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GLOBAL STABILITY OF AN SIRSI EPIDEMIC MODEL WITH A

DISTRIBUTED DELAYED AND GENERALIZED INCIDENCE

FUNCTION

AMINE BERNOUSSI

Abstract. In this paper we study the global dynamics of an SIRSI epidemic

model with a distributed latent period and a general non-linear incidence func-

tion. By using suitable Lyapunov functionals and LaSalle’s invariance prin-
ciple, the global stability of a disease-free equilibrium and an endemic equi-

librium is established for the SIRSI epidemic model with a distributed latent
period.

1. Introduction

The latency period is the period during which an individual exposed to the
disease can not pass it on to another individual. In the literature, several types of
representation are presented, namely the introduction of an additional variable or
the inclusion of a deviation in time: the discrete delay or the distributed delay (see
[1, 2, 5, 6, 7, 8, 11, 12, 14, 16, 20, 23, 24, 25, 27, 28]).
Recently, considerable attention has been paid to model the relapse phenomenon,
i.e. the return of signs and symptoms of a disease after a remission. Hence, the
recovered individual can return to the infectious class (see [5, 6]).
For the biological explanations of the relapse phenomena, we cite two examples:
Malaria and Tuberculosis.
On the other hand, the goal of research in epidemiology is to develop vaccines,
treatments and intervention strategies for stopping the spread of infectious diseases
and hence reducing the deaths:
In [26] Raul Nistal and al, proposed a discrete SEIADR epidemic model considering
two extra subpopulation, and two types of vaccinations, one constant and another
another proportional to the susceptible subpopulation and a traitement control
applied to the infected subpopulation. The authors gave a characterization of the
equilibrium point stability through the use of the next-generation matrix applied
to the equilibrium point without disease. They gave, under positive conditions the
characterization of the relations between the stability of the equilibrium point.
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In [32], Yuying He and al. consider an SIR epidemic model with time-varying pulse
vaccination of the susceptible and time-varying pulse treatment of the infected
population. The authors proved that the infection-free periodic solution is globally
attractive if this threshold value is less than unity (R0 < 1) and the system is
permanent if this threshold value is larger than unity (R0 > 1).
In [4] Amine Bernoussi and al introduced the term e−µτ into the incidence function.
This modification is based on the elimination of individuals exposed to the disease
at time t − τ and who can not survive at time t, where τ is the duration of the
latency period: 

dS

dt
= A− µS − f(S, e−µτIτ ),

dI

dt
= f(S, e−µτIτ )− (µ+ γ)I + δR,

dR

dt
= γI − (µ+ δ)R.

(1)

In the present paper, we study the model (1) with distributed time delay and
Immunity loss 

dS

dt
= A− µS −

∫ h

0

p(τ)f(S, e−µτIτ )Iτdτ + δ1R,

dI

dt
=

∫ h

0

p(τ)f(S, e−µτIτ )Iτdτ − (µ+ γ)I + δ2R,

dR

dt
= γI − (µ+ δ1 + δ2)R.

(2)

The initial condition for the above system is:

S(θ) = ϕ1(θ), I(θ) = ϕ2(θ), R(θ) = ϕ3(θ), θ ∈ [−h, 0]. (3)

where ϕ = (ϕ1, ϕ2, ϕ3)T ∈ C, such that ϕi(θ) = ϕi(0) ≥ 0, (−h ≤ θ ≤ 0,
i = 1, 2, 3,) ϕ2(θ) ≥ 0 (−h ≤ θ ≤ 0). C denotes the Banach space C([−h, 0],R3

+0)
of continuous functions mapping the interval [−h, 0] into R3

+0 with the supremum
norm, where R+0 = {x ∈ R | x ≥ 0}. From a biological meaning, we assume that
ϕi(0) > 0 for i = 1, 2, 3.

Here ψτ = ψ(t−τ) for any given function ψ, where A is the constant recruitment
rate into the population, S represents the number of individuals who are suscep-
tible to the disease, that is, who are not yet infected at time t, I represents the
number of infected individuals who are infectious and are able to spread the disease
by contact with susceptible individuals, Iτ is the number of infectious individuals
at time t− τ, R is the number of individuals who have been infected and temporar-
ily recovered at time t, µ denotes birth and death rates, f(S, I)I is the incidence
function, i.e. the number of susceptible individuals infected through their contacts
with the infectious individuals, the term e−µτ is the probability of surviving from
time t− τ to time t, τ is the duration of the latency period, γ is the rate at which
infective individuals recover. Thus, the probabilities of remaining in the infective
and recovered classes are assured to be exponentially distributed, δ1, is the rate at
which recovered individuals lose immunity and return to the susceptible class, δ2
is a constant representing the rate at which an individual in the recovered class re-
verts to the infective class, and δ2 > 0 implies that the recovered individuals would
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lose the immunity, δ2 = 0 implies that the recovered individuals acquire permanent
immunity, p(τ) is the latent period distribution, which denotes the fraction of indi-

viduals who become infective, satisfying
∫ h
0
p(τ)dτ = 1, and h is a maximum time

taken by infected individual to become able to transmit the infection (maximum
latent period).

