COEFFICIENT BOUNDS FOR GENERAL CLASS OF BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER ASSOCIATED WITH q-SĂLĂGEĂN OPERATOR AND CHEBYSHEV POLYNOMIALS

M. K. AOUF, A. O. MOSTAFA, R. E. EL. MORSY

Abstract

In the present paper, we introduce a general subclass of bi-univalent functions of complex order associated with q-Sălăgeăn operator and using Chebyshev polynomials. We obtain coefficient bounds for functions in this class.

1. Introduction

Denote by \mathcal{A} the class of analytic functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, z \in \mathbb{U}=\{z: z \in \mathbb{C} \text { and }|z|<1\} \tag{1}
\end{equation*}
$$

and by \mathcal{S} the subclass of \mathcal{A} which are univalent in \mathbb{U}. For two functions $f(z)$ and $g(z)$, analytic in $\mathbb{U}, f(z)$ is subordinate to $g(z)(f(z) \prec g(z))$, if there exists a function $\omega(z)$, analytic in \mathbb{U} with $\omega(0)=0$ and $|\omega(z)|<1, f(z)=g(\omega(z))$ and if $g(z)$ is univalent in \mathbb{U}, then (see for details [16]):

$$
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Some of the important and well - investigated subclasses of \mathcal{S} are the classes $S^{*}(\alpha)$ and $C(\alpha)$ which are, respectively, starlike and convex functions of order α in \mathbb{U} defined by Robertson ([28]) as follows:

$$
\begin{equation*}
S^{*}(\alpha)=\left\{f: f \in S \text { and } \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, 0 \leq \alpha<1\right\}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
C(\alpha)=\left\{f: f \in S \text { and } \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, 0 \leq \alpha<1\right\} . \tag{3}
\end{equation*}
$$

[^0]These classes are related to each other by

$$
f(z) \in C(\alpha) \Leftrightarrow z f^{\prime}(z) \in S^{*}(\alpha)
$$

It is well known (see Duren [19]) that every function $f \in \mathcal{S}$ has an inverse map f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(\omega)\right)=\omega \quad\left(|\omega|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

In fact the inverse function $g=f^{-1}$ is given by

$$
\begin{equation*}
g(\omega)=f^{-1}(\omega)=\omega-a_{2} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right) \omega^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) \omega^{4}+\ldots \tag{4}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent function in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Denote by Δ the class of bi- univalent functions in \mathbb{U}. For more study (see [17], [21]).

The Chebyshev polynomials of the first and seconed kinds are well known and defined by (see [1], [10], [18], [20], [26]):

$$
T_{k}(t)=\cos k \theta \quad \text { and } \quad U_{k}(t)=\frac{\sin (k+1) \theta}{\sin \theta} \quad(-1<t<1)
$$

where the degree of the polynomial is k and $t=\cos \theta$. Consider the function

$$
H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

Note that if $t=\cos \alpha, \alpha \in\left(\frac{-\pi}{3}, \frac{\pi}{3}\right)$, then for all $z \in \mathbb{U}$

$$
\begin{align*}
H(z, t) & =1+\sum_{k=1}^{\infty} \frac{\sin (k+1) \alpha}{\sin \alpha} z^{k} \\
& =1+2 \cos \alpha z+\left(3 \cos ^{2} \alpha-\sin ^{2} \alpha\right) z^{2}+\ldots \tag{5}
\end{align*}
$$

Thus, we have (see [34])

$$
\begin{equation*}
H(z, t)=1+U_{1}(t) z+U_{2}(t) z^{2}+\ldots(z \in \mathbb{U}, t \in(-1,1)) \tag{6}
\end{equation*}
$$

where $U_{k-1}(t)=\frac{\sin (k \arccos t)}{\sqrt{1-t^{2}}}$, for $k \in \mathbb{N}=\{1,2, \ldots\}$, are the second kind of the Chebyshev polynomials. which has the recurrence relation:

$$
\begin{equation*}
U_{k}(t)=2 t U_{k-1}(t)-U_{k-2}(t) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{1}(t)=2 t, \quad U_{2}(t)=4 t^{2}-1, \quad U_{3}(t)=8 t^{3}-4 t, \ldots \tag{8}
\end{equation*}
$$

The first kind of the Chebyshev polynomials $T_{k}(t), t \in(-1,1)$, have the generating function

$$
\begin{equation*}
\sum_{k=0}^{\infty} T_{k}(t) z^{k}=\frac{1-t z}{1-2 t z+z^{2}} \quad(z \in \mathbb{U}) \tag{9}
\end{equation*}
$$

