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A NOTE ON FACTORIZATION FOR CENTRO-SYMMETRIC

REAL MATRICES THAT PRESERVES CENTRO-SYMMETRY

VINEET BHATT, K.C. PETWAL AND S. KUMAR

Abstract. In this paper, we show thatQR factorization of a centro-symmetric
matrix is not possible by the normal QR-factorization. We further investigate
QR-factorization of a centro-symmetric matrix in which Q and R are centro-

symmetric but R is not upper-triangular unlike the previous studies.

1. Introduction

This paper deals with special type of QR factorization of a matrix. To conduct
this factorization some special types of products i.e., Rn Inner product, Reverse
of a vector, Reverse Identity matrix, Centro-symmetric matrix etc. have been
used during the analysis. If the simple QR factorization is done for a matrix
A = (ai×j)(m×n) (See example 1), then it will get converted into an orthogonal
matrix Q and a upper triangular matrix R [1], but if we conduct QR factorization
of a centro-symmetric matrix, to obtain centro-symmetric Q and R matrix, then we
cannot find it by the above stated method i.e., QR factorization which is generally
used nowadays. In this paper, we wish to analyse the QR factorization of a centro-
symmetric matrix such that Q and R which are obtained as the result should also
be centro-symmetric. The above stated objective can also be obtained by use of
simple method but in that case, the following problems arise: If we conduct QR
factorization of matrix A then can Q matrix be perplectic (See subsection-2.4.) and
orthogonal i.e. Qt ×Rn ×Q = Rn and Q×Qt = Qt ×Q = In.
Example1. Let

A =

 1 2 3
4 5 4
3 2 1

 .

Then QR factorization of A is

Q =

 −0.1961 −0.5472 −0.8137
−0.7845 −0.4104 0.4650
−0.5883 0.7295 −0.3487


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and

R =

 −5.0990 −5.4913 −4.3146
0 −1.6871 −2.5534
0 0 −0.9300


Above example show that QR factorization of centro-symmetric matrix A, Q is
orthogonal matrix and R is upper triangular matrix. We observe in sub-section
2.8. of this paper, if Q is perplectic and orthogonal, then it leads centro-symmetric
nature of Q. It is clear in subsection 2.5 that if a matrix A is centro-symmetric
then its factorization Q and R must also be centro-symmetric but in the above
stated example this does not happen, hence it gives rise to the problem. The
second problem is that if we obtain or form Q as perplectic orthogonal by any
means, but then too R will always remain upper triangular matrix, but if we try
to make matrix R centro-symmetirc then it means that R will be diagonal because
an upper triangular centro-symmetric matrix is always diagonal. Therefore it can
conclude that in the QR factorization of a centro-symmetric matrix, Q will always
be orthogonal and R will be diagonal but, this is not a situation in each case.
Author [2] has negated the above statement in his paper through the following
example:
Example 2. Let

A =

[
1 1
1 1

]
is a centro-symmetric matrix then QR factorization of A is

Q =

[
−0.7071 −0.7071
−0.7071 0.7071

]
and

R =

[
−1.4142 −1.4142

0 0

]
.

In this example R is neither centro-symmetric nor diagonal. So this is the main
problem.
This paper is basically divided in five parts. First part is introductory and the
second part is a base for finding the results of third part. In section 2, every theorem,
propositions and properties are discussed with numerical example, therefore it is
an important base for the result of this paper and we are surveying reverse identity
matrix, Rn inner product, reverse vector, centro-symmetric metric, Moore Penros
inverse etc. with numerical example. Section 3 is related to the steps of factorization
of a centro-symmetric matrix along with 2 numerical examples and section 4 is the
application of such type QR factorization. The last section of this paper is the
conclusion. Algorithm, references, notation and their meanings in this context are
attached at the last.

2. Notation and Preliminaries

In this review, we tried to remain as consistent as possible with terminology
that would be familiar to applied mathematicians. Vectors are denoted by boldface
lowercase letters, e.g., a. Matrices are denoted by capital letters, e.g., A. Scalars are
denoted by lowercase letters, e.g.,a, b, α, β, a1, a2.... The product are denoted by ×,
e.g., A×B. The (i, j)th entry of a matrix A is denoted by (ai×j and order of a matrix
is denoted by subscript of (aij), e.g., (aij)(m×n). In denoted identity matrix of order
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Table 1. Determinant behavior of reverse identity matrix for dif-
ferent order

Order of Rn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Determinant of Rn 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1

(n× n) and reverse identity matrix of order (n× n) is denoted by Rn. Real vector
space is denoted by Rn. The transpose of scalar, vector and matrix is denoted by
superscript t, e.g., At is transpose of matrix A. Moore-Penrose generalized inverse
of matrix A is denoted by A+. Perplectic scalar product is denoted by [a, b]Rn .
Scalars product of two vector is denoted by < a × b >. Conjugate transpose
of A is denoted by (A)ct. In this section, we will give a brief introduction of
the basic concept of centro-symmetric matrix to find its QR factorization, which
preserves centro-symmetric properties. Every property of centro-symmetric matrix
is explained with numerical example:

2.1. Reverse Identity matrix: The reverse identity matrix Rn of an identity
matrix In is a reverse form of In, denoted by

Rn =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
.. .. .. .. ..
1 0 0 0 0


n×n

or we can say that if we take reverse of each column of an identity matrix then we
can find Rn. For example,

R3 =

 0 0 1
0 1 0
1 0 0


is a reverse identity matrix of order (3× 3).
Proposition 2.1. Square of a reverse identity matrix is an identity matrix of same
order i.e., R2

n = In∀n ∈ N . For instance R2
3 = I3 i.e., R3 ×R3 = 0 0 1

0 1 0
1 0 0

×

 0 0 1
0 1 0
1 0 0

 =

 1 0 0
0 1 0
0 0 1

 .

Proposition 2.2. Transpose of a reverse identity matrix is same matrix i.e., Rt
n =

Rn∀n ∈ N .
Proposition 2.3. Determinant behavior (determinants of reverse identity matrix for
different order) of reverse identity matrix is very interesting. We observed it for
n = 1 to 19 and found that, if order is n=2,3,6,7,10,11.. then determinant is -1
and if order is n=1,4,5,8,9, then determinant is 1 (See table 1.), Rn is also know as
exchange matrix and standard involutory permutation.
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2.2. Reverse of a vector: In case of any vector a ∈ Rn, reverse of a is a reverse

arrangement of elements of vector a i.e., if


α1

α2

.

