Electronic Journal of Mathematical Analysis and Applications Vol. 8(2) July 2020, pp. 70-74. ISSN: 2090-729X(online) http://math-frac.org/Journals/EJMAA/

CATALAN TRANSFORM OF THE *k*-JACOBSTHAL SEQUENCE

MERVE TAŞTAN AND ENGIN ÖZKAN

ABSTRACT. In this study, we present Catalan transform of the k-Jacobsthal sequence and examine the properties of the sequence. Then we put in for the Hankel transform to the Catalan transform of the k-Jacobsthal sequence. Furthermore, we acquire an interesting characteristic related to determinant of Hankel transform of the sequence.

1. INTRODUCTION

For any integer $n \in Z$, it is called a generalized Fibonacci-type sequence for any recurrence sequence of the following form G(n + 1) = aG(n) + bG(n - 1), G(0) = m, G(1) = t where m, t, a and b are any complex numbers [3].

The known Jacobsthal numbers have some applications in many branches of mathematics such as group theory, calculus, applied mathematics, linear algebra, etc [9, 10]. Bruhn, et al. [5] introduced that generalized Petersen graph is equal to kth Jacobsthal number

There is an extensive work in the literature concerning Fibonacci-type sequences and their applications in modern science (for more detail, see [3, 6, 9, 11, 12, 13, 14] and the references therein).

There exist generalizations of the Jacobsthal numbers. This paper is an extension of the work of Falcon [14]. Falcon [14] gave an application of the Catalan transform to the k-Fibonacci sequences. In this paper, we put in for Catalan transform to the k-Jacobsthal sequence and present application of the Hankel transform to the Catalan transform of the k-Jacobsthal sequence.

The other section of the paper is prepared as follows. The following, we introduce some fundamental definitions of k-Jacobsthal numbers. In section 3, Catalan transform of k-Jacobsthal sequence is given. Finally, we give Henkel transform of the new sequence obtained k-Jacabsthal sequence.

2. k-Jacobsthal number

For any positive number k, the k-Jacobsthal sequence, say $\{J_{k,n}\}_{(n \in N)}$ is defined by the recurrence relation

²⁰¹⁰ Mathematics Subject Classification. 11B39, 11B83, 11C20.

Key words and phrases. Jacobstal sequence, Catalan numbers, Catalan Fibonacci sequence. Submitted Aug. 5, 2019. Revised Oct. 30, 2019.

$$J_{k,n+1} = J_{k,n} + kJ_{k,n-1}, n \ge 1$$

with initial conditions $J_{k,0} = 0$ and $J_{k,1} = 1$ [2].

The k-Jacobsthal numbers is expressed function of the roots of σ_1 and σ_2 of characteristic equation $r^2 = kr + 2$ via the well-known Binet's formula of Jacobsthal numbers. Hence, The k-Jacobsthal numbers is given as follow

$$J_{k,n} = \frac{\sigma_1^n - \sigma_2^n}{\sigma_1 - \sigma_2}$$

where $\sigma_1 = \frac{k + \frac{\sqrt[3]{k^2+8}}{2}}{2}$ and $\sigma_2 = \frac{k - \frac{\sqrt[3]{k^2+8}}{2}}{2}$. Note that, since k > 0, then $\sigma_2 < 0 < \sigma_1$ and $|\sigma_1| < |\sigma_1|$, $\sigma_1 + \sigma_2 = k$, $\sigma_1 \cdot \sigma_2 = -2$ and $\sigma_1 - \sigma_2 = \sqrt[3]{k^2+8}$. Therefore, the general term of the k-Jacobsthal sequence may be expressed in the form: $J_{k,n} = c_1 \sigma_1^n + c_2 \sigma_2^n$ for some coefficients c_1 and c_2 . If n = 0 and n = 1, then it is acquired $c_1 = \frac{1}{\sigma_1 - \sigma_2} = -c_2$, and $J_{k,n} = \frac{\sigma_1^n - \sigma_2^n}{\sigma_1 - \sigma_2}$.