The first and second kind of Chebyshev polynomials $T_{k}(t)$ and $U_{k}(t)$ are connected by :

$$
\begin{equation*}
\frac{d T_{k}(t)}{d t}=k U_{k-1}(t), \quad T_{k}(t)=U_{k}(t)-t U_{k-1}(t), \quad 2 T_{k}(t)=U_{k}(t)-U_{k-2}(t) \ldots \tag{10}
\end{equation*}
$$

For a function $f(z) \in \mathcal{A}$, given by (1) and $0<q<1$, the Jackson's q-derivative of a function f is defined by [25] (also see [2], [8], [12], [15], [22], [30], [31], [32], [35]):

$$
\begin{equation*}
D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z},(z \in \mathbb{U}, 0<q<1) \tag{11}
\end{equation*}
$$

$D_{q} f(0)=f^{\prime}(0)$ and $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. From (11) we have

$$
\begin{equation*}
D_{q} f(z)=1+\sum_{k=2}^{\infty}[k]_{q} a_{k} z^{k-1} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
[k]_{q}=\frac{1-q^{k}}{1-q} \quad(0<q<1) \tag{13}
\end{equation*}
$$

As $q \rightarrow 1^{-},[k]_{q} \rightarrow k$. For $f \in \mathcal{A}$, Govindaraj and Sivasubramanian ([23]) defined and discussed the Sălăgean $q-$ difference operator as given below:

$$
\begin{align*}
D_{q}^{0} f(z) & =f(z) \\
D_{q}^{1} f(z) & =z D_{q} f(z) \\
D_{q}^{n} f(z) & =z D_{q}\left(D_{q}^{n-1} f(z)\right) \\
D_{q}^{n} f(z) & =z+\sum_{k=2}^{\infty}[k]_{q}^{n} a_{k} z^{k}\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mathbb{N}=\{1,2, \ldots\}, 0<q<1, z \in \mathbb{U}\right) \tag{14}
\end{align*}
$$

We note that

$$
\begin{equation*}
\lim _{q \rightarrow 1^{-}} D_{q}^{n} f(z)=D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}, z \in \mathbb{U}\right) \tag{15}
\end{equation*}
$$

where $D^{n} f(z)$ is the Sălăgean operator (see [3], [4], [5], [6], [7], [9], [11], [13], [14], [24], [29]).

By using the Sălăgean q-difference operator for g of the form (4), Vijaya et al. ([33]) (also see [27]) defined $D_{q}^{n} g(\omega)$ by:

$$
\begin{equation*}
D_{q}^{n} g(\omega)=\omega-a_{2}[2]_{q}^{n} \omega^{2}+\left(2 a_{2}^{2}-a_{3}\right)[3]_{q}^{n} \omega^{3}+\ldots \tag{16}
\end{equation*}
$$

Definition 1. For $0 \leq \lambda \leq 1, b \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ and $t \in\left(\frac{1}{2}, 1\right)$, a function $f \in \Delta$ is said to be in the class $T_{\Delta}^{n}(b, \lambda, q, t)$ if

$$
\begin{equation*}
1+\frac{1}{b}\left[\frac{(1-\lambda) D_{q}^{n+1} f(z)+\lambda D_{q}^{n+2} f(z)}{(1-\lambda) D_{q}^{n} f(z)+\lambda D_{q}^{n+1} f(z)}-1\right] \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{b}\left[\frac{(1-\lambda) D_{q}^{n+1} g(\omega)+\lambda D_{q}^{n+2} g(\omega)}{(1-\lambda) D_{q}^{n} g(\omega)+\lambda D_{q}^{n+1} g(\omega)}-1\right] \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}} . \tag{18}
\end{equation*}
$$

where $z, \omega \in \mathbb{U}$ and g is given by (4).
Specializing the parameters λ, b, q and n, we obtain the following subclasses:
(i) $\lim _{q \rightarrow 1^{-}} T_{\Delta}^{n}(b, \lambda, q, t)=T_{\Delta}^{n}(b, \lambda, t)$ where

$$
1+\frac{1}{b}\left[\frac{z\left(D^{n} f(z)\right)^{\prime}+\lambda z^{2}\left(D^{n} f(z)\right)^{\prime \prime}}{(1-\lambda) D^{n} f(z)+\lambda z\left(D^{n} f(z)\right)^{\prime}}-1\right] \prec H(z, t)=\frac{1}{1-2 t z+z^{2}},
$$

and

$$
1+\frac{1}{b}\left[\frac{\omega\left(D^{n} g(\omega)\right)^{\prime}+\lambda \omega^{2}\left(D^{n} g(\omega)\right)^{\prime \prime}}{(1-\lambda) D^{n} g(\omega)+\lambda \omega\left(D^{n} g(\omega)\right)^{\prime}}-1\right] \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}},
$$