.

.
αn

 ∈ Rn then reverse of a is aR =


αn

αn−1

.

.

.
α1

.

Example 3: If a =

1
2
3

 ∈ R3 then aR =

3
2
1

 ∈ R3 or we can find reverse of a

vector aR = Rn×a i.e. reverse of above vector a is aR = R3×a =

 0 0 1
0 1 0
1 0 0

×1
2
3

 =

3
2
1

 .

2.3. Rn Inner Product (Perplectic Inner product: Generally inner product
of any two vector a and b is denoted by a, b [3], but perplectic inner product is dif-
ferent type of inner product in which reverse identity matrix perform an enormous
role.
Theorem 2.1. The perplectic inner product of two vector a and b are[a, b]Rn =

< a, Rn × b >. For instance, let two vector a =

1
2
3

 and b =

4
5
2

 ∈ R3 then their

perplectic inner product [a, b]R3 =< a, R3×b >= <

1
2
3

 ,

 0 0 1
0 1 0
1 0 0

×

4
5
2

 > =

24. Similarly general norm [3] of two vector is always ≥ 0, but in case of perplectic
norm not always ≥ 0, so it is not norm of a vector, we can define perplectic norm
of any vector a as N [a] = [a,a]Rn =< a, Rn × a > . For this statement, let we

take an example, if vector

(
−4
2

)
∈ R2 then N(a) = −16 i.e., value ofN(a) for this

vector is not positive, so perplectic norm is not a norm but this type norm is very
useful in reaching the goal of this paper.
Proposition 2.4. For all vectors a ∈ Rn, N(a)2 ≤ ∥ a ∥42.

Example 4: Let a =

(
−4
2

)
, for this vector N(a) = −16 and value of ∥ a ∥42 =

(
√
< a,a >)4 = 400, so a ∈ Rn, N(a)2 ≤ ∥ a ∥42 i.e., (−16)2<400.

2.4. Rn-Orthogonal matrix (Perplectic matrix): Theorem 2.2. A square ma-
trix A is Rn orthogonal and perplectic if At×A = A×At = In and At×Rn×A = Rn.
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The set of all square matrices, which preserve the perplectic product is denoted
byP (n) i.e., P (n) = {A ∈ Rn×n : [A× a, A× b] = [a, b]∀a, b ∈ Rn}. The set P (n)
is a group with respect to matrix multiplication and is called real perplectic group
[4], [5].

2.5. Centro-symmetric matrix: In matrix theory centro-symmetric matrices are
symmetric about its center [6]. In case of square matrix A = (aij)(n×n) is centro-

symmetric when its (i, j)
th

elements satisfy the conditions aij = a(n−i+1,n−j+1)

for i ≥ 1, n ≥ j or matrix A is centro-symmetric if and only if A × Rn = Rn × A.

For instance, all matrix of order (2× 2) and (3× 3) are denoted by

[
a b
b a

]
and a d c

f b f
c d a

 .

We can simply arrange second and third ordered centro-symmetric matrix but
in case of higher order arrangement of elements, the case is different. For arrange-
ment of centro-symmetric matrix of order (4 × 4)), we are using above centro-
symmetric condition for arranging the elements of matrix i.e., aij = a(n−i+1,n−j+1)

for i ≥ 1, n ≥ j.

For instance, let A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 , then a11 = a(4−1+1,4−1+1) = a4,4 =

α, a12 = a(4−1+1,4−2+1) = a4,3 = β, a13 = a(4−1+1,4−3+1) = a4,2 = γ, a14 =
a(4−1+1,4−4+1) = a41 = δ, a21 = a(4−2+1,4−1+1) = a34 = ϵ, a22 = a(4−2+1,4−2+1) =
a33 = ζ, a23 = a(4−2+1,4−3+1) = a32 = s, a24 = a((4−2+1,4−4+1)) = a31 = t and we

find centro-symmetric matrix A =


α β γ δ
ζ η θ κ
κ θ η ζ
ζ γ β α

 .

Theorem 2.3. If A and B are centro-symmetric matrices over a given field F , then
A+B and c×A(c ∈ F ) are centro-symmetric.
Theorem 2.4. For every square centro-symmetric matrix, multiplication of two
centro-symmetric matrices is also centro-symmetric.
In case of non-square matrix, multiplication of two centro-symmetric matrices is
also a centro-symmetric. Let A be an (m× n) and B be (n× p) centro-symmetric
matrix. Then matrix A×B is also centro-symmetric.
Theorem 2.5. A(−1), A+ (If exist for a matrix) andAt are also centro-symmetric for
a centro-symmetric matrix A [9].

Example 5: Let A =

 1 2 3
4 5 4
3 2 1

 then A−1 =

 0.375 −0.50 0.875
−1.00 1.00 −1.00
0.875 −0.50 0.375

, At = 1 4 3
2 5 2
3 4 1

 and A+ =

 0.375 −0.50 0.875
−1.00 1.00 −1.00
0.875 −0.50 0.375

. This example shows that in-

verse, transpose and Moore-Penrose inverse of a centro-symmetric matrix is centro-
symmetric[9].
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2.5.1. Centro-symmetric matrix of order (m × n) if m ̸= n: : In case of non-
square matrix ?? = (aij)m×n is centro-symmetric iff A = Rm × A × Rn. For

instance, let matrix A = (aij)3×4 =

 α1 α2 α3 α4

β1 β2 β3 β4

γ1 γ2 γ3 γ4

 , where m = 3 and

n = 4, then this matrix should be equal to R3 × A × R4 i.e., R3 × A × R4 = 0 0 1
0 1 0
1 0 0

×
 α1 α2 α3 α4

β1 β2 β3 β4

γ1 γ2 γ3 γ4

×


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 =

 γ4 γ3 γ2 γ1
β4 β3 β2 β1

α4 α3 α2 α1

 .

