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COMMON FIXED POINTS THEOREM FOR FOUR MAPPINGS

ON METRIC SPACE SATISFYING CONTRACTIVE

CONDITIONS OF INTEGRAL TYPE

JIGMI DORJEE BHUTIA AND KALISHANKAR TIWARY

Abstract. This paper presents some extensions of the results in [19], [21],

[28]. We obtain a result on common fixed point theorem in metric space for
four maps using integral type contractions. Here we try to investigate some
results concerning mappings which share CLR property and subsequentially
continuous mappings. Some examples to justify our results are given.

1. Introduction

In the field of non linear analysis fixed point theory is one of the important topic.
Due to its wide application in the areas like economics, engineering, etc. it has got
the huge attention of use number of researches. One of the fundamental result is
due the celebrated Banach contraction Principle [5]. Since then there had been a
large number of extension of this result. Brainciari [6] presented the integral type
of contraction analogous to Banach contraction to obtain the unique fixed point.
Articles related to finding of common fixed point of two , or three or four mappings
came into the picture. Along with this many researches defined a class of map-
pings, like for example, compatible mappings, weakly compatible , subsequentially
continuous, EA property, CLR-property etc. and obtained unique common fixed
point for these mappings. In this paper also we have obtained unique common fixed
point for four mappings taking new contraction conditions which generalised the
existing results. In support we have presented some examples.

In 1986 Jungck [13] gave the concept of Compatible mappings.

Definition 1.1. Let (X, d) be a metric space. A pair of self-mapping f, h : X → X
is compatible if limn→∞ d(fhxn, hfxn) = 0, whenever {xn} is a sequence inX, such
that

lim
n→∞

fxn = lim
n→∞

hxn = z, for some z ∈ X.
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In 1996 Jungck [12] generalizes this concept of compatible maps to Weakly Com-
patible maps to study common fixed point theorems.

Definition 1.2. Let (X, d) be a metric space. A pair of self-mapping f, h : X → X
is Weakly Compatible if they commute at their coincidence points, that is, if there
exists a point x ∈ X, such that fhx = hfx, whenever fx = hx.

In the study of common fixed points of Weakly Compatible mappings, we often
require the assumption of completeness of the space or subspace or continuity of
mappings involved besides some contractive condition. Aamri and El Moutawakil
[1] introduced the notion of (E.A) property, which requires only the closedness of
the subspace.

Definition 1.3. [1] Let (X, d) be a metric space and f, h : X → X be two self-
maps. The pair (f, h) is said to satisfy the (E.A) property if there exist sequence
{xn} in X and some z ∈ X such that

lim
n→∞

fxn = lim
n→∞

hxn = z ∈ X.

Liu et al. [15] extended the (E.A) property to common the (E.A) property as
follows.

Definition 1.4. Let (X, d) be a metric space and f, g, h, and J : X → X be four
self-maps. The pairs (f, h) and (g, J) satisfy the common (E.A) property if there
exist two sequences {xn} and {yn} in X such that

lim
n→∞

fxn = lim
n→∞

hxn = lim
n→∞

gyn = lim
n→∞

Jyn = t ∈ X.

Definition 1.5. [7] Let (X, d) be a metric space and f, h : X → X be self-maps.
The pair (f, h) is called subsequentially continuous if there exists a sequence {xn}
in X such that

lim
n→∞

fxn = lim
n→∞

hxn = z, for some z ∈ X.

and
lim
n→∞

fhxn = fz, lim
n→∞

hfxn = hz.

Sintunavarat and Kumam [29] introduced the notion of the (CLR) property,which
never requires any condition on closedness of the space or subspace

Definition 1.6. Let (X, d) be a metric space and f, h : X → X be self-maps. The
pair (f, h) said to satisfy the common limit in the range of h property if

lim
n→∞

fxn = lim
n→∞

hxn = hx, for some x ∈ X.

Here we can observe that if the pair of mapping (f, h) satisfy E.A property
together with the condition that h(X) is closed then the pair also satisfies the
common limit in the range of h property.
Imdad et al. [11] introduced the common (CLR) property which is an extension of
the (CLR) property.

Definition 1.7. Let (X, d) be a metric space and f, g, h, and J : X → X be four
self-maps. The pairs (f, h) and (g, J) satisfy the common limit range property with
respect to mappings h and J , denoted by CLRhJ if there exist two sequences {xn}
and {yn} in X such that

lim
n→∞

fxn = lim
n→∞

hxn = lim
n→∞

gyn = lim
n→∞

Jyn = t ∈ h(X) ∩ J(X).
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Rhoades [26] proved the following fixed point theorems for the weakly contraction
mapping which generalizations of the celebrated Banach fixed point theorem.

