
Electronic Journal of Mathematical Analysis and Applications
Vol. 8(2) July 2020, pp. 60-70..
ISSN: 2090-729X(online)
http://math-frac.org/Journals/EJMAA/
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A QUASISTATIC ANTIPLANE THERMAL CONTACT PROBLEM

CHOUGUI RACHID AND LEBRI NEMIRA

Abstract. This paper is devoted to the study of a mechanical problem mod-
elling the antiplane shear deformation of a cylindrical body in frictionnal con-
tact with a rigid obstacl the so-called foundation. The material is assumed
to be thermo-viscoelastic, and the friction is modeled with Tresca�s law. We
derive a variational formulation of the model whitch is in the form of a system
coupling a variational elliptic equality for the displacements and a di¤erential
heat equation for the temperature. A weak formulation is presented where
the existence and uniqueness result estabilished by using general results on
evolution equations with monotone operator and �xed point arguments.

1. Introduction

The contact between a deformable body and a foundation is a very frequent
and important phenomenon, in industry and in our daily life. For this reason
the literature covering this phenomenon is extensive, both in applied mathematics
and in engineering or geophysics. The mathematical theory of contact mechanics
is concerned with the mathematical structures which underline general problems
of contact with di¤erent constitutive laws and di¤erent contact conditions (see,
e.g.[6]). A number of recent publications is dedicated to the study of quasistatic
contact models involving thermoviscoelastic materials.
Antiplane shear deformation problems arise naturaly from many real world ap-

plications such as rectilinear steady �ow of simple �uids, interface stress e¤ects
of nanostructured materials, structures with cracks, layered composite functioning
materials and phase transitions in solids. In antiplane shear of cylindrical body,
the displacement is parallel to generators of cylinder and is dependent of the axial
coordinate. The model of a thermo-viscoelastic body is very complex, in addition
to elastic and temperature properties, it takes into account viscous characteristics,
see [1, 2, 3, 6].
The theory of variational inequalities has not been an exception. Indeed, the

cross fertilization between modeling and applications on the one hand and non-
linear mathematical analysis on the other hand was an important aspect which
contributed to its development in the last four decades. Currently, the theory of
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variational inequalities became a fully mature discipline which deals with existence,
uniqueness or nonuniqueness, regularity and continuous depend results, together
with numerical approximations and optimal control of the solutions. It provides
results which are of considerable theoretical and applied interest.
The aim of this paper is to recall the attention to the great potential of inequal-

ities in mechanics and physics. In the spirit of the classical book of G. Duvaut
and J. L. Lions (see, e.g.[7]), we show how a concrete viscoelastic contact problem
leads to a mathematical model which can be solved by using methods of variational
inequalities theory.
In this paper we study the frictional contact between a deformable cylinder and

a rigid foundation. We consider the case of antiplane shear deformation i.e., the
displacement is parallel to the generators of the cylinder and is independent of the
axial coordinate. Such kind of problems were studied in a number of papers, in the
context of various constitutive laws and contact conditions (see, e.g.[4,9-13]).
The novelty in our work consists in the fact that we model the friction with

Tresca�s law and the material�s behavior with a thermoviscoelastic constitutive
law.
The paper is organized as follows. In Sect.2, we describe the mechanical problem,

specify the assumptions on the data to derive the variational formulation, and then
we state our main existence and uniqueness result. In Sect.3, we give the proof of
the claimed result.

