3

= − (1 + 1/q)4(1 + 1/q2)4u12

(u2 + u+ 1)3u3
=

(u3(1 + 1/q)(1 + 1/q2))4(u− 1)4

(u3 − 1)3(u3 − u4)

=
(u3(1 + 1/q + 1/q2 + 1/q3))4(u− 1)4

(u3 − 1)3(u3 − u4)
=

(u3(1 + 1/u+ 1/u2 + 1/u3))4(u− 1)4

(u3 − 1)3(u3 − u4)

=
(1 + u+ u2 + u3)4(u− 1)4

(u3 − 1)3(u3 − u4)
=

(u4 − 1)4

(u3 − 1)3(u3 − u4)
= f(u).

Since u ∈ C4, it implies |u| = 1. Lemma 2 then gives =(f(u)) = =(f(q)) = 0. The
conclusion =(f) = 0 thus follows. Therefore, the point z0 lies on the curve given
by

=
(
B4(z)

A3(z)

)
= 0.

Next we prove the inequality constraint. From the recurrence relation with
` = 3, k = 4 we have

Pn(z) +B(z)Pn−3(z) +A(z)Pn−4(z) = 0

whose characteristic equation is t4 +B(z)t+A(z) = 0. The corresponding denom-
inator of the generating function is D(t, z) = A(z)t4 + B(z)t3 + 1. Suppressing z,
we can write D(t) = At4 +Bt3 + 1.

Let t1, t2, t3, t4 be the zeros of D(t) labelled so that 0 < |t1| ≤ |t2| ≤ |t3| ≤ |t4|
and set qi := ti/t1 for i = 1, 2, 3, 4. Note these are functions of z.

From the Equations (25) and (26), it is enough to consider only one pair of
solutions (q3, q4) since the other pair follows similarly and give the same results.

If z0 is a zero of Pn(z) and A(z0)B(z0) 6= 0, then as above q1 = 1, |u| = 1,
|q3| ≥ 1 and |q4| ≥ 1. So, we search for an u such that the above conditions are
satisfied. Set u = eiθ where θ ∈ [0, 2π]. It follows from |q3| ≥ 1 that∣∣∣∣ u

u2 + u+ 1

∣∣∣∣ ∣∣∣u+ 1 + i
√

3u2 + 3 + 2u
∣∣∣ ≥ 2,

which becomes∣∣∣∣1 + eiθ + i
√

(3e2iθ + 3 + 2eiθ)

∣∣∣∣ ≥ ∣∣2(e2iθ + eiθ + 1)
∣∣ . (33)

Simplifying (33) gives

(2 cos θ + 1) cos θ ≤ 0. (34)

Solving (34) gives θ ∈ [π2 ,
2π
3 ] ∪ [ 4π

3 ,
3π
2 ].

Similarly, for |q4| ≥ 1, we get θ ∈ [π2 ,
2π
3 ] ∪ [ 4π

3 ,
3π
2 ]. We thus conclude that both

|q3| ≥ 1 and |q4| ≥ 1 only when θ ∈ [π2 ,
2π
3 ] ∪ [ 4π

3 ,
3π
2 ].

Let Ω = {eiθ : θ ∈ [π2 ,
2π
3 ] ∪ [ 4π

3 ,
3π
2 ]}. From

f(q) =
B4(z)

A3(z)
=

(q4 − 1)4

(q3 − 1)3(q3 − q4)
.

If q ∈ Ω, it follows that

f(q) =
(1 + q + q2 + q3)4

q3(1 + q + q2)3
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We now compute the range of f on Ω. To do this, we set q = eiθ where θ ∈
[π2 ,

2π
3 ] ∪ [ 4π

3 ,
3π
2 ]. After this parametrization we obtain

f(q) = F (θ) =
(cos(4θ)− 1)2

(cos(3θ)− 1)(cos(2θ)− cos θ)
.