Theorem 1.8. Let (X, d) be a complete metric space and f : X → X such that for
each x, y ∈ X

d(fx, fy) ≤ d(x, y)− ψ(d(x, y))

where, ψ : R+ × R+ is continuous and nondecreasing such that ψ is positive on
R+ − 0, ψ(0) = 0 and ψ(t) > 0,∀t > 0. Then f will have a unique fixed point in X.

Further Dutta and Choudhury [9] came with a generalization given in the fol-
lowing theorem

Theorem 1.9. [9] Let (X, d) be a complete metric space and f : X → X such that
for each x, y ∈ X

ψ(d(fx, fy)) ≤ ψ(d(x, y))− ϕ(d(x, y))

where, ψ, ϕ : R+ × R+ is continuous and monotone nondecreasing functions such
that, ψ(t) = ϕ(t) = 0 iff t = 0. Then f will have a unique fixed point in X.

Let us begin by considering some classes of mappings .

Φ1 = {φ : R+ → R+ satisfies that φ is Lebesgue integrable, summable on each
compact subset of R+ and for each ϵ > 0,

∫ ϵ
0
φ(t)dt > 0}.

Φ2 = {φ : R+ → R+ is nondecreasing continuous function on R+ − 0 and
φ(t) = 0 ⇐⇒ t = 0 }.

Φ3 = {φ : R+ → R+ is lower semicontinuous function and φ(t) > 0 for each
t > 0} = {φ : R+ → R+ is lower semicontinuous function and φ(t) = 0 iff t = 0.}

Φ4 = {φ : R+ → R+ is upper semicontinuous function on R+ − 0 and φ(0) = 0
and φ(t) < t, for each t > 0 }.

Φ5 = {φ : R+ → R+ is upper semicontinuous function and limn→∞ an = 0 for
each sequence {an}n∈N ⊂ R+ with an+1 ≤ ψ(an),∀n ∈ N}.

Φ6 = {φ : R+ → R+ is continuous function and φ(t) < t, for each t > 0}.

Let us consider the following notations,

m1(x, y) = max{d(hx, Jy), d(fx, hx), d(gy, Jy), d(hx,gy)+d(Jy,fx)2 , d(fx,hx)d(gy,Jy)1+d(hx,Jy) , d(fx,Jy)d(gy,hx)1+d(hx,Jy) ,

d(fx, hx) 1+d(hx,gy)+d(Jy,fx)1+d(fx,hx)+d(Jy,gy)},

m2(x, y) = max{d(hx, Jy), d(fx, hx), d(gy, Jy), d(hx,gy)+d(Jy,fx)2 , 1+d(fx,hx)1+d(hx,Jy)d(Jy, gy),
1+d(gy,Jy)
1+d(hx,Jy)d(hx, fx), d(Jy, gy)

1+d(hx,gy)+d(Jy,fx)
1+d(fx,hx)+d(Jy,gy)},

m3(x, y) = max{d(hx, Jy), d(fx, hx), d(gy, Jy), d(hx,gy)+d(Jy,fx)2 , d(fx,hx)d(gy,Jy)1+d(fx,gy) ,
d(fx,Jy)d(gy,hx)

1+d(gy,fx) , d(hx, fx) 1+d(hx,gy)+d(Jy,fx)1+d(fx,hx)+d(Jy,gy)}.
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m4(x, y) = max{d(hx, Jy), d(fx, hx), d(gy, Jy), d(hx,gy)+d(Jy,fx)2 }.

m5(x, y) = max{d(hx, Jy), d(fx, hx), d(gy, Jy), d(hx,gy)+d(Jy,fx)2 , d(fx,hx)d(gy,Jy)1+d(hx,Jy) , d(fx,Jy)d(gy,hx)1+d(hx,Jy) ,
d(fx,Jy)d(gy,hx)

1+d(fx,gy) }.
In the year 2015, Liu et. al.,[16] came up with the results that provides the unique
common fixed point for four mappings in a metric space. They proved the following
theorem:

Theorem 1.10. Let (X, d) be a metric space and f, g, h, J : X → X such that
f(X) ⊂ h(X) and g(X) ⊂ J(X) share (CLRhJ) and one of f(X), h(X), g(X), and
J(X) is complete and for each x, y ∈ X,

d(fx, gy) ≤ ψ(m1(x, y)), where ψ ∈ Φ5.