2. The variational formulation

We consider a body B identi�ed with a region in R3, it occupies in a �xed and
undistorted reference con�guration. We assume that B is a cylinder with generators
parallel to the x3-axis with a cross-section which is a regular region in the x2x3-
plane, Ox1x2x3 being a Cartesian coordinate system. The cylinder is assumed to
be su¢ ciently long so that end e¤ects in the axial direction are negligible. Thus,
B = 
� (�1;+1). Let @
 = � we assume that � is divided into three disjoint
measurable parts �1, �2 and �3 such that the one-dimensional measure of �1,
denoted mes�1, is strictly positive. Let T > 0 and let [0;T ] denote the time
interval of interest. The cylinder is clamped on �1 � (�1;+1) and is in contact
with a rigid foundation on �3 � (�1;+1) during the process. Moreover, the
cylinder is subjected to time-dependent volume forces of density f0 on B and to
time-dependent surface tractions of density f2 on �2 � (�1;+1):
We assume that

f0 = (0; 0; f0) with f0 = f0(x1; x2; t) : 
� [0;T ]! R; (1)

f2 = (0; 0; f2) with f2 = f2(x1; x2; t) : �� [0;T ]! R: (2)

The body forces (1) and the surface tractions (2) would be expected to give rise
to a deformation of the cylinder whose displacement, denoted by u, is independent
of x3 and has the form

u = (0; 0; u) with u = u(x1; x2; t) : 
� [0;T ]! R: (3)

Such kind of deformation is called an antiplane shear.
The infnitesimal strain tensor is denoted by "(u) = "ij(u) and the stress �eld by

� = (�ij) . Here and below, in order to simplify the notation, we do not indicate
the dependence of various functions on x1; x2 or t.
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The material is modeled by the following thermal viscoelastic constitutive law

� = �(tr"(u))I + 2�"(u)�Me�; (4)

where � > 0 and � > 0 are the Lamé coe¢ cents, tr("(u)) =
P3

i=1 "ii(u), I is the
unit tensor in R3, � is the temperature �eld andMe := (mij) represents the thermal
expansion tensor and has the form

Me =

0@ 0 0 Me1

0 0 Me2

Me1 Me2 0

1A :
We assume that Mei(x1; x2) : 
! R.
In the antiplane context (3), keeping in mind (4), the stress �eld becomes

� =

0@ 0 0 �13
0 0 �23
�31 �32 0

1A ; (5)

where
�13 = �31 = �@x1u�Me1 :�; �23 = �32 = �@x2u�Me2 :�:

Neglecting the inertial term in the equation of motion we obtain the quasistatic
approximation for the process. Thus, taking in to account (5), (1) and the previous
equalities, the equation of equilibrium reduces to the following scalar equation

��u+ f0 � div�Me = 0 in 
� (0; T );
whith

Me =

0@ Me1

Me2

0

1A :
As the cylinder is clamped on �1 � (�1;+1) � (0; T ), the displacement �eld

vanishes there. Thus, (3) implies

u = 0 on �1 � (0; T ):
Let � denote the unit normal on �� (�1;+1). We have

� = (�1; �2; 0) with �i = �i(x1; x2) : �! R; i = 1; 2: (6)

For a vector v, we denote by v� and v� its normal and tangential components
on the boundary, given by

�� = �:� ; �� = � � ���: (7)

In (7) and every where in this paper � . � represents the inner product on
the space Rd, d = 2 or 3. Moreover, throughout this paper the notation j : j will
designate the Euclidean norm on Rd, and a dot above a function will represent its
derivative with respect to the time variable. For a given stress �eld � we denote
by �� and �� the normal and the tangential components on the boundary, that is

�� = (��):� �� = �� � ���: (8)

From (5) and (6), we deduce that the Cauchy stress vector is given by

�� = (0; 0; �@�u� �Me:�): (9)

From now we use the notation @�u = @x1u�1 + @x2u�2 .
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Taking into account the traction boundary condition, �� = f2 on �2� (0; T ),
it follows from (2) and (9) that

�@�u� �Me:� = f2 on �2 � (0; T ):
Now, we describe the contact condition on B = 
� (�1;+1) . First, from (3)

and (6) we infer that u� = 0 , which shows that the contact is bilateral, that is, the
contact is kept during all the process. Using now (3), (6)-(8), we conclude that

u� = (0; 0; u); �� = (0; 0; �@�u� �Me:�): (10)