Proposition 2.1.

$$J_{k,n} = \frac{1}{2^{n-1}} \sum_{i=0}^{\lfloor \frac{n-1}{2} \rfloor} {\binom{n}{2i+1}} k^{n-1-2i} (k^2+8)^i$$

where |a| is the floor function of a.

Proof. By using the values of σ_1 and σ_2 obtained in equation, we get

$$J_{k,n} = \frac{\sigma_1^n - \sigma_2^n}{\sigma_1 - \sigma_2}$$
$$= \frac{1}{\sqrt[2]{k^2 + 8}} \left[\left(\frac{k + \sqrt[2]{k^2 + 8}}{2} \right)^n - \left(\frac{k - \sqrt[2]{k^2 + 8}}{2} \right)^n \right]$$
developing the orth percent it follows:

from where, by developing the *nth* powers, it follows:

$$= \frac{1}{\sqrt[n]{k^2 + 8}} \left\{ \frac{k^n}{2^{n-1}} \left[\binom{n}{1} \frac{\sqrt[n]{k^2 + 8}}{k} + \binom{n}{2} \frac{\left(\sqrt[n]{k^2 + 8}\right)^3}{k^3} + \dots \right] \right\}$$
$$= \frac{1}{2^{n-1}} \sum_{i=0}^{\lfloor \frac{n-1}{2} \rfloor} \binom{n}{2i+1} k^{n-1-2i} (k^2 + 8)^i$$

The limit of the quotient of $J_{k,n}$ and $J_{k,n-1}$ as $n \to \infty$ is equal to σ_1 . That is $\lim_{n\to\infty} \frac{J_{k,n-1}}{J_{k,n-1}} = \sigma_1$.

2.2. The Catalan transformation. The Catalan transform is a sequence trans-

form introduced by Barry [11] The Catalan numbers are defined by

$$c_n = \frac{1}{n+1} \left(\begin{array}{c} 2n\\ n \end{array} \right)$$

in [11]. The latter can be written as

$$c_n = \frac{(2n)!}{(n+1)!n!}$$

The first few Catalan numbers are 1, 1, 2, 5, 14, 42, 132, 429, 1430,

Also, one can be obtained the recurrence relation for C(n) from

$$\frac{c_{n+1}}{c_n} = \frac{2(2n+1)}{n+2}$$

in [13].

It is given that the ordinary generating function of the Catalan sequence as follow

$$c(x) = \frac{1 - \sqrt[2]{1 - 4x}}{2x}$$

= 1 + x + 2x² + 5x³ + 14x⁴ + ...

Definition 2.3. $(a_n)_{n>0}$ be a sequence with the generating function

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots$$

The Catalan transform of the sequence (a_n) is defined to be the sequence whose o.g.f. is A(xc(x)).

3. Catalan transform of the k-Jacobsthal sequence

Following [11], we define the Catalan transform of the $k-{\rm Jacobsthal}$ sequence $\{J_{k,n}\}$ as

$$CJ_{k,n} = \sum_{i=0}^{n} \frac{i}{2n-i} \begin{pmatrix} 2n-i\\ n-i \end{pmatrix} J_{k,i}$$

for $n \ge 1$ with $CJ_{k,0} = 0$.

We can give some of them as follow:

$$CJ_{k,1} = \sum_{1}^{1} \frac{i}{2-i} \begin{pmatrix} 2-i\\ 1-i \end{pmatrix} J_{k,i} = 1,$$

$$CJ_{k,2} = \sum_{1}^{2} \frac{i}{4-i} \begin{pmatrix} 4-i\\ 2-i \end{pmatrix} J_{k,i} = 2,$$

$$CJ_{k,3} = \sum_{1}^{3} \frac{i}{6-i} \begin{pmatrix} 6-i\\ 3-i \end{pmatrix} J_{k,i} = 5+k,$$

$$CJ_{k,4} = 14+5k,$$

$$CJ_{k,5} = 42+20k+k^{2},$$

$$CJ_{k,6} = 132+75k+8k^{2},$$

$$CJ_{k,7} = 429+275k+44k^{2}+k^{3}.$$

It can be written the following equation as the product of matrix C and $n\times 1$ matrix J_k