Then if the pairs (f, h) and (g, J) are Weakly Compatible, then f, g, h, and J will
have a unique common fixed point in X.

Also the authors in [16] proved the following lemma

Lemma 1.11. Let (X, d) be a metric space where the mappings f, g, h, J : X → X,
satisfy

ψ(d(fx, gy)) ≤ ψ(mi(x, y))− φ(mi(x, y)), ∀x, y ∈ X

Where
(ψ,φ) ∈ Φ2 × Φ3 and i = 1, 2.

Assume that I : R+ → R+ is the identity mapping and

ψ1(t) = (ψ + I)−1(ψ + I − φ)(t),∀t ∈ R+.

Then
ψ1 ∈ Φ5 and d(fx, gy) ≤ ψ1(mi(x, y)), ∀ x, y ∈ X.

Braiciari [6] generalised the Banach contraction principal by introducing the
integral type contraction condition as follows:

Theorem 1.12. Let (X, d) be a complete metric space and f : X → X such that
for each x, y ∈ X, ∫ d(fx,fy)

0

φ(t)dt ≤ c

∫ d(x,y)

0

φ(t)dt

where c ∈ [0, 1) is a constant and φ ∈ Φ1. Then f will have a unique fixed point
in a ∈ X such that limn→∞ fnx = a.

Further Rhoades [27] obtained the common fixed point for two mappings by
using the integral type contraction condition. The author came with the following
theorem:

Theorem 1.13. Let (X, d) be a complete metric space and f : X → X such that
for each x, y ∈ X ∫ d(fx,fy)

0

ϕ(t)dt ≤ c

∫ m(x,y)

0

ϕ(t)dt

where,

m(x, y) = max{d(x, y), d(fx, x), d(y, fy), d(x, fy) + d(y, fx)

2
},

and c ∈ [0, 1) is a constant and φ ∈ Φ1. Then f will have a unique fixed point in
a ∈ X such that limn→∞ fnx = a.
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Liu et. al [19] proved the following theorem for finding unique fixed point in a
complete metric space.

Theorem 1.14. Let (X, d) be a complete metric space and f : X → X satisfying
and for each x, y ∈ X∫ d(fx,fy)

0

φ(t)dt) ≤
∫ d(x,y)

0

φ(t)dt) −
∫ ψ(d(x,y))

0

φ(t)dt, where (φ,ψ) ∈ Φ1 × Φ3.

Then f will have a unique fixed point in a ∈ X such that limn→∞ fnx = a.

Theorem 1.15. Let (X, d) be a complete metric space and f : X → X such that
and

for each x, y ∈ X,

∫ d(fx,fy)

0

φ(t)dt ≤
∫ m(x,y)

0

φ(t)dt−
∫ ψ(m(x,y))

0

φ(t)dt.

where, (φ,ψ) ∈ Φ1×Φ3 andm(x, y) = max{d(x, y), d(fx, x), d(y, fy), d(x,fy)+d(y,fx)2 }.
Then f will have a unique fixed point in a ∈ X such that limn→∞ fnx = a.

In 2015, Sarwar et.al., [28] obtained the unique common fixed point for four
mappings in a metric space. That means their result is true for incomplete metric
space also. The author made uses of CLR property and weakly compatible maps
that enables one to get the result without the given space being complete also
one does not require the closedness of the subspace concerned. By considering
the concept of commom CLR property for the two pairs of mappings one can
understand that the traditional way of finding the fixed point such as constructing
a sequence showing it as Cauchy and by the help of completeness of the space
choosing its limit which ultimately becomes the fixed point is not required in this
case. The authors in [28] proved the following theorem:

Theorem 1.16. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) share (CLRhJ) property and for each x, y ∈ X,∫ d(fx,gy)

0

φ(t)dt ≤ ψ(

∫ mi(x,y)

0

φ(t)dt) where (φ,ψ) ∈ Φ1 × Φ4.

and i = 1, 2. Then if the pairs (f, h) and (g, J) are weakly compatible that f, g, h,
and J will have a unique common fixed point in X.

Theorem 1.17. [21] Let (X, d) be a metric space and f, g, h, J : X → X such that
(f, h) and (g, J) are compatible and subsequentially continuous(alternately subcom-
patible and reciprocally continuous), then the pair (f, h) has a coincident point and
the pair (g, J) has a coincident point. For all x, y ∈ X∫ d(fx,gy)

0

φ(t)dt ≤
∫ mi(x,y)

0

φ(t)dt−W (

∫ mi(x,y)

0

φ(t)dt), where, (φ,W ) ∈ Φ1×Φ6,

and i = 4, 5. Then f, g, h, and J will have a unique common fixed point in X.