After comparing corresponding elements of matrix A with resultant matrix R3×A×
R4, we find α1 = γ4, α2 = γ3, α3 = γ2, α4 = γ1, β1 = β4, β2 = β3, β3 = β2andβ4 =
β1 , so we can arrange a rectangular centro-symmetric matrix by the help of above

example. According the above process A =

 1 2 3 4
5 9 9 5
4 3 2 1

 is an example of

centro-symmetric matrix of order (3 × 4). If we want to find a centro-symmetric
matrix by rearranging column vector of a matrix then we can use the vector reverse
property: If A = (aij)(m×n) is a matrix thenA is centro-symmetric if and only if

ai = aR(n−i+1) for i = 1, 2, 3, ., n. So we can simply arrange a centro-symmetric

matrix as ai (i
th column of a matrix) = aR

n−i+1 (reverse of (n− i+ 1)th column).

In above centro-symmetric matrix A, a1 (first column)=aR
(4−1+1) = aR

4 =reverse of

4th column, similarly a2 (second column)=aR
3 (reverse of third column).

2.6. Two-Column sub matrix: To find the result in section-3, we need two-
column sub-matrix of a centro-symmetric matrix A = (a(i,j))(m×n), which is de-

fined as


ak,k ak,n−k+1

. .

. .

. .
am−k+1,k am−k+1,n−k+1

 , for eachk = 1, 2, ....,min?(m,n)/2. Let us

take an example, A = (ai,j)(4×5) =


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45

 . The value of k

for A of order (4 × 5) is k = 1, 2, ,min?(4, 5)/2 = 1, 2.. Consequently we find two

two-column sub-matrix, which are A1 =


a11 a15
a21 a25
a31 a35
a41 a45

 , and A2 =

[
a22 a24
a32 a34

]
.

The value of k is different in case of even and odd value of min?(m,n). If k is odd,
then k = 1, 2, ...., (min?(m,n) + 1)/2 and if it is even, k = 1, 2, ....,min?(m,n)/2.

For each k = 1, 2, ., d, where d =

{
min(m,n)+1

2 for min(m,n) is odd
min(m,n)

2 for min(m,n) is even
it is
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easy to verify the condition A = Rm × A × Rn i.e., Rm−2k+2 × Ak × R2 =
am−k+1,n−k+1 am−k+1,k

. .

. .

. .
ak,n−k+1. ak,k

 =


ak,k ak,n−k+1

. .

. .

. .
am−k+1,k am−k+1,n−k+1

 .

2.6.1. Double-Cone Matrix [2]: Proposition 2.5. Matrix A = (aij)m×n is a double

cone matrix when the two-column sub-matrix A =


ak+1,k ak+1,n−k+1

. .

. .

. .
am−k,k am−k,n−k+1

 has

only zero entries for each k = 1, 2, ...., min(m,n)
2 .

2.7. Moore-Penrose generalized inverse of matrix A [7]: Some conditions
and proposition related to Moore-Penrose generalized inverse are discussed here:
Proposition 2.6. If A ∈ (ai,j)(m×n), then there exists a uniqueA+ ∈ (ai,j)(n×m)

that satisfies four Penrose conditions:A × A+ × A = A, A+ × A × A+ = A+,

A+ × A = (A+ ×A)
ct

and A × A+ = (A×A+)ct. For a non-singular real matrix
A, it is clear that A+ = A−1, which trivially satisfies the above four conditions.
Pseudo-inverse of a nonsingular matrix is same as the ordinary inverse or we can

say that if, A ∈ (ai,j)(n,n), then (At)
+
= (A+)

t
.

Theorem 2.6. Let A, B and C are n × n matrices for which C = A × B, if either
of the following two conditions satisfy: first condition is A has orthogonal columns
i.e., At×A = In and the second condition, B has orthogonal rows i.e.,B×Bt = In;
then C+ = B+ ×A+.
Proposition 2.7. A collection of m vectors a1,a2, .....,am is orthonormal, if i)The
vector have unit norm i.e., ∥ai∥ = 1. ii)They are mutually orthogonal i.e.,at

iaj = 0
if i ̸= j. We can understand above theorem 2.6. and proposition 2.7. by an
example. The example given below has orthonormal rows and columns. Let matrix

A =

 0 0 −1
0.7071 0.7071 0
0.7071 −0.7071 0

 then At =

 0 0.7071 0.7071
0 0.7071 −0.7071
−1 0 0

 . because

matrix A has orthogonal columns, so At ×A = I3.

Similarly, let matrix B =

 0.7071 0.7071 0
0 0 −1

0.7071 −0.7071 0

 and its transpose Bt = 0.7071 0 0.7071
0.7071 0 −0.7071

0 −1 0

 , as matrix B has orthogonal rows, so B × Bt = I3.

Thus matrix C = A × B =

 −0.7071 0.7071 0
0.5 0.5 −0.7071
0.5 0.5 0.7071

 . Moore Penrose

Psedo-Inverse of matrix C,A andB areC+, A+ and B+ respectively i.e., C+ = −0.7071 0.5 0.5
0.7071 0.5 0.5
0.0 −0.7071 0.7071

 , A+ =

 0 0.7071 0.7071
0 0.7071 −0.7071
−1 −0.0 0.0

 and B+ =
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0.7071 0 −0.7071

0 −1 0

 . Now we can verify that C+ = B+ ×A+.

Proposition 2.8. For a centro-symmetric matrix B = (bij)(m×n), the matrix Bt ×

Rm×B is always centro-symmetric. For instance matrixB = (bij)3×4 =

 1 2 3 4
5 9 9 5
4 3 2 1

 ,

then Bt ×Rm ×B =


33 56 59 42
56 93 94 59
59 94 93 56
42 59 56 33

 is a centro-symmetric matrix.

2.8. Perplectic Orthogonal group: :The set of Perplectic orthogonal matrices
of order n is PO(n) = P (n) ∩ O(n) for every n ∈ N and PO(n) is a group with
respect to matrix multiplication, such types groups are known as perplectic orthog-
onal group [5]. Matrices belongs to the groups PO(n)are centro-symmetric. More
precisely, we have the following proposition.