In model (2) the function f : R2
+0 → R+0 is a locally Lipschitz continuous

function satisfaying f(0, I) = 0 for I ≥ 0 and the followings hold:

(H1): f(S, I) is a strictly monotone increasing function of S ≥ 0, for any fixed
I > 0, and f(S, I) is a monotone decreasing function of I ≥ 0, for any fixed
S > 0;

(H2): φ(S, I) = f(S, e−µτI)I is a monotone increasing function of I ≥ 0, for
any fixed S ≥ 0;

(H3): Ψ(S, Iτ ) = φ(S,Iτ )
I is a monotone decreasing function of I > 0, for any

fixed S > 0 for all τ ≥ 0.

The incidence function f(S, I)I is considered by Hattaf and al [16] who gen-

eralizes several form of incidence: The first one is the saturated incidence βSI
d+S+I

[3], where β and d are the positive constants. The second one is the bilinear inci-

dence βSI [15, 18, 29, 34, 35]. The third one is the saturated incidence βSI
1+α1S+α2I

[3, 9, 10, 18, 19, 30, 31, 33], where α1 and α2 are the positive constants. The
effect of saturation factor (refers to α1 and α2) stems from epidemic control and

the protection measures. The fourth one is the standard incidence βSI
N [13, 17].

The main results of this paper are as follows: The first one is the Lemma 6. The
second one is the Lyapunov functional. The third one is the following:

Theorem 1.
Under the hypotheses (H1), (H2) and (H3), the endemic equilibrium P ∗ of system
(2) is globally asymptotically stable if R0 > 1.

The organization of this article is as follows. In Section 2, we offer a basic result.
In Section 3, we apply Lyapunov-LaSalle invariance principle to prove the global
stability of the disease-free equilibrium and we apply Lyapunov- LaSalle invariance
principle to prove the global stability of endemic equilibrium. In Section 4, we
present some concluding remarks.

2. Preliminary

In this subsection, we prove the following basic result, which guarantees the
existence and uniqueness of the solution (S(t), I(t), R(t)) for system (2) satisfying
initial conditions (3).

Lemma 2. The plane S(t) + I(t) + R(t) = A
µ is an invariant manifold of system

(2), which is globally attractive in the first octant of R3, that is,

lim
t→+∞

(S(t) + I(t) +R(t)) =
A

µ
.
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Proof. Let N(t) = S(t) + I(t) +R(t). Then it follows from system (2) that

dN(t)

dt
= A− µS(t)− µI(t)− µR(t)

= A− µN(t).

Hence, we obtain that limt→+∞N(t) = A
µ . This completes the proof.

Lemma 3. The solution (S, I,R) of system (2) with initial condition (3) uniquely
exists and is positive for all t ≥ 0.

Proof. We notice that the right hand side of system (2) is completely continous and
locally Lipschitzian on C. Then, it follows that the solution of system (2) exists and
is unique on [0, α) for some α > 0. It is easy to prove that I(t) > 0 for all t ∈ [0, α).
Suppose on the contrary that there exists som t1 ∈ [0, α) such that I(t1) = 0 and
I(t) > 0 for t ∈ [0, t1). by integrating from 0 to t1 the second equation of system
(2) we obtain

I(t1) = I(0)e−(µ+γ)t1 +

∫ t1

0

[

∫ h

0

φ(S, Iτ )dτ + δ2R]e−(µ+γ)(t1−θ)dθ.

Solving R(t) in the third equation of system (2), we have

R(t) = R(0)e−(µ+δ1+δ2)t +

∫ t

0

γI(σ)e−(µ+δ1+δ2)(t−σ)dσ > 0, for all t ∈ [0, t1).

We see that I(t1) > 0. This contradicts I(t1) = 0. From the third equation of
system (2), we also have that R(t) > 0 for all t ∈ [0, α). Let us now show that
S(t) > 0 for all t ∈ [0, α). Indeed, this follows from that dS

dt = A + δ1R(t) > 0 for
any t ∈ [0, α) when S(t) = 0.
Furthermore, for t ∈ [0, α), we obtain

dN(t)

dt
= A− µN(t)

which implies that (S(t), I(t), R(t)) is uniformly bounded on [0, α). It follows that
(S(t), I(t), R(t)) exists and is unique and positive for all t ≥ 0, which completes the
proof.

3. Global stability of the disease-free equilibrium and the endemic
equilibrium

In this section, we discuss the global stability of the disease-free equilibrium P0

and the endemic equilibrium P ∗ of system (2).
Firstly, we prove the existence and the uniqueness of the endemic equilibrium P ∗.