We assume that the friction is invariant with respect to the x3 axis and is modeled
with Tresca�s friction law, that is8><>:

j�� j � g
j�� j < g ) _u = 0 on �3 � (0; T ):
j�� j = g ) 9� � 0; such that �� = �� _u�

(11)

Here g : �3 ! R+ is a given function, the friction bound, and _u� represents the
tangential velocity on the contact boundary. The strict inequality holds in the stick
zone and the equality in the slip zone. Using now (10) it is straight or ward to see
that the conditions (11) imply8>>><>>>:

j�@�u� �Me:�j � g
j�@�u� �Me:�j < g ) _u = 0

j�@�u� �Me:�j = g ) 9� � 0;
such that �@�u� �Me:� = �� _u

on �3 � (0; T ):

Finally, we prescribe the initial displacement,

u(0) = u0 in 
;

where u0 is the given function on 
.
We collect the above equations and conditions to obtain the classical formulation

of the antiplane problem for thermo-viscoelastic materials with longterm memory,
in frictional contact with a foundation.
Problem P : Find the displacement �eld u : 
 � (0; T ) ! Sd and a temperature
�eld � : 
� (0; T )! R+;

��u+ f0 � div�Me = 0 in 
� (0; T ); (12)

_� � div(Kr�) = �Mer _u+ q(t) in 
� (0; T ); (13)

u = 0 on �1 � (0; T ); (14)

�@�u� �Me:� = f2 on �2 � (0; T ); (15)8>>><>>>:
j�@�u� �Me:�j � g
j�@�u� �Me:�j < g ) _u = 0

j�@�u� �Me:�j = g ) 9� � 0
such that �@�u� �Me:� = �� _u

on �3 � (0; T ); (16)

�0 = 0 on �1 [ �2 � (0; T ); (17)

�Kij
@�

@xj
�i = Ke(� � �R) on �2 � (0; T ); (18)
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u(0) = u0; �(0) = �0 in 
: (19)

The di¤erential equation (13) describes the evolution of the temperature �eld,
where K := (kij) represents the thermal conductivity tensor, q(t) the density of
volume heat sources. The associated temperature boundary condition is given by
(18), where �R is the temperature of the foundation, and k is the heat exchange
coe¢ cient between the body and the obstacle. Finally, u0 ; �0 represent the initial
displacement and temperature, respectively.
We derive now the variational formulation of P . To this end, we introduce the

functional space

V =
�
v 2 H1(
) j v = 0 on �2

	
;

and we assume that

E =
�
� 2 H1(
) j � = 0 on �1 [ �2

	
:

Since meas�1 > 0, the Friedrichs - Poincare inequality holds, i.e. there exists a
positive constant CP depends only on 
 and �1 ), such that

k u kH1(
)� CP k ru kL2(
) 8 u 2 V:
We consider on V the innerproduct given by

(u; v)V =

Z



ru:rvdx 8 u; v 2 V;

and let k : kV be the associated norm, i.e.
k v kV=k rv kL2(
) 8 v 2 V:

It follows that k : kH1(
) and k : kV are equivalent norms on V and therefore
(V; k : k) is a real Hilbert space. By Sobolev�s trace theorem we deduce that there
exists C0 > 0 (depending only on 
, �1 and �3) such that

k v kH1(
) � C0 k v kV 8 v 2 V: (20)

If (X; k : kX) represents a real Banach space, we denote by C([0; T ];X), the
space of continuous functions from [0; T ] to X, with the norm

k v kC([0;T ];X)= max
t2[0;T ]

k x(t) kX

and we use standard notations for the Lebesgue space L2(0; T ;X) as well as for
the Sobolev space W 1;2(0; T ;X). In particular, recall that the norm on the space
L2(0; T ;X) is given by

k u kL2(0;T ;X)=
 Z T

0

k u(t) k2X dt

! 1
2

and the norm on the space W 1;2(0; T ;X) is given by

k u kW 1;2(0;T ;X)=

 Z T

0

k u(t) k2X dt+

Z T

0

k _u(t) k2X dt

! 1
2

.
Finally, we suppress the argument X when X = R thus, for example, we use the

notation W 1;2(0; T ) for the space W 1;2(0; T ;R) and the notation k : kW 1;2(0;T ) for
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the norm k : kW 1;2(0;T ;R).
In the study P , we assume that the friction bound function g satis�es

g 2 L1(�3) and g(x) � 0 a.e. x 2 �3: (21)