Proposition 2.9. For a square real matrix A = (a)(n×n), if A satisfies At ×Rn ×
A = Rn, A

t×A = A×At = In and Rn×A = A×Rn, then any two of these proper-
ties implies third i.e., At×Rn×A = Rn, A

t×A = A×At = In ⇒ Rn×A = A×Rn,
At ×Rn ×A = Rn, Rn ×A = A×Rn ⇒ At ×A = A×At = In
At ×A = A×At = In, Rn ×A = A×Rn ⇒ At ×Rn ×A = Rn.

We have three cases to prove from the proposition 2.9. In first case, if we take
matrix A = (a)(n×n) is orthogonal and centro-symmetric i.e., At×A = A×At = In
and Rn×A = A×Rn then At×Rn×A = At×A×Rn = In×Rn = Rn i.e., matrix
A is perplectic. Case second, if we take matrixA = (a)(n × n) is orthogonal and

perplectic i.e., At × A = A× At = In and At ×Rn × A = Rn then matrix A must
be centro-symmetric i.e., Rn ×A = In × (Rn ×A) = A× (At ×Rn ×A) = A×Rn

i.e., matrix A is centro-symmetric. Finally in third case, if matrixA = (a)(n×n) is

perplectic and centro-symmetric i.e., At×Rn×A = Rn and Rn×A = A×Rn then
At×A = At× In×A = At×R2

n×A = At×Rn×Rn×A = (At×Rn×A)×Rn =
Rn × Rn = R2

n = In. SimilarlyA × At = A × R2
n × At = A × Rn × Rn × At =

(A×Rn ×At)×Rn = Rn×Rn = R2
n = In i.e., matrix A is orthogonal. Hence, we

can conclude that if any square matrix is orthogonal and perplectic, then matrix
is surely centro-symmetric and if orthogonal and centro-symmetric, then perplectic
similarly if centro-symmetric and perplectic, then orthogonal.

2.9. Block perplectic reflectors: In subsection (2.3.), we have defined perplectic
inner product of any two vectors as [a, b]Rn =< a, Rn × b >, similarly we can find
perplectic inner product of any two vectors a and b associated with a square matrix
A = (aij)n×n through [a, b]A =< a, A× b > .
Proposition 2.10. The product [ab]A is known as real ortho-symmetric if At = ϵ×A,
where ϵ ∈ R, |ϵ| = 1.
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Example 6: Let vector a =

1
2
3

 and b =

4
5
2

 ∈ R3, then their perplectic

inner product associated with A =

 0 2 7
−2 0 −8
−7 8 0

 is [a, b]A =< a, A× b >= 12.

This type of product is also known as real ortho-symmetric because At = −A =
| − 1|A = ϵ × A. Inner product associated with any square matrix is used for
finding out a matrix H(V ), which is necessary for finding QR factorization of
a centro-symmetric matrix preserving centro-symmetric properties. Theorem 4.3
from [8] gives sufficient condition for existence of a matrix H(V ) linked with the
scalar inner product [a, b]D (where D = diag(±1,±1, .....,±1)) of the form H(V ) =
In − 2V × (V t × D × V )+ × V t × D having the property H(V ) × N = M where
M = (mij)n×m, N = (nij)n×m are two real matrices and V = M−N . It was found
by [8] that the same form can be used for any ortho-symmetric scalar product.
Moreover it was proved by [8] that when such H(V ) exists, it is D-orthogonal and
an involution i.e. H(V )2 = In. Author [8] used Rn at the place of D and also
proved two necessary condition for existence of such a mapping. We can define
H(V ) by equation

H(V ) = In − 2V × (V t ×Rn × V )+ × V t ×A (1)

Proposition 2.11. The necessary condition for matrix M = (mij)(n×m) and N =

(nij)(n×m) used in V are:

M t ×Rn ×M = N t ×Rn ×N (2)

M t ×Rn ×N = N t ×Rn ×M (3)

Theorem 2.7. If matrices M = (mij)(n×m), N = (nij)(n×m), satisfying equation
(2) and (3) then H(V ) × N = M if and only if Rank(V t × Rn × V ) = Rank(V ).
Theorem 2.8. If N and M are centro-symmetric matrix satisfying equation (2) and
(3) then H(V )×N = M .
Proposition 2.12. If N and M are centro-symmetric matrix then V is also centro-
symmetric since Rn × V = V ×Rm.
Proposition 2.13. If V = M −N = (vij)(n×m) be a centro-symmetric matrix then
H(V ) is also centro-symmetric. The proof of this property were given in [2].
Proposition 2.14. If V = M −N = (vij)(n×m) is centro-symmmetric matrix, then

H(V ) is perplectic orthogonal.
If H(V ) is perplectic orthogonal i.e., H(V )2 = In, ifH(V )2 = In i.e.,H(V ) is real
symmetric and if H(V ) real symmetric i.e., H(V )t = H(V ). So we have to prove
that H(V )t = H(V ): H(V )t = {In−2V × [V t×Rn×V ]+×V t×Rn}t = Itn−{2V ×
[V t×Rn×V ]+×V t×Rn}t = Itn−2{V×[V t×Rn×V ]+×V t×Rn}t = In−2{Rt

n×V tt×
[V t ×Rn × V ]

+t

×V t} = In−2{V × [V t×Rn×V ]+×V t×Rn = H(V ). So H(V ) is
symmetric and we can prove that H(V )t ×H(V ) = H(V )×H(V )t = H(V )2 = In,
so H(V ) is orthogonal as well as perplectic.

2.9.1. Embeddings: Theorem 2.9. If m,n ∈ N,n ≥ m such that n−m is even then

embedding of matrix A = (aij)(m×m) into In is a matrix En =

 Ik
A

Ik

 ,
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where k = (n−m)/2. Embedding of a matrix is perplectic orthogonal matrix i.e.
Et

n(A)×Rn×En(A) = Rn and Et
n(A)×En(A) = En(A)×Et

n(A) = In has proved
in [2].

3. Centro-symmetric QR factorization maintaining centro-symmetric
property:

In this section, we are going to find QR-factorization of a centro-symmetric ma-
trix where Q and R are also centro-symmetric. Section-2 is a strong and complete
base for finding the results. Now we are going to explain few steps of algorithm
with numerical examples to find QR factorization.