(ii) $T_{\Delta}^{0}(b, \lambda, q, t)=T_{\Delta}(b, \lambda, q, t)$, where

$$
1+\frac{1}{b}\left[\frac{(1-\lambda) z D_{q} f(z)+\lambda z D_{q}^{2} f(z)}{(1-\lambda) f(z)+\lambda z D_{q} f(z)}-1\right] \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
1+\frac{1}{b}\left[\frac{(1-\lambda) \omega D_{q} g(\omega)+\lambda \omega D_{q}^{2} g(\omega)}{(1-\lambda) g(\omega)+\lambda \omega D_{q} g(\omega)}-1\right] \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}}
$$

(iii) $T_{\Delta}^{n}(b, 0, q, t)=T_{\Delta}^{n}(b, q, t)$, where

$$
1+\frac{1}{b}\left[\frac{D_{q}^{n+1} f(z)}{D_{q}^{n} f(z)}-1\right] \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
1+\frac{1}{b}\left[\frac{D_{q}^{n+1} g(\omega)}{D_{q}^{n} g(\omega)}-1\right] \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}}
$$

(iiii) $T_{\Delta}^{n}(1,0, q, t)=T_{\Delta}^{n}(q, t)$, where

$$
\frac{D_{q}^{n+1} f(z)}{D_{q}^{n} f(z)} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}},
$$

and

$$
\frac{D_{q}^{n+1} g(\omega)}{D_{q}^{n} g(\omega)} \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}}
$$

(v) $\lim _{q \rightarrow 1^{-}} T_{\Delta}^{n}(b, 0, q, t)=T_{\Delta}^{n}(b, t)$,where

$$
1+\frac{1}{b}\left[\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-1\right] \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
1+\frac{1}{b}\left[\frac{\omega\left(D^{n} g(\omega)\right)^{\prime}}{D^{n} g(\omega)}-1\right] \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}},
$$

(vi) $\lim _{q \rightarrow 1^{-}} T_{\Delta}^{n}(1,0, q, t)=T_{\Delta}^{n}(t)$, where

$$
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
\frac{\omega\left(D^{n} g(\omega)\right)^{\prime}}{D^{n} g(\omega)} \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}}
$$

(vii) $T_{\Delta}^{n}(b, 1, q, t)=\mathbb{T}_{\Delta}^{n}(b, q, t)$, where

$$
1+\frac{1}{b}\left[\frac{D_{q}^{n+2} f(z)}{D_{q}^{n+1} f(z)}-1\right] \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
1+\frac{1}{b}\left[\frac{D_{q}^{n+2} g(\omega)}{D_{q}^{n+1} g(\omega)}-1\right] \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}}
$$

(viii) $T_{\Delta}^{n}(1,1, q, t)=\mathcal{W}_{\Delta}^{n}(q, t)$, where

$$
\frac{D_{q}^{n+2} f(z)}{D_{q}^{n+1} f(z)} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}},
$$

and

$$
\frac{D_{q}^{n+2} g(\omega)}{D_{q}^{n+1} g(\omega)} \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}},
$$

(viiii) $\lim _{q \rightarrow 1^{-}} T_{\Delta}^{0}(b, \lambda, q, t)=T_{\Delta}(b, \lambda, t)$, where

$$
1+\frac{1}{b}\left[\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}-1\right] \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
1+\frac{1}{b}\left[\frac{\omega g^{\prime}(\omega)+\lambda \omega^{2} g^{\prime \prime}(\omega)}{(1-\lambda) g(\omega)+\lambda \omega g^{\prime}(\omega)}-1\right] \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}}
$$

(x) $\lim _{q \rightarrow 1^{-}} T_{\Delta}^{n}(b, 1, q, t)=\mathcal{K}_{\Delta}^{n}(b, t)$, where

$$
1+\frac{1}{b} \frac{z\left(D^{n} f(z)\right)^{\prime \prime}}{\left(D^{n} f(z)\right)^{\prime}} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
1+\frac{1}{b} \frac{\omega\left(D^{n} g(\omega)\right)^{\prime \prime}}{\left(D^{n} g(\omega)\right)^{\prime}} \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}},
$$