The forces and tractions are assumed to have the regularity

f0 2W 1;2(0; T ;L2(
)); f2 2W 1;2(0; T ;L2(�2)): (22)

We consider the functional j : V ! R+ given by

j(v) =

Z
�3
gjvjda 8v 2 V (23)

and let f : [0; T ]! V be de�ned by

(f(t); v)V =

Z



f0(t)vdx+

Z
�2

f2(t)v da 8v 2 V; 8t 2 [0; T ] (24)

The de�nition of f is based on Riesz�s representation theorem and by (22) and
(24), we infer that

f 2 L2(0; T ;V ): (25)

For the thermal tensors and the heat sources density, we suppose that

Me = (mij); mij = mji 2 L1(
): (26)

The boundary thermal data satisfy

q 2W 1;2(0; T ;L2(
)); �R 2W 1;2(0; T ;L2(�3)); ke 2 L1(
;R+): (27)

The thermal conductivity tensor veri�es the usual symmetry and ellipticity: for
some ck > 0 and for all �i 2 Rd

K = (kij); kij = kji 2 L2(
); 8ck > 0; �i 2 Rd; kij�i:�j � ck�i:�j : (28)

Finally, we assume that the initial data ver�es

u0 2 V; �0 2 L2(
); (29)

and moreover,

�(u0; v)V + j(v) � (f(0); v)V : (30)

Using Green�s formula it is straight forward to derive the following variational
formulation of P . We denote by h ; iV 0�V the duality pairing between V

0
and V .

Problem PV : Find a displacement �eld u : [0;T ] ! V and a temperature �eld
� : (0;T )! E such that

�(u(t); v � _u(t))V + (M�(t); "(v � _u(t)))H

+j(v)� j( _u(t)) � (f(t); v � _u(t))V 8v 2 V; t 2 (0; T );

_�(t) +K�(t) = R _u(t) +Q(t) in E0;

u(0) = u0; �(0) = �0 in 
:
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Here, the function Q : [0; T ] ! E0 and the operators K : E ! E0; R :
V ! E0; M : E ! V 0 are de�ned by 8v 2 V; 8� 2 E; 8� 2 E:

hQ(t); �iE0�E =

Z
�3

ke�R�ds+

Z



q� dx;

hK�; �iE0�E =
dX

i;j=1

Z



kij
@�

@xj

@�

@xi
dx+

Z
�3

ke�� ds;

hRv; �iE0�E =

Z
�3

h� (jv� j)�ds�
Z



(Merv)�dx;

hM�; viV 0�V = (��Me; "(v))H:

Our main existence and uniqueness result is stated as follow.

Theorem 1. Assume that (21)-(22), (25) and (26) hold. Then there exists a unique
solution u; � of problem PV . Moreover, the solution satis�es

u 2W 1;2(0; T ;V ) ; � 2W 1;2(0; T ;E
0
) \ L2(0; T ;E) \ C(0; T ;L2(
)):

An element (u; �) which solves PV is called a weak solution of the mechanical
problem P . We conclude by Theorem 1. that the antiplane contact problem P has
a unique weak solution, provided that (21)-(22), (25) and (30) hold.

3. Existence and uniqueness

The proof of Theorem 1 is carried out in several steps that we prove in what
follows, everywhere in this section we suppose that assumptions of Theorem 1 hold
and we denote by c > 0 a generic constant, which value may change from lines to
lines.
In the �rst step of the proof, we introduce the set

W =
�
� 2W 1;2(0; T ;X) j �(0) = 0X

	
; (31)

and we prove the following existence and uniqueness result.