3.1. Let Matrix A =


α1 α2 ... ... αn

α2 ... ... ... ...
... ... ... ... ...
... ... ... ... ...
αn ... ... ... α1

=is a centro-symmetric matrix,

where α1, α2, ...., αn ∈ R and the two-column sub-matrix (See subsection 2.6.) of

matrix A are N =


α1 αn

α2 αn−1

... ...
αn α1


n×2

and M =


δ1 δ2
0 0
... ...
... ...
δ2 δ1


n×2

, here δ1 and δ2

are parameters left to be determined. We can also use M =


δ1 δ2
0 0
... ...
... ...
δ2 δ1


n×2

=

(δ1 × i1 + δ2 × inδ2 × i1 + δ1 × in) where i1, in are column vectors of In i.e.,

In =


1 0 0 0 0
1 0 0 0 0
0 0 1 0 0
.. .. .. .. ..
0 0 0 0 1


n×n

=
(
i1 i2 ...... in

)
. To find matrix V (See subsection 2.9.), we are using V =

M − N =


δ1 δ2
0 0
... ...
... ...
δ2 δ1


n×2

−


α1 αn

α2 αn−1

... ...
αn α1


n×2

=


δ1 − α1 δ2 − αn

α2 αn−1

... ...
δ2 − αn δ1 − α1


n×2

=

(
a1 aR

)
. Now we are going to find values of parameters δ1 and δ2, where we

need N t × Rn × N = M t × Rn × M and N t × Rn × M = M t × Rn × N. Here

N t =

[
α1 αn ... αn

αn αn−1 ... α1

]
andM t =

[
δ1 0 ... δ2
δ2 0 ... δ1

]
. Then N t ×Rn ×N =

M t ×Rn ×M
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⇒
[

α1 × αn + .....+ αn × α1 α2
n + α2

n−1 + ....+ α2
1

α2
1 + α2

2 + ....+ α2
n α1 × αn + .....+ αn × α1

]
=

[
2δ1 × δ2 δ21 + δ22
δ21 + δ22 2δ1 × δ2

]
After comparing elements of both sides, then we have:

α2
1 + α2

2 + ....+ α2
n = δ21 + δ22 ⇒ ∥α∥22 = δ21 + δ22 (4)

α1 × αn + α2 × αn−1 + ....+ α1 × αn = 2δ1 × δ2. (5)

Since

N(α) = [αα]R2 = α1αn + α2αn−1 + ....+ α1αn (6)

therefore

2δ1δ2 = N(α) (7)

Solving equation (4) and (7) for finding the values of parameters. From (7) putting

the values of δ2 = N(α)/2δ1 in (4), we have ∥α∥22 = δ21 + (N(α)/2δ1)
2 ⇒ δ21 =

N(α)
2
/4δ21 = ∥α∥22 ⇒ 4δ41 + (N(α))2 = 4δ21∥α∥22 ⇒ 4δ41 + (N(α))2 − 4δ21∥α∥22 = 0.

Solving by Shridharacharya formula δ21 =
∥α∥2

2±
√

∥α∥4
2−(N(α))2

2 ⇒ δ1 =

√
∥α∥2

2±
√

∥α∥4
2−(N(α))2

2 .
Now to find the value of δ2, we will put the value of δ1 in (7). In proposition 2.4.,

the property of N(α) has been discussed as N(α)
2 ≤ ∥α∥42 for all α ∈ Rn, so

the parameters are always real numbers. The parameters δ1 and δ2 are useful for
finding perplectic block reflector H(V ) which has been discussed in section 2.9.
Here H(V ) is not unique because the solution of equation (4) and (7) is not unique.
Thus we can find different solutions for δ1 and δ2.

3.2. QR-factorization of Centro-symmetric matrix: In the introductory part,
we have already discussed QR factorization of a matrix. For preserving centro-
symmetric property, QR factorization of a matrix is different.
Theorem 3.1. Let A = (aij)(m×n) be a Centro-symmetric matrix, then there exist
two matrices Q and R with the following properties:
(a) Q is a perplectic orthogonal matrix.
(b) R is double cone centro-symmetric matrix.
(c) A = Q×R.
Author [2], also used above theorem for finding QR factorization of a centro-
symmetric matrix with an algorithm. The example 3.3 of the paper [2] shows
the QR factorization of a matrix A but in this factorization matrix R is solved
to be completely centro-symmetric. Now when we solved the same in example 8,
we found that R is approximately centro-symmetric and not completely centro-
symmetric. For proper understanding of the reader we have solved two numer-
ical examples step by step using algorithm, where we have explained the exam-
ples using approximate values instead using estimated values for matrix R. The
above theorem 3.1 represents that we need Q and R matrix for matrix A, which
satisfies the above properties. According to section 2.6., to find the two column
sub-matrix of any matrix A, firstly, we should determine the value of d i.e., (two
column sub-matrix of matrix A is Ak for k = 1, 2, 3.....d,where d = [min?(m,n)/2]
or [(min?(m,n) + 1)/2] (See subsection 2.6)). We also need a matrix Qk, which
wipes out the entries of kth and (n − k + 1)th column of working matrix A(k−1)

but the column (k − 1)th and (n − k + 2)th remains constant. Here we will
take working matrix A(k−1) because A0 = A i.e., when k = 1, the working
matrix is A(1−1) = A0 = A. In terms of working matrix Ak, we define two



EJMAA-2020/8(2) A NOTE ON FACTORIZATION 283

column sub-matrices of A such that Nk =


αk−1
k,k αk−1

m−k+1,n−k+1

. .

. .

αk−1
m−k+1,k αk−1

m−k+1,n−k+1

 and

Mk =


δk1 δk2
0 0
. .
. .
δk2 δk1

 therefore Vk = Mk − Nk.Where δk1 and δk2 are free parame-

ters, we calculate them by previous method based on Nk. Vk is a matrix of order
(m− 2k + 2)× 2. Next step is to calculate a perplectic block reflector Hk(Vk),
Hk(Vk) = Im−2k+2 − 2Vk × [V t

k ×Rm−2k+2 × Vk]
+ × V t

k ×Rm−2k+2.