Remark 1.18. From the proof of the above Theorem 1.17 it follows that if (X, d) be
a metric space and f, g, h, J : X → X such that (f, h) and (g, J) are compatible and
subsequentially continuous(alternately subcompatible and reciprocally continuous)
and for all x, y ∈ X,∫ d(fx,gy)

0

φ(t)dt ≤
∫ mi(x,y)

0

φ(t)dt)−W (

∫ mi(x,y)

0

φ(t)dt)
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where, (φ,W ) ∈ Φ1×Φ6 and i = 4, 5. Then the pair (f, h) and (g, J) share common
CLRhJ property and the limit serves as the required unique common fixed point of
f, g, h, and J . Also the pair (f, h) and the pair (g, J) has a coincident point. Also
if (X, d) be a metric space and f, g, h, J : X → X such that (f, h) and (g, J) share
common E.A. property and for all x, y ∈ X∫ d(fx,gy)

0

φ(t)dt ≤
∫ m2(x,y)

0

φ(t)dt)−W (

∫ m2(x,y)

0

φ(t)dt),

where (φ,W ) ∈ Φ1 × Φ6. Then the pair (f, h) and (g, J) share common CLRhJ
property and the limit serves as the required unique common fixed point of f, g, h,
and J and the pairs (f, h) and (g, J) has a coincident point.

Recently Liu et. al., have obtained the result where unique fixed point have
been found for mapping satisfying integral type contractive conditions on a com-
plete metric space. The author in [20] defined

M1(x, y) = max{d(x, y), d(fx, x), d(y, fy), d(x,fy)+d(y,fx)2 , d(fx,x)d(y,fy)1+d(fx,fy) , d(fx,y)d(fy,x)1+d(fx,fy) , d(x,fx)d(y,fy)1+d(y,x) ,
d(x,fy)d(y,fx)

1+d(x,y) },∀x, y ∈ X.

M2(x, y) = max{d(x, y), d(fx, x), d(y, fy), d(x,fy)+d(y,fx)2 , d(fy,x)[1+d(y,fx)]2[1+d(x,y)] , d(fx,y)[1+d(fy,x)]2[1+d(x,y)] ,
d(x,fx)[1+d(y,fy)]

1+d(y,x) , d(y,fy)[1+d(x,fx)]1+d(x,y) },∀x, y ∈ X.

M3(x, y) = max{d(x, y), d(fx, x), d(y, fy), d(x,fy)+d(y,fx)2 }.

Using the above definitions the author in [20] proved the following theorem:

Theorem 1.19. Let (X, d) be a complete metric space and f : X → X such that
for each x, y ∈ X

ϕ(

∫ d(fx,fy)

0

φ(t)dt) ≤ ϕ(

∫ Mi(x,y)

0

φ(t)dt) −
∫ ψ(Mi(x,y))

0

φ(t)dt

where, (φ, ϕ, ψ) ∈ Φ1 × Φ2 × Φ3. Then f will have a unique fixed point in a ∈ X
such that limn→∞ fnx = a. The theorem is true for i = 1, 2, 3.

Definition 1.20. [3] Let F be the family of lower semi - continuous functions
F (t1, ...., t6) : R6

+ → R satisfying the following conditions:
(F1) : F (t, 0, t, 0, 0, t) > 0, ∀t > 0;
(F2) : F (t, 0, 0, t, t, 0) > 0, ∀t > 0;
(F3) : F (t, t, 0, 0, t, t) > 0, ∀t > 0.

For examples we refer [3] to the readers.

Definition 1.21. Let f and g, be self-maps on set X. If fx = gx = w for some
x ∈ X, then x is called a coincidence point of f and g, and w is called a point of
coincidence of f and g.

Definition 1.22. [14] An altering distance is a function ψ : [0, 1) → [0, 1) satisfying:

(1) ψ is continuous and increasing.
(2) ψ(t) = 0, if and only if t = 0.