Lemma 2. For all � 2 W, there exists a unique element u 2 W 1;2(0; T ;X) such
that

a(u�(t); v � _u�(t))X + (�(t); v � _u�(t))X + j(v)� j( _u(t))
� (f(t); v � _u�(t))X 8v 2 X; a.e. t 2 (0; T ); (32)

u�(0) = u0: (33)

Here X is a real Hilbert space endowed with the inner product (: ; :)X and the
data a is a bilinear continuous coercive and symmetric form.

Proof. We use an abstract existence and uniqueness result which may be found in
[12]. �

In the second step, we use the displacement �eld u� obtained in Lemma 2 and
we consider the following Lemma.
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Lemma 3. For all � 2 W , there exists a unique

�� 2W 1;2(0; T ;E
0
) \ L2(0; T ;E) \ C(0; T ;L2(
)); c > 0 8� 2 L2([0; T ]; V

0
);

satisfying (
_��(t)K = R _u�(t) +Q(t) in E

0
a.e. t 2 (0; T )

��(0) = �0;
(34)

j��1 � ��2 j
2
L2(
) � c

Z T

0

j _u1(s)� _u2(s)j2V ds 8t 2 (0; T ); (35)

and

j _��1 � _��2 j
2
L2(
) � c

Z T

0

ju1(s)� u2(s)j2V ds 8t 2 (0; T ): (36)

Proof. The existence and uniqueness result verifying (34) follows from classical
result on �rst order evolution equation, applied to the Gelfand evolution triple

E � F � F
0
� E

0

We verify that the operator K is linear continuous and strongly monotone. Now
from the expression of the operator R, v� 2 W 1;2(0; T ;V )) Rv� 2 W 1;2(0; T ;F ),
as Q 2W 1;2(0; T ;E) then Rv� +Q 2W 1;2(0; T ;E), we deduce (35) and (36), (see
[1]). �

In the next step, we consider the operator � :W !W de�ned by

h��(t); uiV 0�V = �(Me��; "(u))H 8� 2 W; t 2 (0; T ): (37)

It follows from (34) that the operator � is well de�ned. Since u 2 W, implies
�� 2 W. We have the following result.

Lemma 4. The operator � has a unique �xed point �� 2 W.

Proof. Let �1; �2 2 W and, for the sake of simplicity, denote u1 = u�1 and u2 = u�2 :
Using (37) and (26), it follows that

k��1(s)� ��2(s)k2X � k�1(s)� �2(s)k2X 8t 2 (0; T ): (38)

Here and in what follows c represents a generic positive constant which may depend
on a and T , whose value may change from line to line. Moreover, from (38) we
infer that

k
�
d

dt
��1

�
(t)�

�
d

dt
��2

�
(t)kX � k _�1(s)� _�2(s)kX ; a.e. t 2 (0; T );

which yields

k
�
d

dt
��1

�
(t)�

�
d

dt
��2

�
(t)k2X � k _�1(s)� _�2(s)k2X ;

using (36) we have the inequation

k
�
d

dt
��1

�
(t)�

�
d

dt
��2

�
(t)k2X � c (

Z t

0

ku1(s)� u2(s)k2X ds ):

On the other hand, taking into account(32), we have the inequalities

a(u1(s); v � _u1(s)) + (�1(s); v � _u1(s))X + j(v)� j( _u1(s))
� (f(s); v � _u1(s))X
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a(u2(s); v � _u2(s)) + (�2(s); v � _u2(s))X + j(v)� j( _u2(s))
� (f(s); v � _u2(s))X

for all v 2 X, a.e. t 2 (0; T ).
The data a is a bilinear, continuous, coercive and symmetric form.
We choose in the �rst inequality, v = _u1(s) in the second inequality, add the

results to obtain

1

2

@

@s
ku1(t)� u2(t)k2a � ((�1(t)� �2(t); _u1(t)� _u2(t))X ; a.e. t 2 (0; T ):