To ensure that each Qk does not change the columns reduced in the previous
step, we use the embedding of Hk(Vk), so we set Qk = Em(Hk(Vk)). Qk is proper
embedding sinceHk(Vk) is a perplectic orthogonal square matrix of orderm−2k+2.
According to the properties of embedding (See subsection 2.9.1.), Qk is perplectic
orthogonal. In relation to above statement, the author [2], have discussed a lemma
i.e., if k < t ≤ d then Qt × αk

k and Qt × αk
n−k+1 = αk

n−k+1. Our target is to
factorize centro-symmetric matrix in to QR centro-symmetric factors. So we need
to find the value of Ak for every k = 1, 2, ...., d. Where Ak define as A0 = A and
Ak = Qk × Ak−1), if k = 1 then A1 = Q1 × A0 = Q1 × A and if k = 2 then
A2 = Q2 × A1 = Q2 × A1 = Q2 × Q1 × A, similarly the value of k = d then
Ad = Qd × Ad−1 = (Qd × ....×Q2 ×Q1)× A. We set Q = (Qd × ....×Q2 ×Q1)

t

and for R = Ad, the property of R is a double cone matrix. We have matrix Q,
which is centro-symmetric because Hk(Vk) is centro-symmetric and A = Q × R
i.e.,Qt × A = R, therefore R must be centro-symmetric being a product of two
centro-symmetric matrices and one can also prove that Q×R = Q×Qt ×A = A.
Now we will understand all the above QR factorization theory of centro-symmetric
matrix A with the help of two numerical examples.
Example 7: Let

A =


1 4 10 −1
0.2 9 7 5
3 8 8 3
5 7 9 0.2
−1 10 4 1

 ,

for centro-symmetric matrix A, number of rows m = 5,column n = 4 and d =
min?(5, 4)/2 = 2 i.e., k = 1, 2. For k = 1, two-column sub-matrices of A are N1 =

1 −1
0.2 5
3 3
5 0.2
−1 1

 =
(
α αR

)
and M1 =


δ1 δ2
0 0
0 0
0 0
δ2 δ1

 therefore V1 =


δ1 − 1 δ2 + 1
−0.2 −5
−3 −3
−5 −0.2

δ2 + 1 δ1 − 1

 .

The parameters δ1 and δ2 are useful for finding perplectic block reflector H1(V1), so
we can find parameters d1 and d2 by method discussed in subsection 3.1. Therefore

the value of δ1 =

√
∥α∥2

2±
√

∥α∥4
2−(N(α))2

2 = 5.9862258 and 0.7517313. For vector
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α =


1
0.2
3
5
−1

 , Euclidean Vector Norm is ∥α∥2 =
√
36.4 therefore N(α) = [αα]R2 =

9. So δ2 = N(α)/2δ1 = 0.7572573 for δ1=5.9862258 and 5.98618149 for δ1 =
0.75173138, according to above calculation the value of δ1 = 5.9862258 and δ2 =

0.7517257367. Putting the value of δ1 and δ2 in V1, V1 =


4.9862258 1.75172573

−0.2 −5
−3 −3
−5 −0.2

1.7517257367 4.9862258



andH1(V1) = I5−2V1×[V t
1×R5×V1]

+×V t
1×R5 =


0.1857 −0.076 0.4470 0.8508 −0.1897
−0.076 0.0133 −0.3450 0.3887 0.8508
0.4470 −0.3450 0.6019 −0.3450 0.4470
0.8508 0.3887 −0.3450 0.0133 −0.076
−0.1897 0.8508 0.4470 −0.0760 0.1857

 .

For k = 2, two-column sub-matrices of A are N2 =

9 7
8 8
7 9

 =
(
α, α,R

)
and

M2 =

δ
′

1 δ
′

2

0 0

δ
′

2 δ
′

1

 therefore matrix V2 = M2 − N2 =

δ
′

1 − 9 δ
′

2 − 7
8 8

δ
′

2 − 7 δ
′

1 − 9

 . The pa-

rameters δ
′

1 and δ
′

2 are useful for finding out perplectic block reflector H2(V2), so

we can find out δ
′

1 and δ
′

2 by method discussed in subsection 3.1. Hence the value of

δ
′

1 =

√
∥α′∥2

2±
√

∥α′∥4
2−(N(α

′
))

2

2 = 10.79800395554643 and 8.797922317002101. For

vector α
′
=

9
8
7

 , Euclidean Vector Norm is ∥α′∥2 = 13.9284, thereforeN(α
′
) =

[α
′
α

′
]R2 = 190. So δ

′

2 = N(α
′
)/2δ

′

1 = 0.7572573 forδ1= 8.797922318893293 for

δ1 = 10.79800395554643.According to above calculation the value of δ
′

1 = 10.79800395554643

and δ
′

2 = 8.797922318893293. Putting the value of above parameters in V2, V2 = 1.79800395554643 1.797922318893293
8 8

1.797922318893293 1.79800395554643

 and H2(V2) = I3 − 2V2 × [V t
2 × R3 ×

V2]
+ × V t

2 × R3 =

−0.0918 0.4083 0.9083
0.4082 −0.8165 0.4082
0.9083 0.4083 −0.0918

 . Now we will finding out

Qk = Em(Hk(Vk)), for k = 1, 2 matrices Q1 and Q2 are:

Q1 = E5(H1(V1)) = H1(V1) =


0.1857 −0.076 0.4470 0.8508 −0.1897
−0.076 0.0133 −0.3450 0.3887 0.8508
0.4470 −0.3450 0.6019 −0.3450 0.4470
0.8508 0.3887 −0.3450 0.0133 −0.076
−0.1897 0.8508 0.4470 −0.0760 0.1857


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andQ2 = E5(H2(V2)) =


1 0 0 0 0
0 −0.0918 0.4083 0.9083 0
0 0.4082 −0.8165 0.4082 0
0 0.9083 0.4083 −0.0918 0
0 0 0 0 1