Denote C(f, g) = {x : fx = gx} is the collection of all coincidence points of
selfmaps f and g of a metric space X.
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Theorem 1.23. [22] Let (X, d) be a metric space and f, g, h, and T be self mappings
of X satisfying the inequality

F (ψ(d(fx, hy)), ψ(d(gx, Ty)), ψ(d(gx, fx)), ψ(d(Ty, hy)), ψ(d(gx, hy)), ψ(d(Ty, fx))) ≤ 0,

for all x, y ∈ X, F ∈ F and ψ is an altering distance. If f, g, and T satisfy
CLR(f,g),T - property, then

(1) C(f, g) ̸= ϕ.

(2) C(h, T ) ̸= ϕ.

Moreover, if (f, g) and (h, T ) are weakly compatible, then f, g, h, and T have a
unique common fixed point.

Lemma 1.24. [2] . Let f and g be weakly compatible self mappings of a nonempty
set X. If f and g have a unique point of coincidence w = fx = gx for some x ∈ X,
then w is the unique common fixed point of f and g.

Lemma 1.25. [18] Let ϕ ∈ Φ1 and {rn}n ∈ N be a nonnegative sequence with
limn→∞ rn = a. Then we have

lim
n→∞

∫ rn

0

ϕ(t)dt =

∫ a

0

ϕ(t)dt.

2. Main results

Theorem 2.1. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) are compatible and subseqentially continuous and for each x, y ∈ X

ψ(

∫ d(fx,gy)

0

φ(t)dt) ≤ ψ(

∫ m1(x,y)

0

φ(t)dt) −
∫ ϕ(m1(x,y))

0

φ(t)dt

where, (φ,ψ, ϕ) ∈ Φ1 × Φ2 × Φ3. Then f, g, h, and J will have a unique common
fixed point in X.

Proof: Since the pair (f, h) is subseqentially continuous, there exists a sequence
{xn} in X such that

lim
n→∞

fxn = lim
n→∞

hxn = z, for some z ∈ X

and

lim
n→∞

fhxn = fz, lim
n→∞

hfxn = hz.

Now from compatibility of (f, h), we get

lim
n→∞

d(fhxn, hfxn) = 0.

⇒ d(fz, hz) = 0.

Thus hz = gz. So C(f, h) ̸= ϕ. Similarly, the pair (g, J) is subseqentially continu-
ous, there exists a sequence {xn} in X such that

lim
n→∞

gyn = lim
n→∞

Jyn = w.

for some w ∈ X and

lim
n→∞

gJyn = gw, lim
n→∞

Jgyn = Jw.
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Again (g, J) is compatible therefore we have gw = Jw .
Let us suppose that fz ̸= gw. Then on putting x = z and y = w in the theorem ,
we have

ϕ(

∫ d(fz,gw)

0

φ(t)dt) ≤ ϕ(

∫ m1(z,w)

0

φ(t)dt) −
∫ ψ(m1(z,w))

0

φ(t)dt.

m1(z, w) = max{d(hz, Jw), d(fz, hz), d(gw, Jw), d(hz,gw)+d(Jw,fz)
2 , d(fz,hz)d(gw,Jw)

1+d(hz,Jw) ,
d(fz,Jw)d(gw,hz)

1+d(hz,Jw) , d(fz, hz) 1+d(hz,gw)+d(Jw,fz)
1+d(fz,hw)+d(Jw,gw)}

m1(z, w) = max{d(fz, gw), 0, 0, d(gw, fz), 0, d(fz,gw)d(gw,fz)
1+d(fz,gw) , 0}.

Now, d(fz, Jw) < d(fz, Jw)+1 ⇒ 1
d(fz,Jw)+1 <

1
d(fz,Jw) ⇒

d(fz,Jw)2

d(fz,Jw)+1 <
d(fz,Jw)2

d(fz,Jw) =

d(fz, Jw).

m1(u, v) = d(fz, gw).

Since, (φ,ψ, ϕ) ∈ Φ1 × Φ2 × Φ3, we get,

ψ(

∫ d(fz,gw)

0

φ(t)dt) ≤ ψ(

∫ m1(z,w)

0

φ(t)dt)−
∫ ϕ(m1(z,w))

0

φ(t)dt < ψ(

∫ d(fz,gw)

0

φ(t)dt).

Which is a contradiction. Thus we have fz = gw.