(xi) $\lim _{q \rightarrow 1^{-}} T_{\Delta}^{n}(1,1, q, t)=\mathcal{X}_{\Delta}^{n}(t)$, where

$$
1+\frac{z\left(D^{n} f(z)\right)^{\prime \prime}}{\left(D^{n} f(z)\right)^{\prime}} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}},
$$

and

$$
1+\frac{\omega\left(D^{n} g(\omega)\right)^{\prime \prime}}{\left(D^{n} g(\omega)\right)^{\prime}} \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}},
$$

(xii) $T_{\Delta}^{n}\left((1-\alpha) e^{i \beta} \cos \beta, \lambda, q, t\right)=T_{\Delta}^{n}(\alpha, \lambda, \beta, q, t)\left(0 \leq \alpha<1,|\beta|<\frac{\pi}{2}\right)$, where

$$
e^{i \beta}\left[\frac{(1-\lambda) D_{q}^{n+1} f(z)+\lambda D_{q}^{n+2} f(z)}{(1-\lambda) D_{q}^{n} f(z)+\lambda D_{q}^{n+1} f(z)}\right] \prec H(z, t)(1-\alpha) \cos \beta+\alpha \cos \beta+i \sin \beta,
$$

and

$$
e^{i \beta}\left[\frac{(1-\lambda) D_{q}^{n+1} g(\omega)+\lambda D_{q}^{n+2} g(\omega)}{(1-\lambda) D_{q}^{n} g(\omega)+\lambda D_{q}^{n+1} g(\omega)}\right] \prec H(\omega, t)(1-\alpha) \cos \beta+\alpha \cos \beta+i \sin \beta,
$$

(xiii) $\lim _{q \rightarrow 1^{-}} T_{\Delta}^{0}(1,1, q, t)=\mathcal{K}_{\Delta}(t)$, where

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}},
$$

and

$$
1+\frac{\omega g^{\prime \prime}(\omega)}{g^{\prime}(\omega)} \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}},
$$

(xiiii) $\lim _{q \rightarrow 1^{-}} T_{\Delta}^{0}(1,0, q, t)=T_{\Delta}(t)$, where

$$
\frac{z f^{\prime}(z)}{f(z)} \prec H(z, t)=\frac{1}{1-2 t z+z^{2}},
$$

and

$$
\frac{\omega g^{\prime}(\omega)}{g(\omega)} \prec H(\omega, t)=\frac{1}{1-2 t \omega+\omega^{2}}
$$

In this paper, we obtain the initial coefficients bounds and Fekete -Szego problem for functions in the class $T_{\Delta}^{n}(b, \lambda, q, t)$.

2. Main Results

Unless otherwise mentioned, we assume in the reminder of this paper that $0 \leq$ $\lambda \leq 1, b \in \mathbb{C}^{*}, 0<q<1$ and $t \in\left(\frac{1}{2}, 1\right)$.

Theorem 1. Let $f(z) \in T_{\Delta}^{n}(b, \lambda, q, t)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 t|b| \sqrt{2 t}}{\sqrt{\mid\left\{q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n} b-q(1+\lambda q)^{2}[2]_{q}^{2 n}\right\} 4 b t^{2}-q^{2}(1+\lambda q)^{2}\left(4 t^{2}-1\right)[2]_{q}^{2 n}}}, \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2|b| t}{q}\left(\frac{2|b| t}{q(1+\lambda q)^{2}[2]_{q}^{2 n}}+\frac{1}{(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}}\right) . \tag{20}
\end{equation*}
$$

Proof. Let $f(z) \in T_{\Delta}^{n}(b, \lambda, q, t)$ and $g=f^{-1}$. From (17) and (18), we have