Integrating the previous inequality from 0 to t and using (33), we get

1

2
ku1(t)� u2(t)k2a � (�1(t)� �2(t); u1(t)� u2(t))X

+

Z t

0

( _�1(s)� _�2(s); u1(s)� u2(s))X ds:

It follows that

cku1(t)� u2(t)k2X � k�1(t)� �2(t)kXku1(t)� u2(t)kX

+

Z t

0

k _�1(s)� _�2(s)kXku1(s)� u2(s)kX ds;

and, using the inequality ab � a2

2�
+ 2�b2 for a; �; b > 0, we �nd

ku1(t)� u2(t)k2X � c(k�1(t)� �2(t)k2X +
Z t

0

k _�1(s)� _�2(s)k2X ds

+

Z t

0

ku1(s)� u2(s)k2X ds): (39)

As

�1(t)� �2(t) =
Z t

0

( _�1(s)� _�2(s)) ds;

we deduce that

k�1(t)� �2(t)kX �
Z t

0

k _�1(s)� _�2(s)kX ds:

Using this inequality in (39), we obtain

ku1(t)� u2(t)k2X � c
�Z t

0

k _�1(s)� _�2(s)k2X ds+
Z t

0

ku1(s)� u2(s)k2X ds
�
:

Applying now Gronwall�s inequality we deduce

ku1(t)� u2(t)k2X � c (
Z t

0

k _�1(s)� _�2(s)k2X ds); (40)

which yields Z t

0

ku1(s)� u2(s)k2X � c (
Z t

0

k _�1(s)� _�2(s)k2X ds): (41)
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Combining now (38), (39), (42)and (43) , we obtain

k��1(t)� ��2(t)k2X + k
�
d

dt
��1

�
(t)�

�
d

dt
��2

�
(t)k2X

� c (

Z t

0

k _�2(s)� _�2(s)k2X ds):

Iterating the last inequality p�times we infer

k��1(t)� ��2(t)k2X + k
�
d

dt
��1

�
(t)�

�
d

dt
��2

�
(t)k2X

� cp (

Z t

0

Z s1

0

:::

Z sp�1

0

k _�2(sp)� _�2(sp)k2X dsp:::ds1);

where �p denotes the power of the operator � . The last inequality implie

k��1(t)� ��2(t)kW 1;2(0;T ;X) � k�1(t)� �2(t)kW 1;2(0;T ;X):

Since limp!+1
cpT p

p!
= 0, the previous inequality implies that a power �p of

�, is a contraction in W for p large enough. It follows now from Banach�s �xed
point theorem that, there exists a unique element �� 2 W such that �p�� = ��.
Moreover, since �p(���) = �(�p��) = ���, we deduce that��� is also a �xed
point of the operator �p . By the uniqueness of the �xed point, we conclude that
��� = ��, which shows that �� is a �xed point of �. The uniqueness of the �xed
point of the operator � follows from the uniqueness of the �xed point of the operator
�p. �

We have now all the ingredients to prove the theorem.

Proof of Theorem 1.

Existence. Let �� 2 W be the �xed point of � and let u�� be the function
de�ned by Lemma 1. for � = ��. Since, it follows from (37) that u�� is a solution
to the problem (32)-(33). Moreover, the regularity u�� 2 W 1;2(0; T ;X) is obtained
from Lemma 1, ��� be the solution to problems (34).
Consider the form a : V � V ! R; de�ned by

a(u; v) = �

Z



ru:rv 8u; v 2 V:

Clearly this form is bilinear, continuous, coercive and symmetric; moreover, us-
ing (19) and (20) it follows that the functional j de�ned by (23) is convex, lower
semicontinuous and proper. Taking into account (22) and (24)-(29) then, the u��
is also solution of (32)-(33); ��� be the solution to problems (34).
Then (u��; ���) be the solution to Problems PV

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness
of the �xed point of operator de�ned by (37) and from uniqueness in Lemmas 2.,
3. and 4.
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