$\begin{bmatrix} CJ_{k,1} \end{bmatrix}$		1						1	$\int J_{k,1}$
$CJ_{k,2}$		1	1						$J_{k,2}$
$CJ_{k,3}$		2	2	1					$J_{k,3}$
$CJ_{k,4}$		5	5	3	1				$J_{k,4}$
$CJ_{k,5}$	=	14	14	9	4	1		.	$J_{k,5}$
$CJ_{k,6}$		42	42	28	14	5	1		$J_{k,6}$
		•	•	•	•	•			
•		•	•	•	•	•	•		
L		L.	•	•	•	•	·		L.

72

The entries of the matrix C verify the recurrence relation $C_{i,j} = \sum_{r=j-1}^{i-1} C_{i-1,r}$. The first column equals the second for i > 1 which are the Catalan numbers.

The lower triangular matrix $C_{n,n-i}$ is called Catalan triangle. Also, for $0 \le i \le n$,

$$C_{n,n-i} = \frac{(2n-i)!(i+1)}{(n-i)!(n+1)!}$$

We obtain first few Catalan transform of the k-Jaccobsthal sequence as follow: $CJ_1 = \{0, 1, 2, 6, 19, 63, 215, 749, \ldots\}$, indexed in OEIS as A109262.

 $CJ_{2} = \{0, 1, 2, 7, 24, 86, 314, 1163, \ldots\},$ $CJ_{3} = \{0, 1, 2, 8, 29, 111, 429, 1677, \ldots\},$ $CJ_{4} = \{0, 1, 2, 9, 34, 138, 560, 2297, \ldots\},$ $CJ_{5} = \{0, 1, 2, 10, 39, 167, 707, 3029, \ldots\}.$

4. HANKEL TRANSFORM

Let $R = \{r_0, r_1, r_2, ...\}$ be a sequence of real numbers. The Hankel transform of R is the sequence of determinants $H_n = Det[r_{i+j-2}]$ [10]. That is

$$H_n = \begin{bmatrix} r_0 & r_1 & r_2 & r_3 & r_4 & \dots \\ r_1 & r_2 & r_3 & r_4 & r_5 & \dots \\ r_2 & r_3 & r_4 & r_5 & r_6 & \dots \\ r_3 & r_4 & r_5 & r_6 & r_7 & \dots \\ r_4 & r_5 & r_6 & r_7 & r_8 & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

The Hankel determinant of order n of R is the upper-left $n \times n$ subdeterminant of H_n [6].

The sequence $\{1,1,1,\ldots\}$ is the Hankel transform of the Catalan sequence [1]. The Hankel transform of the sum of consecutive generalized Catalan numbers is the bisection of Fibonacci numbers [12].

$$HCJ_{1} = Det[1] = 1,$$

$$HCJ_{2} = \begin{vmatrix} 1 & 2 \\ 2 & 5+k \end{vmatrix} = 1+k,$$

$$HCJ_{3} = \begin{vmatrix} 1 & 2 & 5+k \\ 2 & 5+k & 14+5k \\ 5+k & 14+5k & 42+20k+k^{2} \end{vmatrix} = k^{2}+3k+1,$$

$$HCJ_{4} = \begin{vmatrix} 1 & 2 & 5+k & 14+5k \\ 2 & 5+k & 14+5k & 42+20k+k^{2} \\ 5+k & 14+5k & 42+20k+k^{2} & 132+75k+k^{2} \\ 5+k & 14+5k & 42+20k+k^{2} & 132+75k+k^{2} \\ 14+5k & 42+20k+k^{2} & 132+75k+k^{2} & 429+275k+44k^{2}+k^{3} \end{vmatrix} = k^{3}+5k^{2}+6k+1$$