⇒ hz = fz = gw = Jw = q,

for some q ∈ X. If suppose t ̸= z, and ft = ht. Suppose ft ̸= Jw. Then on putting
x = t and y = w in the theorem we get,

ψ(

∫ d(ft,gw)

0

φ(t)dt) ≤ ψ(

∫ m1(t,w)

0

φ(t)dt) −
∫ ϕ(m1(t,w))

0

φ(t)dt.

m1(t, w) = max{d(ht, Jw), d(ft, ht), d(gw, Jw), d(ht,gw)+d(Jw,ft)
2 , d(ft,ht)d(gw,Jw1+d(ht,Jw) ,

d(ft,Jw)d(gw,ht)
1+d(ht,Jw) , d(ft, ht) 1+d(ht,gw)+d(Jw,ft)

1+d(ft,ht)+d(Jw,gw)}.

m1(t, w) = max{d(ft, Jw), 0, 0, d(ft, Jw), 0, d(ft,Jw)2

1+d(ft,Jw) , 0}.
m1(t, v) = d(ft, gw).

ψ(

∫ d(ft,gw)

0

φ(t)dt) ≤ ψ(

∫ d(ft,gw)

0

φ(t)dt)−
∫ ϕd(ft,gw)

0

φ(t)dt < ψ(

∫ d(ft,gw)

0

φ(t)dt).

⇒ ft = gw. So, we have ht = ft = gw = Jw = q.
Consequently we have fz = hz = q = ht = ft.
From this it follows that q is the unique point of coincidence of (f, h). Similarly q is
the unique point of coincidence of (g, J). Now that both the pairs (f, h) and (g, J)
are compatible implies that they are weakly compatible. On applying Lemma 1.24
q is the unique common fixed point of f, g, h and J .

Theorem 2.2. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) are compatible and subseqentially continuous and for each x, y ∈ X

ψ(

∫ d(fx,gy)

0

φ(t)dt) ≤ ψ(

∫ mi(x,y)

0

φ(t)dt)−
∫ ϕ(mi(x,y))

0

φ(t)dt

where, (φ,ψ, ϕ) ∈ Φ1 × Φ2 × Φ3 and i = 2, 3, 4, 5. Then f, g, h, and J will have a
unique common fixed point in X.
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Proof: The proof is same as the proof of Theorem 2.1.

Theorem 2.3. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) are compatible and subseqentially continuous and for each x, y ∈ X∫ d(fx,gy)

0

φ(t)dt ≤
∫ mi(x,y)

0

φ(t)dt−
∫ mi(x,y)

0

φ(t)dt

where, φ ∈ Φ1 and i = 2, 3, 4, 5.Then if the pairs (f, h) and (g, J) are weakly
compatible, f, g, h, and J will have a unique common fixed point in X.

Proof: Taking ψ and ϕ as an Identity map in the Theorem 2.2 we get the result.

Theorem 2.4. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) are compatible and subseqentially continuous and for each x, y ∈ X

ϕ(

∫ d(fx,gy)

0

φ(t)dt) ≤ ϕ(

∫ mi(x,y)

0

φ(t)dt) − ψ(

∫ mi(x,y)

0

φ(t))dt.

where, (φ, ϕ, ψ) ∈ Φ1 × Φ2 × Φ3 and i = 1, 2, 3, 4, 5. Then if the pairs (f, h) and
(g, J) are weakly compatible, f, g, h, and J will have a unique common fixed point
in X.

Proof: The proof is same as the proof of Theorem 2.1.

Theorem 2.5. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) are compatible and subseqentially continuous and for each x, y ∈ X∫ d(fx,gy)

0

φ(t)dt ≤
∫ mi(x,y)

0

φ(t)dt) − ψ(

∫ (mi(x,y))

0

φ(t))dt.

where, (φ,ψ) ∈ Φ1 × Φ3 and i = 1, 2, 3, 4, 5. Then if the pairs (f, h) and (g, J) are
weakly compatible, f, g, h, and J will have a unique common fixed point in X.

Proof: Taking ϕ as an Identity map in the Theorem 2.4 we get the result.

In the above theorem we have considered that ϕ ∈ Φ3, but we know that lower
semicontinuity is weaker than continuity. Hence the result is also true for if ϕ ∈ Φ6.
So, taking ϕ ∈ Φ6 and

1)i = 5 in Theorem 2.5 we get the Theorem 3. of [21].

2)i = 4 in Theorem 2.5 we get the Corollary 1. of [21].