Proposition 4. System (2) always has a disease-free equilibrium P0 = (Aµ , 0, 0).

On the other hand, under the hypothesis (H1), if

R0 :=
f(Aµ , 0)

η1
> 1;

then system (2) also admits a unique endemic equilibrium P ∗ = (S∗, I∗, R∗), where
S∗, I∗ and R∗ satisfying the following system:
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
A− µS −

∫ h

0

p(τ)f(S, e−µτI)Idτ + δ1R = 0,∫ h

0

p(τ)f(S, e−µτI)Idτ − (µ+ γ)I + δ2R = 0,

γI − (µ+ δ1 + δ2)R = 0.

(4)

With η1 = (µ+ γ)− γδ2
(µ+δ1+δ2)

.

Proof. At a fixed point (S, I,R) of system (2), the following equation hold
A− µS −

∫ h

0

f(S, e−µτI)Idτ + δ1R = 0,∫ h

0

f(S, e−µτI)Idτ − (µ+ γ)I + δ2R = 0,

γI − (µ+ δ1 + δ2)R = 0.

(5)

Substituting the third equation into the seond equation and into the first equation
of (5), we consider the following system

A− µS −
∫ h

0

f(S, e−µτI)Idτ +
δ1γI

(µ+ δ1 + δ2)
= 0,∫ h

0

f(S, e−µτI)Idτ − [(µ+ γ)− γδ2
(µ+ δ1 + δ2)

]I = 0,

R =
γI

(µ+ δ1 + δ2)
.

(6)

Substituting the second equation into first equation of (6), we consider the following
system: 

A− µS − [(µ+ γ)− δ2γ

(µ+ δ1 + δ2)
− δ1γ

(µ+ δ1 + δ2)
]I = 0,∫ h

0

f(S, e−µτI)Idτ − [(µ+ γ)− γδ2
(µ+ δ1 + δ2)

]I = 0,

R =
γI

(µ+ δ1 + δ2)
.

(7)

From the second equation of (7), we get I = 0 or
∫ h
0
f(S, e−µτI)dτ = [(µ + γ) −

γδ2
(µ+δ1+δ2)

] If I = 0, we obtain the disease-free equilibrium point P0 = (Aµ , 0, 0).

If I 6= 0, then using the (7), we get the following equation∫ h

0

f(S,
(A− µS)e−µτ

[(µ+ γ)− γ(δ1+δ2)
(µ+δ1+δ2)

]
)dτ = [(µ+ γ)− γδ2

(µ+ δ1 + δ2)
].

We have I = A−µS
[(µ+γ)− γ(δ1+δ2)

(µ+δ1+δ2)
]
≥ 0 implies that S ≤ A

µ .

Hence, there is no positive equilibrium point if S > A
µ .

Now, we consider the following fonction g1 defined on the interval [0, Aµ ]
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g1(S) :=

∫ h

0

f(S,
(A− µS)e−µτ

[(µ+ γ)− γ(δ1+δ2)
(µ+δ1+δ2)

]
)dτ − [(µ+ γ)− γδ2

(µ+ δ1 + δ2)
].

Since,

g1(
A

µ
) = f(

A

µ
, 0)− [(µ+ γ)− γδ2

(µ+ δ1 + δ2)
]

= [(µ+ γ)− γδ2
(µ+ δ1 + δ2)

]
( f(Aµ , 0)e−µτ

[(µ+ γ)− γδ2
(µ+δ1+δ2)

]
− 1
)

= [(µ+ γ)− γδ2
(µ+ δ1 + δ2)

](R0 − 1) > 0

and

g1(0) = −[(µ+ γ)− γδ2
(µ+ δ1 + δ2)

] < 0.

Further

g
′

1(S) =

∫ h

0

(
∂f

∂S
− µe−µτ

[(µ+ γ)− γ(δ1+δ2)
(µ+δ1+δ2)

]

∂f

∂I
)dτ

by the hypothesis (H1), we have g
′

1(S) > 0.
Hence, there existe a unique endemic equilibrium P ∗ = (S∗, I∗, R∗) with S∗ ∈]0, Aµ [

and I∗ > 0, R∗ > 0, satisfies the equations I = A−µS
[(µ+γ)− γ(δ1+δ2)

(µ+δ1+δ2)
]

and R = γI
(µ+δ1+δ2)

.

Hence, we conclude the existence and uniquenss of the endemic equilibrium P ∗.
Next we consider the global asymptotic stability of the disease-free equilibrium

P0 and the endemic equilibrium P ∗ of (2) by Lyapunov functionals, respectively.

Theorem 5. If R01 ≤ 1, then the disease-free equilibrium P0 is globally asymptot-
ically stable.