 . The matrices Ak

fork = 1, 2, , d are: A0 = A =


1 4 10 −1
0.2 9 7 5
3 8 8 3
5 7 9 0.2
−1 10 4 1

 , A1 = Q1×A =


5.9554 7.6936 11.800 0.7557
−0.0154 8.2853 3.4751 0.0361
0.0119 5.5540 5.5540 0.0119
0.0361 3.4751 8.2853 −0.0154
0.7557 11.800 7.6936 5.9554



and A2 = Q2 × A1 =


5.9554 7.6936 11.800 0.7557
0.0391 4.6635 9.4737 −0.0124
−0.0013 0.2658 0.2658 −0.0013
−0.0124 9.4737 4.6635 0.0391
0.7557 11.800 7.6936 5.9554

 . We know that

Q = (Qd × ....×Q2 ×Q1)
t
and R = Ad hence Q = (Q2×Q1)

t and R = A2 i.e., Q =
0.1857 0.9623 −0.0487 0.0353 −0.1897
−0.0760 0.2110 0.4458 −0.1644 0.8508
0.4470 −0.0359 −0.7731 −0.0360 0.4470
0.8508 −0.1644 0.4458 0.2110 −0.0760
−0.1897 0.0353 −0.0487 0.9623 0.1857

 andR =


5.9554 7.6936 11.800 0.7557
0.0391 4.6635 9.4737 −0.0124
−0.0013 0.2658 0.2658 −0.0013
−0.0124 9.4737 4.6635 0.0391
0.7557 11.800 7.6936 5.9554

 ≈


5.9554 7.6936 11.800 0.7557

0 4.6635 9.4737 0
0 0.2658 0.2658 0
0 9.4737 4.6635 0

0.7557 11.800 7.6936 5.9554

 . Therefore, we have Q and R as centro-symmetric

factorization of centro-symmetric matrix A. Now, the problem is to find out centro-
symmetric QR factorization of a rectangular matrix. This can be understood
through the example below,

Example 8: Let

A =


1 2 −1
0.2 4 5
3 −1 3
5 4 0.2
−1 2 1



, is a rectangular centro-symmetric matrix, number of rows m = 5,column n = 3

and d = min?(5,3)+1
2 = 2 i.e., k = 1, 2. For k = 1, two-column sub-matrices of A are

N1 =


1 −1
0.2 5
3 3
5 0.2
−1 1

 =
(
α αR

)
andM1 =


δ1 δ2
0 0
0 0
0 0
δ2 δ1

 therefore V1 =


δ1 − 1 δ2 + 1
−0.2 −5
−3 −3
−5 −0.2

δ2 + 1 δ1 − 1

 .
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The parameters δ1 =

√
∥α∥2

2±
√

∥α∥4
2−(N(α))2

2 = 5.9862258 and 0.7517313 and For

vector α =


1
0.2
3
5
−1

 , Euclidean Vector Norm is ∥α∥2 =
√
36.4 therefore N(α) =

[αα]R2 = 9. So δ2 = N(α)/2δ1 = 0.7572573 for δ1=5.9862258 and 5.98618149
for δ1 = 0.75173138, according to above calculation the value of δ1 = 5.9862258
and δ2 = 0.7517257367. Putting the value of above parameters in V1, V1 =

4.9862258 1.75172573
−0.2 −5
−3 −3
−5 −0.2

1.7517257367 4.9862258

 and H1(V1) = I5−2V1×[V t
1 ×R5×V1]

+×V t
1 ×R5 =


0.1857 −0.076 0.4470 0.8508 −0.1897
−0.076 0.0133 −0.3450 0.3887 0.8508
0.4470 −0.3450 0.6019 −0.3450 0.4470
0.8508 0.3887 −0.3450 0.0133 −0.076
−0.1897 0.8508 0.4470 −0.0760 0.1857

 .

For k = 2, two-column sub-matrices of A are N2 =

 4 4
−1 −1
4 4

 =
(
α, α,R

)
and M2 =

δ
′

1 δ
′

2

0 0

δ
′

2 δ
′

1

 therefore matrix V2 = M2 − N2 =

δ
′

1 − 4 δ
′

2 − 4
1 1

δ
′

2 − 4 δ
′

1 − 4

 . The

parameters δ
′

1 and δ
′

2 are useful for finding out perplectic block reflector H2(V2),

so δ
′

1 =

√
∥α′∥2

2±
√

∥α′∥4
2−(N(α

′
))

2

2 = 4.0620192023 and for vecto α
′
=

 4
−1
4

 ,

Euclidean Vector Norm is ∥α′∥2 = 5.744562646538, thereforeN(α
′
) = [α

′
α

′
]R2 =

33. So δ
′

2 = N(α
′
)/2δ

′

1 = 4.06201920232096

According to above calculation the value of δ
′

1 = 4.0620192023 and δ
′

2 = 4.06201920232096.

Putting the value of above parameters in V2, V2 =

0.0620192 0.0620192
1 1

0.0620192 0.0620192


andH2(V2) = I3−2V2×[V t

2×R3×V2]
+×V t

2×R3 =

 0.9924 −0.1231 −0.0076
−0.1231 −0.9847 −0.1231
−0.0076 −0.1231 0.9924

 .

Now we will finding out Qk = Em(Hk(Vk)), for k = 1, 2 matrices Q1 and Q2 are:

Q1 = E5(H1(V1)) = H1(V1) =


0.1857 −0.076 0.4470 0.8508 −0.1897
−0.076 0.0133 −0.3450 0.3887 0.8508
0.4470 −0.3450 0.6019 −0.3450 0.4470
0.8508 0.3887 −0.3450 0.0133 −0.076
−0.1897 0.8508 0.4470 −0.0760 0.1857


and
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Q2 = E5(H2(V2)) =


1 0 0 0 0
0 0.9924 −0.1231 −0.0076 0
0 −0.1231 −0.9847 −0.1231 0
0 −0.0076 −0.1231 0.9924 0
0 0 0 0 1

 . The matrices Ak

fork = 1, 2, , d are:

A0 = A =


1 2 −1
0.2 4 5
3 −1 3
5 4 0.2
−1 2 1

 , A1 = Q1 × A =


5.9554 2.6443 0.7557
−0.0154 3.5028 0.0361
0.0119 −1.5737 0.0119
0.0361 3.4751 −0.0154
0.7557 2.6443 5.9554



and A2 = Q2 ×A1 =


5.9554 2.6443 0.7557
−0.0170 3.6433 0.0345
−0.0143 0.6872 −0.0143
0.0345 3.6433 −0.0170
0.7557 2.6443 5.9554

 .