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{(1-\lambda) D_{q}^{n+1} f(z)+\lambda D_{q}^{n+2} f(z)}{(1-\lambda) D_{q}^{n} f(z)+\lambda D_{q}^{n+1} f(z)}-1\right)=1+U_{1}(t) p(z)+U_{2}(t) p^{2}(z)+\ldots \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{(1-\lambda) D_{q}^{n+1} g(\omega)+\lambda D_{q}^{n+2} g(\omega)}{(1-\lambda) D_{q}^{n} g(\omega)+\lambda D_{q}^{n+1} g(\omega)}-1\right)=1+U_{1}(t) q(\omega)+U_{2}(t) q^{2}(\omega)+\ldots \tag{22}
\end{equation*}
$$

for some analytic functions

$$
\begin{align*}
p(z) & =c_{1} z+c_{2} z^{2}+\ldots(z \in \mathbb{U}) \tag{23}\\
q(z) & =d_{1} \omega+d_{2} \omega^{2}+\ldots(\omega \in \mathbb{U}) \tag{24}
\end{align*}
$$

such that $p(0)=q(0)=0,|p(z)|<1$ and $|q(\omega)|<1$. It is well known that if $|p(z)|<1$ and $|q(\omega)|<1$ then

$$
\begin{equation*}
\left|c_{j}\right| \leq 1 \text { and }\left|d_{j}\right| \leq 1 \text { for all } j \in \mathbb{N} . \tag{25}
\end{equation*}
$$

From (21) and (22), we have

$$
\begin{equation*}
\frac{1}{b}\left(\frac{(1-\lambda) D_{q}^{n+1} f(z)+\lambda D_{q}^{n+2} f(z)}{(1-\lambda) D_{q}^{n} f(z)+\lambda D_{q}^{n+1} f(z)}-1\right)=U_{1}(t) c_{1} z+\left(U_{1}(t) c_{2}+U_{2}(t) c_{1}^{2}\right) z^{2}+\ldots \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{b}\left(\frac{(1-\lambda) D_{q}^{n+1} g(\omega)+\lambda D_{q}^{n+2} g(\omega)}{(1-\lambda) D_{q}^{n} g(\omega)+\lambda D_{q}^{n+1} g(\omega)}-1\right)=U_{1}(t) d_{1} \omega+\left(U_{1}(t) d_{2}+U_{2}(t) d_{1}^{2}\right) \omega^{2}+\ldots \tag{27}
\end{equation*}
$$

Equating the coefficients in (26) and (27) we get

$$
\begin{gather*}
\frac{1}{b} q(1+\lambda q)[2]_{q}^{n} a_{2}=U_{1}(t) c_{1} \tag{28}\\
\frac{1}{b}\left\{q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n} a_{3}-q(1+\lambda q)^{2}[2]_{q}^{2 n} a_{2}^{2}\right\} \\
=\left(U_{1}(t) c_{2}+U_{2}(t) c_{1}^{2}\right) \tag{29}
\end{gather*}
$$

and

$$
\begin{gather*}
-\frac{1}{b} q(1+\lambda q)[2]_{q}^{n} a_{2}=U_{1}(t) d_{1} \tag{30}\\
\frac{1}{b}\left\{q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}\left(2 a_{2}^{2}-a_{3}\right)-q(1+\lambda q)^{2}[2]_{q}^{2 n} a_{2}^{2}\right\} \\
=\left(U_{1}(t) d_{2}+U_{2}(t) d_{1}^{2}\right) \tag{31}
\end{gather*}
$$

From (28) and (30) it follow that

$$
\begin{equation*}
c_{1}=-d_{1} \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
2 q^{2}(1+\lambda q)^{2}[2]_{q}^{2 n} a_{2}^{2}=b^{2} U_{1}^{2}(t)\left(d_{1}^{2}+c_{1}^{2}\right) \tag{33}
\end{equation*}
$$

Also, (29) and (31) yield

$$
\begin{gather*}
2 q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n} a_{2}^{2}-2 q(1+\lambda q)^{2}[2]_{q}^{2 n} a_{2}^{2} \\
=b\left\{U_{1}\left(c_{2}+d_{2}\right)+U_{2}\left(c_{1}^{2}+d_{1}^{2}\right)\right\} \tag{34}
\end{gather*}
$$

which by (33), leads to

$$
\begin{gathered}
\left\{2 q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}-2 q(1+\lambda q)^{2}[2]_{q}^{2 n}-\frac{2 U_{2} q^{2}(1+\lambda q)^{2}[2]_{q}^{2 n}}{b U_{1}^{2}}\right\} a_{2}^{2} \\
=b U_{1}\left(c_{2}+d_{2}\right)
\end{gathered}
$$

that is

$$
\begin{equation*}
a_{2}^{2}=\frac{b U_{1}\left(c_{2}+d_{2}\right)}{2 q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}-2 q(1+\lambda q)^{2}[2]_{q}^{2 n}-\frac{2 U_{2} q^{2}(1+\lambda q)^{2}[2]_{q}^{2 n}}{b U_{1}^{2}}} \tag{35}
\end{equation*}
$$