Proof. Define the Lyapunov functional

V0(t) =

∫ S

A
µ

(1−
f(Aµ , 0)

f(u, 0)
)du+ I +

δ2
(µ+ δ1 + δ2)

R

+

∫ h

0

p(τ)

∫ t

t−τ

f(Aµ , 0)

f(S(u+ τ), 0)
f(S(u+ τ), e−µτI(u))I(u)dudτ.
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We will show that dV0(t)
dt ≤ 0 for all t ≥ 0. We have

dV0(t)

dt
= (1−

f(Aµ , 0)

f(S, 0)
)Ṡ +

∫ h

0

p(τ)f(S, e−µτIτ )Iτdτ

− (µ+ γ)I + δ2R+
γδ2

(µ+ δ1 + δ2)
I − δ2R

+

∫ h

0

p(τ)
f(Aµ , 0)

f(S(t+ τ), 0)
f(S(t+ τ), e−µτI)Idτ −

∫ h

0

p(τ)
f(Aµ , 0)

f(S, 0)
f(S, e−µτIτ )Iτdτ

= (1−
f(Aµ , 0)

f(S, 0)
)(A− µS) + δ1R(1−

f(Aµ , 0)

f(S, 0)
)

+

∫ h

0

p(τ)
f(Aµ , 0)

f(S(t+ τ), 0)
f(S(t+ τ), e−µτI)Idτ − η1I

= µ(1−
f(Aµ , 0)

f(S, 0)
)(
A

µ
− S) + δ1R(1−

f(Aµ , 0)

f(S, 0)
)

+ η1I(

∫ h

0

p(τ)
f(S(t+ τ), e−µτI)

η1

f(Aµ , 0)

f(S(t+ τ), 0)
dτ − 1)

Furthermore, it follows from the hypothesis (H1) that∫ h

0

p(τ)
f(S(t+ τ), e−µτI)

η1

f(Aµ , 0)

f(S(t+ τ), 0)
dτ ≤

∫ h

0

p(τ)
f(Aµ , 0)

f(S(t+ τ), 0)

f(S(t+ τ), 0)

η1
dτ

≤
f(Aµ , 0)

η1
≤ R0.

Then we have

dV0(t)

dt
≤ µ(1−

f(Aµ , 0)

f(S, 0)
)(
A

µ
− S) + δ1R(1−

f(Aµ , 0)

f(S, 0)
)

+ η1I(R0 − 1).

By the hypothesis (H1), and non-negativity of the solution, we obtain that

(1−
f(Aµ , 0)

f(S, 0)
)(
A

µ
− S) ≤ 0.

and

δ1R(1−
f(Aµ , 0)

f(S, 0)
) ≤ 0.

Where equality holds if and only if S = A
µ .

Since R01 ≤ 1, ensures that dV0(t)
dt ≤ 0 for all t ≥ 0. Thus, the disease-free equi-

librium P0 is stable and dV0(t)
dt = 0 holds if and only if S = A

µ and I(R01 − 1) = 0.

Hence, we have limt→+∞ S = A
µ . Which implies from Lemma 2, that limt→+∞ I = 0

and limt→+∞R = 0 hold. By an extension of Lyapunov-LaSalle asymptotic sta-
bility theorem [21, 22], the disease-free equilibrium P0 of system (2) is globally
asymptotically stable. This completes the proof.
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Next, we will study the global stability of the positive equilibrium P ∗.
The following Lemma plays a key role to obtain Theorem 8.

Lemma 6. Let (S, I,R) solution of system (2) with initial condition (3) and
(S∗, I∗, R∗) the endemic equilibrium. Then we have the following proposition for
all t ≥ T with T sufficiently large such that S(T ) + I(T ) +R(T ) = N(T ) ∼= A

µ :

(i) Suppose that R(0) ≤ R∗, then we have the following:
If I ≤ I∗ then R ≤ R∗ then S ≥ S∗

(ii) Suppose that R(0) ≥ R∗, then we have the following:
If I ≥ I∗ then R ≥ R∗ then S ≤ S∗.

Proof. (i) By the third equation of system (2), we obtain

R(t) = R(0)e−(µ+δ1+δ2)t +

∫ t

0

γI(σ)e−(µ+δ1+δ2)(t−σ)dσ

If I ≤ I∗ then

R(t) ≤ R(0)e−(µ+δ1+δ2)t + γI∗
∫ t

0

e−(µ+δ1+δ2)(t−σ)dσ

= R(0)e−(µ+δ1+δ2)t +
γ

(µ+ δ1 + δ2)
I∗ − γ

(µ+ δ1 + δ2)
I∗e−(µ+δ1+δ2)t

Using the relation γI∗

(µ+δ1+δ2)
= R∗ and R(0) ≤ R∗. We have R(t) ≤ R∗.