We can continue in this form and then we will find that the Hankel transform of the Catalan transform of the k- Jacobsthal sequence $\{J_{k,n}\}$:

$$HCJ_1 = J_1,$$

$$HCJ_2 = J_3,$$

$$HCJ_3 = J_5,$$

$$HCJ_4 = J_7,$$

thus

$$HCJ_n = J_{k,2n-1}.$$

Conclusion 4.1. In the present paper, we define Catalan k-Jacobsthal sequence and give some identites between the k-Jacobsthal and Catalan numbers. Also, we present some properties of the Catalan k-Jacobsthal sequence. This enables us to give in a straight forward way several formulas for the sums of such sequences. We put in for the Hankel transform to the Catalan transform of the k-Jacobsthal sequence and get an unknown property. These identities can be used to develop new identities of polynomials.

Acknowledgement 4.2. The authors would like to thank the anonymous reviewers for their useful comments and suggestions.

References

- N. Anuradha, Number of points on certain hyperelliptic curves defined over finite fields. Finite Fields and Their Applications, 14, 314-328, 2008.
- [2] P., Barry, A Catalan transform and related transformations on integer sequences. J.Integer Seq., 8(4), 1-24, 2005.
- [3] H. Bruhn, L. Gellert, J. Günther, Jacobsthal numbers in generalized Petersen graphs. Electronic Notes in Discrete Mathematics, 49 465-472, 2015.
- [4] A., Cvetkovi´c, Rajkovi´c, R., and M., Ivkovi´c, Catalan numbers, and Hankel transform, and Fibonacci numbers. J. Integer Seq. 5(1), 1-8, 2002.
- [5] A. Daşdemir, On The Jacobsthal Numbers By Matrix Method 7(1), 69-76, 2012.
- [6] S. Falcon, Catalan Transform of the k-Fibonacci sequence. Commun. Korean Math. Soc. 28(4), 827–832, 2013.
- [7] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quarterly 3 (3), 161-176, 1965.
- [8] J. W. Layman, The Hankel transform and some of its properties. J. Integer Seq., 4(1), 1-11, 2001.,
- [9] M. Marin, Contributions on uniqueness in thermoelastody-namics on bodies with voids, Ciencias Matematicas (Havana), 16 (2), 101-109, 1998.
- [10] M. Marin, Generalized solutions in elasticity of micropolar bodies with voids, Revista de la Academia Canaria de Ciencias, vol. 8(1), 101-106, 1996.
- [11] E. Özkan, A. Geçer, and İ. Altun, A new sequence realizing Lucas numbers, and the Lucas bound, Electronic Journal of Mathematical Analysis and Applications, vol.5, pp.148-154, 2017.
- [12] P. M., Rajkovi´c, M. D. Petkovi´c, and P. Barry, The Hankel transform of the sum of consecutive generalized Catalan numbers. Integral Transforms Spec. Funct. 18(4), 285–296, 2007.
- [13] N. J. A. Sloane, The on-line encyclopedia of integer sequences. Annales Mathematicae et Informaticae, 41, 219-234, 2013.
- [14] R., Stanley and E. W. Weisstein, Catalan Number, http://mathworld.wolfram.com/CatalanNumber.html. (Erişim Tarihi: 15.05.2019) 2019.

MERVE TAŞTAN, GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES, ERZINCAN BINALI YILDIRIM UNIVERSITY, ERZINCAN, TURKEY

E-mail address: mervetastan240gmail.com

ENGIN ÖZKAN, DEPARTMENT OF MATHEMATICS, ERZINCAN BINALI YILDIRIM UNIVERSITY, FACULTY OF ARTS AND SCIENCES, ERZINCAN, TURKEY

E-mail address: eozkanmath@gmail.com or enginozkan@erzincan.edu.tr