From (8), (25) and (35), we have (19).
Next, by subtracting (31) from (29), we have

$$
\begin{gathered}
\frac{2}{b}\left\{q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}\left(a_{3}-a_{2}^{2}\right)\right\} \\
=U_{1}\left(c_{2}-d_{2}\right)
\end{gathered}
$$

then

$$
\begin{align*}
& a_{3}-a_{2}^{2}=\frac{b U_{1}\left(c_{2}-d_{2}\right)}{2 q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}} \\
& a_{3}=a_{2}^{2}+\frac{b U_{1}\left(c_{2}-d_{2}\right)}{2 q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}} \tag{36}
\end{align*}
$$

Hence using (33) and applaying (8), we get (20). This completes the proof of Theorem 1.

Taking $\lambda=0$ in Theorem 1, we have the following corollary:
Corollary 1. Let $f \in T_{\Delta}^{n}(b, q, t)$. Then

$$
\begin{aligned}
\left|a_{2}\right| \leq & \frac{2 t|b| \sqrt{2 t}}{\sqrt{\left|\left\{q(q+1)[3]_{q}^{n} b-q[2]_{q}^{2 n}\right\} 4 b t^{2}-q^{2}[2]_{q}^{2 n}\left(4 t^{2}-1\right)\right|}} \\
& \left|a_{3}\right| \leq \frac{2|b| t}{q}\left(\frac{2|b| t}{q[2]_{q}^{2 n}}+\frac{1}{(q+1)[3]_{q}^{n}}\right) .
\end{aligned}
$$

Taking $\lambda=1$ in Theorem 1, we have the following corollary:
Corollary 2. Let $f \in \mathbb{T}_{\Delta}^{n}(b, q, t)$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{2 t|b| \sqrt{2 t}}{\sqrt{\left|\left\{q(q+1)\left[1+q+q^{2}\right][3]_{q}^{n} b-q(1+q)^{2}[2]_{q}^{2 n}\right\} 4 b t^{2}-q^{2}(1+q)^{2}\left(4 t^{2}-1\right)[2]_{q}^{2 n}\right|}}, \\
\left|a_{3}\right| \leq \frac{2|b| t}{q}\left(\frac{2|b| t}{q(1+q)^{2}[2]_{q}^{2 n}}+\frac{1}{(q+1)\left[1+q+q^{2}\right][3]_{q}^{n}}\right) .
\end{gathered}
$$

3. Fekete-Szegö inequalities for the function class $T_{\Delta}^{n}(b, \lambda, q, t)$

Theorem 2. If $f \in T_{\Delta}^{n}(b, \lambda, q, t)$, Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 t|b|}{q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}}, \quad|\mu-1| \leq\left|\begin{array}{c}
1-\frac{(q+1)^{-1}(1+\lambda q)^{2}[2]_{q}^{2 n}}{\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{q}} \tag{37}\\
-\frac{q(q+1)^{-1}(1+\lambda q)^{2}\left(4 t^{2}-1\right)[2]_{q}^{2 n}}{\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n} 4 t^{2} b}
\end{array}\right|
$$

and

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{8 t^{3}\left|b^{2}\right||\mu-1|}{\left\{q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n} b-q(1+\lambda q)^{2}[2]_{q}^{2 n}\right\} 4 b t^{2}-q^{2}(1+\lambda q)^{2}\left(4 t^{2}-1\right)[2]_{q}^{2 n}} \tag{38}
\end{equation*}
$$

when

$$
|\mu-1| \geq\left|1-\frac{(q+1)^{-1}(1+\lambda q)^{2}[2]_{q}^{2 n}}{\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}}-\frac{q(q+1)^{-1}(1+\lambda q)^{2}\left(4 t^{2}-1\right)[2]_{q}^{2 n}}{\left[1+\lambda\left(q+q^{2}\right)\right)[3]_{q}^{n} 4 t^{2} b}\right|
$$