Suppose that I ≤ I∗ and R ≤ R∗, we will prove that S ≥ S∗ for all t ≥ T Suppose
on the contrary that there exists som t1 > T such that S(t1) < S∗. Then by the
hypotheses we have

S(t1) + I(t1) +R(t1) < S∗ + I∗ +R∗.

On the other hand, we have

S(t1) + I(t1) +R(t1) =
A

µ

Contradiction with S∗ + I∗ +R∗ = A
µ .

(ii) By the third equation of system (2), we obtain

R(t) = R(0)e−(µ+δ1+δ2)t +

∫ t

0

γI(σ)e−(µ+δ1+δ2)(t−σ)dσ

If I ≥ I∗ then

R(t) ≥ R(0)e−(µ+δ1+δ2)t + γI∗
∫ t

0

e−(µ+δ1+δ2)(t−σ)dσ

= R(0)e−(µ+δ1+δ2)t +
γ

(µ+ δ1 + δ2)
I∗ − γ

(µ+ δ1 + δ2)
I∗e−(µ+δ1+δ2)t

Using the relation γI∗

(µ+δ1+δ2)
= R∗ and R(0) ≥ R∗. We have R(t) ≥ R∗

Suppose that I ≥ I∗ and R ≥ R∗, we will prove that S ≤ S∗ for all t ≥ T Suppose
on the contrary that there exists som t1 > T such that S(t1) > S∗. Then by the
hypotheses we have

S(t1) + I(t1) +R(t1) > S∗ + I∗ +R∗.
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On the other hand, we have

S∗ + I∗ +R∗ =
A

µ

Contradiction with S(t1) + I(t1) +R(t1) = A
µ . This completes the proof.

Corollary 7. Let (S, I,R) solution of system (2) and (S∗, I∗, R∗) the endemic
equilibrium. Suppose the hypothesis (H1) hold. Then we have for all t ≥ T with T
sufficiently large such that S(T ) + I(T ) +R(T ) = N(T ) ∼= A

µ :

δ1(R−R∗)(1− f(S∗, I∗)

f(S, I∗)
) ≤ 0.

Proof. By the lemma 6 we have (R−R∗)(S − S∗) ≤ 0.
Furthermore, it follows from the hypothesis (H1) that

δ1(R−R∗)(1− f(S∗, I∗)

f(S, I∗)
) ≤ 0.

This completes the proof.

Theorem 8. If R01 > 1 , then the endemic equilibrium P ∗ is globally asymptotically
stable.

Proof. We define the Lyapunov functional
V (t) = V1(t) + V2(t), with

V1(t) =

∫ S

S∗
(1−

∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(u, e−µτI∗)dτ

)du+ (I − I∗ − I∗ ln
I

I∗
),

V2(t) =
δ2

(µ+ δ1 + δ2)
(R−R∗ −R∗ ln

R

R∗
).

The function f(S, I) is a strictly monotone increasing function of S ≥ 0, for any
fixed I > 0, and the function
g(x) = x − 1 − lnx is always positive for any x > 0, and g(x) = 0 if and only if
x = 1, then we have V (t) > 0 for all t > 0 and V (S∗, I∗, R∗) = 0.
The time derivative of the functions V1(t) and V2(t) along the positive solution of
system (2) is

dV1(t)

dt
=
(

1−
∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

)(
A− µS −

∫ h

0

p(τ)f(S, e−µτIτ )Iτdτ + δ1R
)

+
(
1− I∗

I

)( ∫ h

0

p(τ)f(S, e−µτIτ )Iτdτ + δ2R− (µ+ γ)I
)

(8)
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Using the relationA = µS∗+
∫ h
0
p(τ)f(S∗, e−µτI∗)I∗dτ−δ1R∗, (µ+γ) =

∫ h
0
p(τ)f(S∗,e−µτ I∗)I∗dτ+δ2R

∗

I∗ ,
and (µ+ δ1 + δ2)R∗ = γI∗. Simple calculations give that

dV1(t)

dt
= µ

(
1−

∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

)(
S∗ − S

)
+

∫ h

0

p(τ)f(S∗, e−µτI∗)I∗dτ
(

1−
∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

)
×
(

1−
∫ h
0
p(τ)f(S, e−µτIτ )Iτdτ∫ h

0
p(τ)f(S∗, e−µτI∗)I∗dτ

)
+ δ1(R−R∗)(1−

∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

)

+
(

1− I∗

I

)∫ h

0

p(τ)f(S∗, e−µτI∗)I∗dτ
( ∫ h

0
p(τ)f(S, e−µτIτ )Iτdτ∫ h

0
p(τ)f(S∗, e−µτI∗)I∗dτ

− I

I∗

)
+
(

1− I∗

I

)
δ2(R− IR∗

I∗
)

