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CATALAN TRANSFORM OF THE k−JACOBSTHAL SEQUENCE

MERVE TAŞTAN AND ENGIN ÖZKAN

Abstract. In this study, we present Catalan transform of the k−Jacobsthal
sequence and examine the properties of the sequence. Then we put in for
the Hankel transform to the Catalan transform of the k−Jacobsthal sequence.
Furthermore, we acquire an interesting characteristic related to determinant

of Hankel transform of the sequence.

1. Introduction

For any integer n ∈ Z, it is called a generalized Fibonacci-type sequence for any
recurrence sequence of the following form G(n + 1) = aG(n) + bG(n − 1), G(0) =
m,G(1) = t where m, t, a and b are any complex numbers [3].

The known Jacobsthal numbers have some applications in many branches of
mathematics such as group theory, calculus, applied mathematics, linear algebra,
etc [9, 10]. Bruhn, et al. [5] introduced that generalized Petersen graph is equal to
kth Jacobsthal number

There is an extensive work in the literature concerning Fibonacci-type sequences
and their applications in modern science (for more detail, see [3, 6, 9, 11, 12, 13, 14]
and the references therein).

There exist generalizations of the Jacobsthal numbers. This paper is an extension
of the work of Falcon [14]. Falcon [14] gave an application of the Catalan transform
to the k−Fibonacci sequences. In this paper, we put in for Catalan transform to
the k−Jacobsthal sequence and present application of the Hankel transform to the
Catalan transform of the k−Jacobsthal sequence.

The other section of the paper is prepared as follows. The following, we introduce
some fundamental definitions of k−Jacobsthal numbers. In section 3, Catalan
transform of k−Jacobsthal sequence is given. Finally, we give Henkel transform
of the new sequence obtained k−Jacaobsthal sequence.

2. k−Jacobsthal number

For any positive number k, the k−Jacobsthal sequence, say {Jk,n}(n∈N) is de-
fined by the recurrence relation
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Jk,n+1 = Jk,n + kJk,n−1, n ≥ 1

with initial conditions Jk,0 = 0 and Jk,1 = 1 [2].
The k−Jacobsthal numbers is expressed function of the roots of σ1 and σ2 of

characteristic equation r2 = kr+2 via the well-known Binet’s formula of Jacobsthal
numbers. Hence, The k−Jacobsthal numbers is given as follow

Jk,n =
σn
1 − σn

2

σ1 − σ2

where σ1 = k+ 2√k2+8
2 and σ2 = k− 2√k2+8

2 .
Note that, since k > 0, then σ2 < 0 < σ1 and |σ1| < |σ1|, σ1+σ2 = k, σ1.σ2 = −2

and σ1 − σ2 = 2
√
k2 + 8. Therefore, the general term of the k−Jacobsthal sequence

may be expressed in the form: Jk,n = c1σ
n
1 + c2σ

n
2 for some coefficients c1 and c2.

If n = 0 and n = 1, then it is acquired c1 = 1
σ1−σ2

= −c2, and Jk,n =
σn
1 −σn

2

σ1−σ2
.

Proposition 2.1.

Jk,n =
1

2n−1

⌊n−1
2 ⌋∑

i=0

(
n

2i+ 1

)
kn−1−2i(k2 + 8)i

where ⌊a⌋ is the floor function of a.

Proof. By using the values of σ1 and σ2 obtained in equation , we get

Jk,n =
σn
1 − σn

2

σ1 − σ2

=
1

2
√
k2 + 8

[(
k + 2

√
k2 + 8

2

)n

−

(
k − 2

√
k2 + 8

2

)n]
from where, by developing the nth powers, it follows:

=
1

2
√
k2 + 8

{
kn

2n−1

[(
n
1

)
2
√
k2 + 8

k
+

(
n
2

) ( 2
√
k2 + 8

)3
k3

+ ...

]}

=
1

2n−1

⌊n−1
2 ⌋∑

i=0

(
n

2i+ 1

)
kn−1−2i(k2 + 8)i

The limit of the quotient of Jk,n and Jk,n−1 as n → ∞ is equal to σ1. That is

limn→∞
Jk,n

Jk,n−1
= σ1. �

2.2. The Catalan transformation. The Catalan transform is a sequence trans-

form introduced by Barry [11] The Catalan numbers are defined by

cn =
1

n+ 1

(
2n
n

)
in [11]. The latter can be written as

cn =
(2n)!

(n+ 1)!n!

The first few Catalan numbers are 1, 1, 2, 5, 14, 42, 132, 429, 1430, . . . .
Also, one can be obtained the recurrence relation for C(n) from
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cn+1

cn
=

2(2n+ 1)

n+ 2
in [13].

It is given that the ordinary generating function of the Catalan sequence as follow

c(x) =
1− 2

√
1− 4x

2x

= 1 + x+ 2x2 + 5x3 + 14x4 + ...

Definition 2.3. (an)n≥0 be a sequence with the generating function

A(x) = a0 + a1x+ a2x
2 + ...