It is clear that F is well-defined and continuous on the union [π2 ,
2π
3 )∪ ( 4π

3 ,
3π
2 ]. For

θ ∈ Ω, we obtain 0 ≤ (cos(4θ) − 1)2 ≤ 9
4 , −1 ≤ (cos(3θ) − 1) ≤ 0 and − 1 ≤

(cos(2θ) − cos θ) ≤ 0. Hence F (θ) ≥ 0. Moreover, F attains its minimum value of
0 at θ = π

2 and θ = 3π
2 . Since limθ→ 2π

3
− F (θ) = +∞ = limθ→ 4π

3
+ F (θ), it follows

from continuity and non-negativity of F that the range of f is R≥0. This proves
the inequality condition that

0 ≤ <
(
B4(z)

A3(z)

)
<∞.

5. Examples

In this section we present several concrete examples using numerical experiments.
In these examples, we consider the sequence of polynomials {Pn}∞n=0 generated by
the rational function

∞∑
n=0

Pn(z)tn =
1

1 +B(z)t` +A(z)tk
,

where A(z) and B(z) are arbitrary complex polynomials. We plot a portion of the
curve given by

=
(
Bk(z)

A`(z)

)
= 0.

On each graph, we plot the zeros of one of the polynomials (of our choice) in the
polynomial sequence described by the given parameters k, `, A(z) and B(z).
Example 3 For k = 3, ` = 2, A(z) = z + 5 and B(z) = −z2 + 2z + 5, we obtain
Fig. 3 and Fig. 4. In Fig. 3, we plot the zeros of P30(z) while in Fig. 4, we plot
the zeros of P70(z).
Example 4 For k = 3, ` = 2, A(z) = z3 − z + 6 and B(z) = −z2 + 7z − 5, we
obtain Fig. 5 and Fig. 6. In Fig. 5, we plot the zeros of P120(z) while in Fig. 6,
we plot the zeros of P200(z).
Example 5 For k = 4, ` = 3, A(z) = z2 + 1 and B(z) = z3 − 1, we obtain Fig. 7
and Fig. 8. In Fig. 7, we plot the zeros of P40(z) while in Fig. 8, we plot the zeros
of P70(z).
Example 6 For k = 4, ` = 3, A(z) = 7z5 − 2z + i and B(z) = −z2 − 2z + 5, we
obtain Fig. 9 and Fig. 10. In Fig. 9, we plot the zeros of P50(z) while in Fig. 10,
we plot the zeros of P150(z).

We end this paper with the following conjecture which we obtain based on nu-
merical experiments.
Conjecture 2 In the notation of Conjecture 1 with the condition ` > 1, we have
the following.
(a) If k is even, then

0 ≤ <
(
Bk(z)

A`(z)

)
<∞.
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Figure 3. The graph
of =(B3(z)/A2(z)) = 0
and the zeros of P30(z).

Figure 4. The graph
of =(B3(z)/A2(z)) = 0
and the zeros of P70(z).

Figure 5. The graph
of =(B3(z)/A2(z)) = 0
and the zeros of
P120(z).

Figure 6. The graph
of =(B3(z)/A2(z)) = 0
and the zeros of
P200(z).

(b) If k is odd, then

0 ≤ −<
(
Bk(z)

A`(z)

)
<∞ for ` odd

and

0 ≤ <
(
Bk(z)

A`(z)

)
<∞ for ` even.
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Figure 7. The graph
of =(B4(z)/A3(z)) = 0
and the zeros of P40(z).

Figure 8. The graph
of =(B4(z)/A3(z)) = 0
and the zeros of P70(z).

Figure 9. The graph
of =(B4(z)/A3(z)) = 0
and the zeros of P50(z).

Figure 10. The graph
of =(B4(z)/A3(z)) = 0
and the zeros of
P150(z).

Remark 3
(a) The complex number z referred to in the Conjecture 2 must satisfy the condition
that Pn(z) = 0 and A(z)B(z) 6= 0.
(b) The cases where k = 2, 3, 4 and ` = 1 are proved by Tran in [1]. Moreover each
of the inequality constraint relating to the real part of rational function is bounded.
In a follow-up paper [2], Tran proves a similar result for any positive integer k and
` = 1.
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6. Final Remarks

Problem. Give a complete proof of Conjecture 1 as formulated by B. Shapiro.
This still remains unknown to the author and it should be a project for a future
work. Additionally to give a complete proof of Conjecture 2 as formulated in this
paper.
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