= µ
(

1−
∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

)(
S∗ − S

)
+

∫ h

0

p(τ)f(S∗, e−µτI∗)I∗dτ{(2−
∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

− I∗

I

∫ h
0
p(τ)f(S, e−µτIτ )Iτdτ∫ h

0
p(τ)f(S∗, e−µτI∗)I∗dτ

)

+ (

∫ h
0
p(τ)f(S, e−µτIτ )Iτdτ∫ h

0
p(τ)f(S, e−µτI∗)I∗dτ

− I

I∗
)}

+ δ1(R−R∗)(1−
∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

) + δ2(1− I∗

I
)(R− IR∗

I∗
)

and

dV2(t)

dt
=

δ2
(µ+ δ1 + δ2)

(1− R∗

R
)(γI − (µ+ δ1 + δ2)R)

=
δ2

(µ+ δ1 + δ2)
(γI − (µ+ δ1 + δ2)R− γIR∗

R
+ (µ+ δ1 + δ2)R∗)

= δ2
R∗I

I∗
− δ2R− δ2

I(R∗)2

RI∗
+ δ2R

∗
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Then we have

dV (t)

dt
= µ

(
1−

∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

)(
S∗ − S

)
+ δ1(R−R∗)(1−

∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

)

+

∫ h

0

p(τ)f(S∗, e−µτI∗)I∗dτ{3−
∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

− I∗

I

∫ h
0
p(τ)f(S, e−µτIτ )Iτdτ∫ h

0
p(τ)f(S∗, e−µτI∗)I∗dτ

− I

I∗

∫ h
0
p(τ)f(S, e−µτI∗)I∗dτ∫ h

0
p(τ)f(S, e−µτIτ )Iτdτ

}

+

∫ h

0

p(τ)f(S∗, e−µτI∗)I∗dτ{−1 +

∫ h
0
p(τ)f(S, e−µτIτ )Iτdτ∫ h

0
p(τ)f(S, e−µτI∗)I∗dτ

+
I

I∗

∫ h
0
p(τ)f(S, e−µτI∗)I∗dτ∫ h

0
p(τ)f(S, e−µτIτ )Iτdτ

− I

I∗
}

+ δ2R
∗(2− I∗R

IR∗
− IR∗

I∗R
)

= µ
(

1−
∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

)(
S∗ − S

)
+ δ1(R−R∗)(1−

∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

)

+

∫ h

0

p(τ)f(S∗, e−µτI∗)I∗dτ{3−
∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

− I∗

I

∫ h
0
p(τ)f(S, e−µτIτ )Iτdτ∫ h

0
p(τ)f(S∗, e−µτI∗)I∗dτ

− I

I∗

∫ h
0
p(τ)f(S, e−µτI∗)I∗dτ∫ h

0
p(τ)f(S, e−µτIτ )Iτdτ

}

+

∫ h

0

p(τ)f(S∗, e−µτI∗)I∗dτ
I

I∗

(∫ h
0
p(τ)φ(S, I∗)dτ∫ h

0
p(τ)φ(S, Iτ )dτ

− 1
)(

1−

∫ h
0
p(τ)φ(S,Iτ )dτ

I∫ h
0
p(τ)φ(S,I∗)dτ

I∗

)
− δ2R∗

(√I∗R

IR∗
−
√
IR∗

I∗R

)2
.

Cosequently, we obtain

dV (t)

dt
= µ

(
1−

∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

)(
S∗ − S

)
+ δ1(R−R∗)(1−

∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

)

+

∫ h

0

p(τ)f(S∗, e−µτI∗)I∗dτ{3−
∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

− I∗

I

∫ h
0
p(τ)f(S, e−µτIτ )Iτdτ∫ h

0
p(τ)f(S∗, e−µτI∗)I∗dτ

− I

I∗

∫ h
0
p(τ)f(S, e−µτI∗)I∗dτ∫ h

0
p(τ)f(S, e−µτIτ )Iτdτ

}

+

∫ h

0

p(τ)f(S∗, e−µτI∗)I∗dτ
I

I∗

(∫ h
0
p(τ)φ(S, I∗)dτ∫ h

0
p(τ)φ(S, Iτ )dτ

− 1
)(

1−
∫ h
0
p(τ)Ψ(S, Iτ )dτ∫ h

0
p(τ)Ψ(S, I∗)dτ

)
− δ2R∗

(√I∗R

IR∗
−
√
IR∗

I∗R

)2
.
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It follows from (H1) and corollary 7 that

µ
(

1−
∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

)(
S∗ − S

)
≤ 0,

and

δ1(R−R∗)(1−
∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

) ≤ 0.

and, according to the assumptions (H2) and (H3), we have(∫ h
0
p(τ)φ(S, I∗)dτ∫ h

0
p(τ)φ(S, Iτ )dτ

− 1
)(

1−
∫ h
0
p(τ)Ψ(S, Iτ )dτ∫ h

0
p(τ)Ψ(S, I∗)dτ

)
≤ 0.