Proof. From (35) and (36)

$$
\begin{align*}
a_{3}-\mu a_{2}^{2} & =(1-\mu)\left[\frac{b^{2} U_{1}^{3}\left(c_{2}+d_{2}\right)}{2\left\{\left(q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}-q(1+\lambda q)^{2}[2]_{q}^{2 n}\right) b U_{1}^{2}-q^{2}(1+\lambda q)^{2}[2]_{q}^{2 n} U_{2}\right\}}+\frac{b U_{1}\left(c_{2}-d_{2}\right)}{2(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}}\right] \\
& =b U_{1}\left[\left(h(\mu)+\frac{1}{2(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}}\right) c_{2}+\left(h(\mu)-\frac{1}{2(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}}\right) d_{2}\right], \tag{39}
\end{align*}
$$

where

$$
h(\mu)=\frac{b U_{1}^{2}(1-\mu)}{2\left\{\left(q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n} b-q(1+\lambda q)^{2}[2]_{q}^{2 n}\right) b U_{1}^{2}-q^{2}(1+\lambda q)^{2}[2]_{q}^{2 n} U_{2}\right\}} .
$$

Then, by taking the modelus of (39) and considering (8), we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{2|b| t}{q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}}, & 0 \leq|h(\mu)| \leq \frac{1}{2(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}} \\ 4 t|b||h(\mu)|, & |h(\mu)| \geq \frac{1}{2(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}}\end{cases}
$$

This completes the proof of Theorem 2.
Taking $\lambda=0$ in Theorem 2, we have the following corollary:
Corollary 3. Let $f \in T_{\Delta}^{n}(b, q, t)$. Then

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 t|b|}{q[3]_{q}^{[2}[2]_{q}}, \\
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{8 t^{3}\left|b^{2}\right||\mu-1|}{\left\{q(q+1)[3]_{q}^{n} b-q[2]_{q}^{2 n}\right\} 4 b t^{2}-q^{2}[2]_{q}^{2 n}\left(4 t^{2}-1\right)}
\end{gathered}
$$

Taking $\lambda=1$ in Theorem 2, we have the following corollary:
Corollary 4. Let $f \in \mathbb{T}_{\Delta}^{n}(b, q, t)$. Then

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 t|b|}{q(q+1)\left[1+q+q^{2}\right][3]_{q}^{n}}, \\
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{8 t^{3}\left|b^{2}\right||\mu-1|}{\left\{q(q+1)\left[1+q+q^{2}\right][3]_{q}^{n} b-q(1+q)^{2}[2]_{q}^{2 n}\right\} 4 b t^{2}-q^{2}(1+q)^{2}\left(4 t^{2}-1\right)[2]_{q}^{2 n}} .
\end{gathered}
$$

Taking $\mu=1$ in Theorem 2, we have the following corollary:
Corollary 5. Let $f \in T_{\Delta}^{n}(b, \lambda, q, t)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2 t|b|}{q(q+1)\left[1+\lambda\left(q+q^{2}\right)\right][3]_{q}^{n}} .
$$

Remark:

For different values of q, b, λ, t in Theorems 1 and 2 , we obtain results corresponding to the classes mentioned in the introduction.