The Catalan transform of the sequence (an) is defined to be the sequence whose
o.g.f. is A(xc(x)).

3. Catalan transform of the k−Jacobsthal sequence

Following [11], we define the Catalan transform of the k−Jacobsthal sequence
{Jk,n} as

CJk,n =
n∑

i=0

i

2n− i

(
2n− i
n− i

)
Jk,i

for n ≥ 1 with CJk,0 = 0.
We can give some of them as follow:

CJk,1 =

1∑
1

i

2− i

(
2− i
1− i

)
Jk,i = 1,

CJk,2 =
2∑
1

i

4− i

(
4− i
2− i

)
Jk,i = 2,

CJk,3 =

3∑
1

i

6− i

(
6− i
3− i

)
Jk,i = 5 + k,

CJk,4 = 14 + 5k,

CJk,5 = 42 + 20k + k2,

CJk,6 = 132 + 75k + 8k2,

CJk,7 = 429 + 275k + 44k2 + k3.

It can be written the following equation as the product of matrix C and n × 1
matrix Jk 

CJk,1
CJk,2
CJk,3
CJk,4
CJk,5
CJk,6

.

.

.


=



1
1 1
2 2 1
5 5 3 1
14 14 9 4 1
42 42 28 14 5 1
. . . . . .
. . . . . .
. . . . . .


.



Jk,1
Jk,2
Jk,3
Jk,4
Jk,5
Jk,6
.
.
.





EJMAA-2020/8(2) CATALAN TRANSFORM OF THE k−JACOBSTHAL SEQUENCE 73

The entries of the matrix C verify the recurrence relation Ci,j =
∑i−1

r=j−1 Ci−1,r.The
first column equals the second for i > 1 which are the Catalan numbers.

The lower triangular matrix Cn,n−i is called Catalan triangle. Also, for 0 ≤ i ≤
n,

Cn,n−i =
(2n− i)!(i+ 1)

(n− i)!(n+ 1)!

We obtain first few Catalan transform of the k−Jaccobsthal sequence as follow:
CJ1 = {0, 1, 2, 6, 19, 63, 215, 749, . . .}, indexed in OEIS as A109262.
CJ2 = {0, 1, 2, 7, 24, 86, 314, 1163, . . .},
CJ3 = {0, 1, 2, 8, 29, 111, 429, 1677, . . .},
CJ4 = {0, 1, 2, 9, 34, 138, 560, 2297, . . .},
CJ5 = {0, 1, 2, 10, 39, 167, 707, 3029, . . .}.

4. Hankel Transform

Let R = {r0, r1, r2, ...} be a sequence of real numbers. The Hankel transform of
R is the sequence of determinants Hn = Det [ri+j−2] [10].That is

Hn =


r0 r1 r2 r3 r4 ...
r1 r2 r3 r4 r5 ...
r2 r3 r4 r5 r6 ...
r3 r4 r5 r6 r7 ...
r4 r5 r6 r7 r8 ...
... ... ... ... ... ...


The Hankel determinant of order n of R is the upper-left n× n subdeterminant of
Hn [6].

The sequence {1,1,1,. . . } is the Hankel transform of the Catalan sequence [1].
The Hankel transform of the sum of consecutive generalized Catalan numbers is
the bisection of Fibonacci numbers [12].

HCJ1 = Det[1] = 1,

HCJ2 =

∣∣∣∣ 1 2
2 5 + k

∣∣∣∣ = 1 + k,

HCJ3 =

∣∣∣∣∣∣
1 2 5 + k
2 5 + k 14 + 5k

5 + k 14 + 5k 42 + 20k + k2

∣∣∣∣∣∣ = k2 + 3k + 1,

HCJ4 =

∣∣∣∣∣∣∣∣
1 2 5 + k 14 + 5k
2 5 + k 14 + 5k 42 + 20k + k2

5 + k 14 + 5k 42 + 20k + k2 132 + 75k + k2

14 + 5k 42 + 20k + k2 132 + 75k + k2 429 + 275k + 44k2 + k3

∣∣∣∣∣∣∣∣ = k3+5k2+6k+1.

We can continue in this form and then we will find that the Hankel transform of
the Catalan transform of the k- Jacobsthal sequence {Jk,n}:

HCJ1 = J1,

HCJ2 = J3,

HCJ3 = J5,

HCJ4 = J7,
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thus

HCJn = Jk,2n−1.

Conclusion 4.1. In the present paper, we define Catalan k−Jacobsthal sequence
and give some identites between the k−Jacobsthal and Catalan numbers. Also, we
present some properties of the Catalan k−Jacobsthal sequence. This enables us to
give in a straight forward way several formulas for the sums of such sequences.
We put in for the Hankel transform to the Catalan transform of the k−Jacobsthal
sequence and get an unknown property. These identities can be used to develop new
identities of polynomials.
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Merve TAŞTAN, Graduate School of Natural and Applied Sciences, Erzincan Binali
Yıldırım University, Erzincan, Turkey

E-mail address: mervetastan24@gmail.com
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