Moreover, since the arithmetic mean is greater than or equal to the geometric mean,
we obtain that

(3−
∫ h
0
p(τ)f(S∗, e−µτI∗)dτ∫ h

0
p(τ)f(S, e−µτI∗)dτ

−I
∗

I

∫ h
0
p(τ)f(S, e−µτIτ )Iτdτ∫ h

0
p(τ)f(S∗, e−µτI∗)I∗dτ

− I

I∗

∫ h
0
p(τ)f(S, e−µτI∗)I∗dτ∫ h

0
p(τ)f(S, e−µτIτ )Iτdτ

) ≤ 0.

Therefore, dV (t)
dt ≤ 0 for all t ≥ T, where the equality holds only at the equilibrium

point (S∗, I∗, R∗). Thus {P ∗} is the largest invariant set in {(S, I,R)
∣∣∣dV (t)

dt = 0}.
Consequently, we obtain, by the Lyapunov-LaSalle asymptotic stability Theorem
[21, 22], that P ∗ is globally asymptotically stable. This completes the proof.

4. Conclusion

In this paper, we presented a mathematical analysis for an SIRSI epidemiological
model applied to the evolution of the spread of disease with relapse in a given pop-
ulation, with a distributed delay and incidence function rate of the form f(S, I)I.
The incidence function rate used represents a variety of possible incidence functions
that could be used in epidemic models as well as virus dynamics models. By con-
structing two suitable Lyapunov functionals, we found the sufficient conditions of
the global stability for the endemic and disease-free equilibrium of the SIRSI epi-
demic model with distributed delay. The basic reproduction number R0, remains a
key parameter for the stability analysis of epidemiological models: if R0 ≤ 1, then
the disease free equilibrium is globally asymptotically stable and if R0 > 1, then
the unique endemic equilibrium is globally asymptotically stable.

References

[1] A. Abta, A. Kaddar and H. Talibi Alaoui, Global Stability for Delay SIR and SEIR Epidemic
Models with Saturated Incidence Rates, Electronic Journal of Differential Equations, Vol. 2012,

No. 23, pp. 1-13, (2012)
[2] A.Abta , M. El Fatini, S.Elkhaiar, A.Kaddar Global analysis for a Delay-Distributed SIR

epidemic model ,ESAIM: proceedings, March 2013, vol . 39 , p.1-6

[3] R. M. Anderson, R. M. May, Regulation and stability of host-parasite population interactions:
I. Regulatory processes, The Journal of Animal Ecology, Vol. 47, no. 1, pp. 219-267, (1978).

[4] Amine Bernoussi, Abdelilah Kaddar and Said Asserda, On the dynamics of an SIRI epidemic

model with a generalized incidence function, the electronic International Journal advanced mod-
eling and optimization, Volume. 19, No. 1, page 87-96, 2017.

[5] A. Bernoussi, A. Kaddar and S. Asserda, Stability Analysis of an SIRI Epidemic Model with
Distributed Latent Period, Journal of Advances in Applied Mathematics, Vol. 1, No. 4, pp.
211-221, October 2016.



EJMAA-2020/8(2) GLOBAL STABILITY OF AN SIRSI EPIDEMIC MODEL 163

[6] A. Bernoussi, A. Kaddar, and S. Asserda, Global Stability of a Delayed SIRI Epidemic Model

with Nonlinear Incidence, International Journal of Engineering Mathematics Volume 2014, (2014)

[7] E. Beretta and Y. Takeuchi, Global stability of an SIR epidemic model with time delays,
Journal of Mathematical Biology,33, 250-260, (1995)

[8] E. Beretta, T. Hara, W. Ma, and Y. Takeuchi, Permanence of an SIR epidemic model with

distributed time delays, Tohoku Math. J. (2), Volume 54, Number 4, 471-597, (2002)
[9] V. Capasso, G. Serio, A generalization of Kermack-Mckendrick deterministic epidemic model,

Math. Biosci. Vol. 42, pp. 41-61, (1978)

[10] L. S. Chen, J. Chen, Nonlinear biologicl dynamics system, Scientific Press, China, (1993)
[11] J. Chin, Control of Communicable Diseases Manual, American Public Health Association,

Washington, (1999)

[12] K. L. Cooke, Stability analysis for a vector disease model, Rocky Mountain Journal of math-
ematics, Vol. 9, no. 1, pp. 31-42, (1979)

[13] M.C.M. de Jong, O. Diekmann and H. Heesterbeek, How does transmission of infection
depend on population size? In: Epidemic models: their structure and relation to data, Mollison

D. (Ed.), Cambridge University Press, Cambridge, 84-94, (1995)

[14] Y. Enatsu, Y. Nakata and Y. Muroya Global stability of SIR epidemic models with a wide
class of nonlinear incidence and distributed delays, Discrete and Continuous Dynamical Systems

Series B Volume 15, Number 1, (2011) 61-74.