References

[1] S. Altinkaya and S. Yalcin, Chebyshev polynomial coefficient bounds for a subclass of biunivalent functions, arXiv:1605.08224v1 [math. CV], 1-8, 2016.
[2] M. H. Annby and Z. S. Mansour, q-Fractional Calculas Equations, Lecture Noes in Math., 2056, Springer-Verlag Berlin Heidelberg, 2012.
[3] M. K. Aouf, Neighborhoods of certain classes of analytic functions with negative coefficients, Internet. J. Math. Sci., 2006 , Article ID38258, 1-6, 2006.
[4] M. K. Aouf, Subordination properties for a certain class of analytic functions defined by Sălăgeăn operator, Appl. Math. Letters, 22 , 1581-1585, 2009.
[5] M. K. Aouf, A subclass of uniformly convex functions with negative coefficients, Math. Tome 52 (75) (2), 99-111, 2010.
[6] M. K. Aouf, F. M. AL-Oboudi and M. M. Haidan, On a certain class of analytic functions with complex order and defined by Sălăgeăn operator, Math. Tome 47 (70) (1), 3-18, 2005.
[7] M. K. Aouf, H. E. Darwish, and A. A. Attiya, On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math., 32 (10), 1443-1452, 2001.
[8] M. K. Aouf, H. E. Darwish and G. S. Sălăgeăn, On a generalaization of starlike functions with negative coefficients, Math. Tome 43, 66 (1), 3-10, 2001.
[9] M. K. Aouf, H. M. Hossen and Y. Lashin, On certain families of analytic functions with negative coefficients, Indian J. Pure Appl. Math., 31(8), 999-1015, 2000.
[10] M. K. Aouf, A. O. Mostafa and F. Y. AL-Quhali, Initial bounds for a class of bi-univalent functions of complex order associated with Chebyshev polynomials, J. Frac. Cal. Appl., 11 (2), 173-180, 2019.
[11] M. K. Aouf and G. S. Sălăgeăn, Generalization of certain subclass of convex functions and a corresponding subclass of starlike functions with negative coefficients, Math. Tome 50 (73) (2) , 119-138, 2008.
[12] M. K. Aouf and T. M. Seoudy, Convolution properties for classes of bounded analytic functions with complex order defined by q-derivative operator, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 113 (2) , 1279-1288, 2019.
[13] M. K. Aouf and H. Silverman, Class of uniformaly convex functions with two fixed points, PonAmer. Math. J., 19 (2) , 1-15, 2009.
[14] M. K. Aouf and H. M. Srivastava, Some families of starlike functions with negative coefficients, J. Math. Anal. Appl., 203, 762-790, 1996.
[15] A. Aral, V. Gupta, and R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, USA, 2013.
[16] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Science Book Publ. Cluj-Napoca, 2005.
[17] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., 43 (2), 59-65, 2013.
[18] E. H. Doha, The first and second kind Chebyshev coefficients of the moments of the general order derivative of an infinitely differentiable function, Int. J. Comput. Math., 51, 21-35, 1994.
[19] P. L. Duren, Univalent Functions, Grundlhren der Mathematischen Wissenschaften 259,Springer, New York, 1983.
[20] J. Dziok, R. K. Raina and J. Sokol, Application of Chebyshev polynomials to classes of analytic functions, C. R. Math. Sci. Paris 353, 5, 433-438, 2015.
[21] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (9) , 1569-1573, 2011.
[22] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambrididge, U. K., 1990.
[23] M. Govindaraj and S. Sivassubramanian, On a class of analytic function related to conic domains involving q-calculus, Anal. Math., 43 (3) , 475-487, 2017.
[24] H. M. Hossen, G. S. Sălăgeăn and M. K. Aouf, Notes on certain classes of analytic functions with negative coefficients, Math. Tome 39 (62) (2), 165-179, 1997.
[25] F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46 , 253-281, 1908.
[26] J. C. Mason, Chebyshev polynomial approximations for the L-membrane eigenvalue problem, SIAM J. Appl. Math., 15 , 172-186, 1967.
[27] G. Murugusundaramoorthy, C. Selvaraj and O. S Babu, Coefficient estimates for Pascu-type subclasses of bi-univalent functions based on subordination, Int. J. of Nonlinear Science, 19 (1) , 47-52, 2015.
[28] M. S. Robertson, On the theory of univalent functions, Ann. Math., 37, 374-408, 1936.
[29] G. Sălăgeăn, Subclasses of univalent functions, Lecture note in Math., Springer-Verlag, 1013 , 362-372, 1983.
[30] T. M. Seoudy and M. K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal. 2014 , Article ID 846719, 1-7, 2014.
[31] T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Ineq., 10 (1), 135-145, 2016.
[32] H. M. Srivastava and A. O. Mostafa, M. K. Aouf and H. M. Zayed, Basic and fractional qcalculus and associated Fekete-Szegö problem for p-valently q-starlike functions and p-valently q-convex functions of complex order, Miskolc Math. Notes, 20 (1), 489-509, 2019.
[33] K.Vijaya, M. Kasthuri and G.Murugusundaramoorthy, Coefficient bounds for subclasses of bi-univalent functions defined by the Sălăgean derivative operator, Boletin de la Asociacion Matematca Venezolana, 21(2) , 1-9, 2014.
[34] T.Whittaker and G. N. Watson, A Course of Modern Analysis, reprint of the fourth (1927) edition, Cambridge Mathematical Library, Cambridge Univ, Press, Cambridge, 1996.
[35] H. M. Zayed and M. K. Aouf, Subclasses of analytic functions of complex order associated with q-Mittag Leffler function, J. Egyption Math. Soc., 26 (2), 278-286, 2018.
M. K. Aouf, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

E-mail address: mkaouf127@yahoo.com
A. O. Mostafa, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.

E-mail address: adelaeg254@yahoo.com
R. E. EL. Morsy, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura35516, Egypt.

E-mail address: Raghda163@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. Chebyshev polynomials, $q-$ Sălăgeăn operator, Fekete-Szegö problem, analytic functions, bi-univalent functions, coefficient bounds, subordination .

 Submitted Jan. 5, 2020.