We know that Q = (Qd × ....×Q2 ×Q1)
t
and R = Ad hence Q = (Q2 × Q1)

t

and R = A2 i.e.,

Q =


0.1857 −0.1369 −0.5356 0.7899 −0.1897
−0.0760 0.0527 0.2902 0.4281 0.8508
0.4470 −0.4138 −0.5078 −0.4138 0.4470
0.8508 0.4281 0.2902 0.0527 −0.0760
−0.1897 0.7899 −0.5356 −0.1369 0.1857

 andR =


5.9554 2.6443 0.7557
−0.0170 3.6433 0.0345
−0.0143 0.6872 −0.0143
0.0345 3.6433 −0.0170
0.7557 2.6443 5.9554

 ≈


5.9554 2.6443 0.7557

0 3.6433 0
0 0.6872 0
0 3.6433 0

0.7557 2.6443 5.9554

 .Therefore, we have Q and R as centro-symmetric fac-

torization of rectangular centro-symmetric matrix A. Konrad Burnik [2] factorized
a matrix into Q and R but R is not upper-triangular matrix, and also calculated
approximate value of matrix R. Our calculation is same as the algorithm used by
Konrad Burnik [2]. In example 7 and 8, we calculated that R is not upper-triangle
but Q and R both centro-symmetric.

4. Application of QR factorization of a centro-symmetric matrix:

The importance of centro-symmetric QR-factorization in which Q and R are
both centro-symmetric is solving a system of linear equation A × X = B, where
A is a centro-symmetric square matrix of full rank i.e. |A| ̸= 0 or we can say that
linear system has a unique solution. The method of solution of linear system of
equation by above method is same as method of solution of A×X = B by general
QR factorization. The only difference here is that matrix A is centro-symmetric
and Q and R both are centro-symmetric. Now for linear system A×X = B, marix
A = Q × R, where Q is perplectic orthogonal centro-symmetric matrix and R is
double cone centro-symmetric matrix. Let us understand this application with an
example:
Example 9: Let us have a system of linear equation x+2y+3z = 7, 6x+4y+6z = 9
and 3x+2y+ z = 5. After arranging above equation in form of A×X = B, where
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A =  1 2 3
6 4 6
3 2 1


is a centro-symmetric matrix, first we find cento-symmetric QR factorization of A.
Using the algorithm (See Appendix-A), the centro-symmetric QR factorization of
A are:

Q =

 −0.2868 0.6396 0.7132
0.6396 −0.4264 0.6396
0.7132 0.6396 −0.2868


and

R =

 5.6904 3.4112 3.6904
0.00 0.8528 0.00
3.6904 3.4112 5.6904


. We set y = Qt × B =

7.3148
3.8376
9.3148

 and solve the system y = R ×X =

7.3148
3.8376
9.3148

 .

Now we have three equation

5.6904x+ 3.4112y + 3.6904z = 7.3148 (8)

0.8528y = 3.8376 (9)

3.6904x+ 3.4112y + 5.6904z = 9.3148 (10)

After solving equation (8), (9) and (10), we have x = −1.187, y = 4.5 and z =
−0.3472.
In this above example, we investigated that this method is giving correct values
for linear system of equation i.e. the values of x, y and z satisfy linear system of
equation when R is not upper triangle.

5. Conclusion:

A stepwise numerical method ofQR factorization is applied in a centro-symmetric
matrix. This method of QR factorization preserved the centro-symmetry of Q and
R. For finding such a factorization, perplectic block-reflectors were used to reduce
pair of columns of a given centro-symmetric matrix. This was used to achieve a
double-cone matrix. In this paper, we calculated the exact value of QR factoriza-
tion of a centro-symmetric matrix in which Q and R are centro symmetric but R is
not upper triangular unlike reported values in literature. We further investigated
that this method is giving correct values for linear system of equation.
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Appendix-A: Step of Algorithm for Centro-symmetric QR-factorization of matrix
A preserving centro-symmetric properties.
Step 1: Take a centro-symmetric matrix A = [a(i,j)](m×n).
Step 2: Find d = min?(m,n)/2 for min?(m,n) even or d=(min?(m,n)+1)/2 for
min?(m,n) odd.
Step 3: Find value of k = 1, 2, d.
Step 4: Find t = m− 2k + 2.

Step 5: Find a column vectorα =


αk,k

αk+1,k

.

.
αm−k+1,k

 =
(
αk,k αk+1,k .... αm−k+1,k

)t
.

Step 6: Find a two column sub matrixNk =
(
α αR

)
=


αk,k αm−k+1,k

αk+1,k .
. .
. αk+1,k

αm−k+1,k αk,k

 .

Step 7: Find a new two-column sub-matrix with unknown parameters Mk =

(
δ1 × i1 + δ2 × it δ2 × it + δ1 × i1

)
=

δ1 ×


1
0
.
.
.
0

+ δ2 ×


0
0
.
.
.
1

 δ2 ×


0
0
.
.
.
1

+ δ1 ×


1
0
.
.
.
0




Step 8: Find a matrix Vk = Mk −Nk.
Step 9: Find N(a) for finding the parameters δ1 and δ2.
if N(α) = 0 then
Step 11: Find δ1 = ∥α∥2 and δ2 = 0.
Step 12: Find Hk(Vk) by Hk(Vk) = It − 2Vk × [V t

k ×Rt × Vk]
+ × V t

k ×Rt.
Step 13: Find Qk = Em(Hk(Vk)) for every k.
Step 14: Find Q = (Qd × ....×Q2 ×Q1)

t.
Step 15: Find Ak = Qk ×A(k−1) where A0 = A and A1 = Q1 ×A0 = Q1 ×A.
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Step 16: Find R = Ad = Qd ×A(d−1) = Qd × ...×Q2 ×Q1 ×A.
Now we have two matrix Q and R of QR factorization of matrix A.
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