[15] M. Gabriela, M. Gomes, L. J. White, G. F. Medley, The reinfection threshold, Journal of
Theoretical Biology, Vol. 236, pp. 111-113, (2005)

[16] K. Hattaf, A. A. Lashari, Y. Louartassi, N. Yousfi; A delayed SIR epidemic model with a

generalized incidence rate , Electronic Journal of Qualitative Theory of Differential Equations,
2013, No. 3, 1-9;

[17] H. W. Hethcote, The Mathematics of Infectious Disease, SIAM review 42, 599-653, (2000)

[18] Z. Jiang, J. Wei; Stability and bifurcation analysis in a delayed SIR model, Chaos, Solitons
and Fractals, Vol. 35, pp. 609-619, (2008)

[19] A. Kaddar; Stability analysis in a delayed SIR epidemic model with a saturated incidence
rate , Nonlinear Analysis: Modelling and Control, Vol. 15, No. 3, 299-306, (2010)

[20] A. Kaddar, A comparison of delayed SIR and SEIR epidemic models, Nonlinear Analysis:

Modelling and Control, Vol. 16, No. 2, 181-190, (2011)
[21] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic

Press, San Diego, 1993.

[22] J.P. LaSalle, The stability of dynamical systems, Regional Conference Series in Applied Math-
ematics, SIAM, Philadelphia, 1976.

[23] M. Li and X. Liu, An SIR Epidemic Model with Time Delay and General Nonlinear Incidence

Rate, Hindawi Publishing Corporation, Abstract and Applied Analysis Volume 2014, Article ID
131257, (2014)

[24] S. W. Martin, Livestock Disease Eradication: Evaluation of the Cooperative StateFederal

Bovine Tuberculosis Eradication Program, National Academy Press, Washington, (1994)
[25] Y. Nakata, Y. Enatsu, and Y. Muroya, On the global stability of an SIRS epidemic model

with distributed delays, Published in Discrete and Continuous Dynamical Systems Supplement,
1119-1128, (2011)

[26] Raul Nistal, Manuel de la Sen, Santiago Alonso-Quesada and Asier Ibeas, On a New Discrete

SEIADR Model with Mixed Controls: Study of Its Properties, journal of Mathematics MDPI;
doi:10.3390/math7010018, Vol. 2019, 7, 18, pp. 1-19, 2019.

[27] D. Tudor, A deterministic model for herpes infections in human and animal populations,
SIAM Rev. 32, pp. 136-139, (1990)

[28] K.E.VanLandingham, H.B.Marsteller, G.W.Ross, and F.G.Hayden, Relapse of herpes simplex

encephalitis after conventional acyclovir therapy, JAMA, 259, 1051-1053, (1988)

[29] W. Wang, S. Ruan, Bifurcation in epidemic model with constant removal rate infectives,
Journal of Mathematical Analysis and Applications, Vol. 291, pp. 775-793, (2004)

[30] C. Wei, L. Chen, A delayed epidemic model with pulse vaccination, Discrete Dynamics in
Nature and Society, Vol. 2008, Article ID 746-951, (2008)

[31] R. Xu, Z. Ma, Stability of a delayed SIRS epidemic model with a nonlinear incidence rate,

Chaos, Solitons and Fractals, Vol. 41, Iss. 5, pp. 2319-2325, (2009)



164 AMINE BERNOUSSI EJMAA-2020/8(2)

[32] Yuying He, Shujing Gao and Dehui Xie, An SIR epidemic model with time-varying pulse con-

trol schemes and saturated infectious force, journal of Applied Mathematical Modelling, Volume

37, Issues 16-17, pp. 8131-8140, September 2013.
[33] J.-Z. Zhang, Z. Jin, Q.-X. Liu, Z.-Y. Zhang, Analysis of a delayed SIR model with nonlinear

incidence rate, Discrete Dynamics in Nature and Society, Vol. 2008, Article ID 66153, (2008)

[34] F. Zhang, Z. Z. Li, F. Zhang, Global stability of an SIR epidemic model with constant
infectious period, Applied Mathematics and Computation, Vol. 199, pp. 285-291, (2008)

[35] Y. Zhou, H. Liu, Stability of periodic solutions for an SIS model with pulse vaccination,

Mathematical and Computer Modelling, Vol. 38, pp. 299-308, (2003)

Amine Bernoussi

Department of Mathematics, Faculty of Science, Ibn Tofail University, Kenitra, Mo-

rocco
E-mail address: amine.bernoussi@yahoo.fr


	1. Introduction
	2. Preliminary
	3. Global stability of the disease-free equilibrium and the endemic equilibrium
	4. Conclusion
	References