It is clear from [23], that Φ5 is a subclass of Φ4. Hence any result concerning the
use of control functions, the class of mappings belonging to Φ4 would serve more
general than the class of mappings belonging to Φ5. We now present here a lemma
involving class of function Φ4 and satisfying integral type condition, whose proof is
similar to that of the Lemma 1.11 above:

Lemma 2.6. Let (X, d) is a metric space where the mappings f, g, h, J : X → X,
satisfy

ψ(

∫ d(fx,gy)

0

φ(t)dt) ≤ ψ(

∫ mi(x,y)

0

φ(t)dt)− ϕ(

∫ mi(x,y)

0

φ(t)dt) (1)
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for all x, y ∈ X, Where (ψ, ϕ, φ) ∈ Φ2 × Φ3 × Φ1 and i = 1, 2. Assume that
I : R+ → R+ is the identity mapping and

ψ1(t) = (ψ + I)−1(ψ + I − ϕ)(t),∀t ∈ R+. (2)

Then ψ1 ∈ Φ4 and∫ d(fx,gy)

0

φ(t)dt ≤ ψ1(

∫ mi(x,y)

0

φ(t)dt),∀x, y ∈ X. (3)

Proof: That ψ1 is a upper semicontinuous function is true from Lemma 1.11.
Now, since ϕ(t) > 0,∀t > 0. Therefore,

ψ(t) + t+ ϕ(t) > ψ(t) + t, ∀t > 0.

⇒ ψ(t) + t > ψ(t) + t− ϕ(t),∀t > 0.

⇒ (ψ + I)t > (ψ + I − ϕ)t, ∀t > 0.

⇒ t > (ψ + I)−1(ψ + I − ϕ)t,∀t > 0.

⇒ ψ1(t) < t, ∀t > 0.

Thus ψ1 ∈ Φ4.
Now we will consider two cases
Case 1: If mi(x0, y0) = 0, for some x0, y0 ∈ X. Then we get,
d(hx0, Jy0) = d(hx0, fx0) = d(Jy0, gy0). Which gives, fx0 = hx0 = gy0 = Jy0.
Therefore, ∫ d(fx0,gy0)

0

φ(t)dt = 0.

and since ψ1 ∈ Φ4, we have, ψ1(
∫mi(x0,y0)

0
φ(t)dt) = 0 =

∫ d(fx0,gy0)

0
φ(t)dt.

Case 2: If mi(x, y) > 0, for all x, y ∈ X. From 2.1 we get,

ψ(

∫ d(fx,gy)

0

φ(t)dt) ≤ ψ(

∫ mi(x,y)

0

φ(t)dt)− ϕ(

∫ mi(x,y)

0

φ(t)dt),

Since, ϕ ∈ Φ3, we get,

ψ(

∫ d(fx,gy)

0

φ(t)dt) < ψ(

∫ mi(x,y)

0

φ(t)dt). (4)

Now that ψ is nondecreasing function we get,

⇒
∫ d(fx,gy)

0

φ(t)dt <

∫ mi(x,y)

0

φ(t)dt.

So, (ψ + I)

∫ d(fx,gy)

0

φ(t)dt = ψ(

∫ d(fx,gy)

0

φ(t)dt) +

∫ d(fx,gy)

0

φ(t)dt.

From equations 1, 2 and 4we get,

(ψ + I)

∫ d(fx,gy)

0

φ(t)dt ≤ ψ(

∫ mi(x,y)

0

φ(t)dt)− ϕ(

∫ mi(x,y)

0

φ(t)dt) +

∫ d(fx,gy)

0

φ(t)dt.

< ψ(

∫ mi(x,y)

0

φ(t)dt)− ϕ(

∫ mi(x,y)

0

φ(t)dt) + ψ(

∫ mi(x,y)

0

φ(t)dt.

< (ψ − ϕ+ ψ)

∫ mi(x,y)

0

φ(t)dt.
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⇒
∫ d(fx,gy)

0

φ(t)dt < (ψ + I)−1(ψ − ϕ+ ψ)

∫ mi(x,y)

0

φ(t)dt.

⇒
∫ d(fx,gy)

0

φ(t)dt < ψ1(

∫ mi(x,y)

0

φ(t)dt).

Theorem 2.7. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) share (CLRhJ) property and for each x, y ∈ X

ψ(

∫ d(fx,gy)

0

φ(t)dt) ≤ ψ(

∫ mi(x,y)

0

φ(t)dt)− ϕ(

∫ mi(x,y)

0

φ(t)dt)

where, (φ, ϕ, ψ) ∈ Φ1 × Φ3 × Φ2 and i = 1, 2, 3, 4, 5. Then if the pairs (f, h) and
(g, J) are weakly compatible then f, g, h, and J will have a unique common fixed
point in X.

Proof: By using the Lemma 2.6 in the Theorem 1.16 we get the desired result.

Theorem 2.8. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) share (CLRhJ) property and for each x, y ∈ X∫ d(fx,gy)

0

φ(t)dt ≤
∫ mi(x,y)

0

φ(t)dt− ϕ(

∫ mi(x,y)

0

φ(t)dt)

where, (φ, ϕ) ∈ Φ1 × Φ3 and i = 1, 2, 3, 4, 5. Then if the pairs (f, h) and (g, J) are
weakly compatible then f, g, h, and J will have a unique common fixed point in X.

Proof: If we take ψ(t) = t in the above Theorem 2.7 then we get the desired
result.

Remark 2.9. In the above theorem we have considered that ϕ ∈ Φ3, but we know
that lower semicontinuity is weaker than continuity. Hence the result is also true
for if ϕ ∈ Φ6.

Remark 2.10. Here we make an observation that using Remark 1.18, and Remark
2.9 it follows that Theorem 3. of [21] implies Theorem 2.8 for i = 5, in this paper.
But the converse is not true as it is clear from the example given below. This proves
that Theorem 2.8 for i = 5 is in fact an extension of Theorem 3.1 of [21].

Example 2.11. Let X = [13 , 1) be a metric space with the usual metric d(x, y) =
|x− y|, for all x, y ∈ X and f, g, h, and J : X → X, defined by

f(x) =

{
1
3
, for x ∈ [ 1

3
, 2
3
),

2
3
, for x ∈ [ 2

3
, 1),

g(x) =

{
1
2
, for x ∈ [ 1

3
, 2
3
),

2
3
, for x ∈ [ 2

3
, 1)

h(x) =

{
3
4
, for x ∈ [ 1

3
, 2
3
),

2
3
, for x ∈ [ 2

3
, 1)

J(x) =

{
1
3
, for x ∈ [ 1

3
, 2
3
),

1− x
2
, for x ∈ [ 2

3
, 1)

Let {xn} = { 2
3
+ 1

n+3
} and {yn} = { 2

3
+ 1

n+4
} be two sequences in X. Then

lim
n→∞

fxn = lim
n→∞

f({2
3
+

1

n+ 3
}) = 2

3
;

lim
n→∞

hxn = lim
n→∞

h({2
3
+

1

n+ 3
}) = 2

3
;

lim
n→∞

gyn = lim
n→∞

g({2
3
+

1

n+ 4
}) = 2

3
;
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lim
n→∞

Jyn = lim
n→∞

J({2
3
+

1

n+ 4
}) = lim

n→∞
({1−1

2
(
2

3
+

1

n+ 4
)}) = lim

n→∞
(
2

3
− 1

2(n+ 4)
)}) = 2

3
.

Thus

lim
n→∞

fxn = lim
n→∞

hxn = lim
n→∞

gyn = lim
n→∞

Jyn =
2

3
∈ h(X) ∩ J(X).

That is, the pair (f, h) and (g, J) share (CLRhJ) property.
Also, we have f( 2

3
) = h( 2

3
) = 2

3
, and f(h( 2

3
)) = 2

3
= h(f( 2

3
)).

So (f, h) is weakly compatible. Similarly (g, J) is also weakly compatible mappings.
Now,

lim
n→∞

fhxn = lim
n→∞

fh{2
3
+

1

n+ 3
} = lim

n→∞
f{2

3
} =

2

3
= f(

2

3
).

lim
n→∞

hfxn = lim
n→∞

hf{2
3
+

1

n+ 3
} = lim

n→∞
h{2

3
} =

2

3
= h(

2

3
).

Therefore, the pair (f, h) is compatible and subsequentially continuous.
Again,

lim
n→∞

gJyn = lim
n→∞

gJ{2
3
+

1

n+ 4
} = lim

n→∞
g{1−1

2
(
2

3
+

1

n+ 4
)} = lim

n→∞
g{2

3
− 1

2(n+ 4)
)} =

1

2
̸= g(

2

3
).

Hence, the pair (g, J) is not subsequentially continuous.
Let {xn} = { 1

3
+ 1

n+3
} and {yn} = { 1

3
+ 1

n+4
} be two sequences in X. Then

lim
n→∞

fxn = lim
n→∞

f({1
3
+

1

n+ 3
}) = 1

3
;

lim
n→∞

hxn = lim
n→∞

h({1
3
+

1

n+ 3
}) = 3

4
;

Now,

lim
n→∞

fhxn = lim
n→∞

fh{1
3
+

1

n+ 3
} = lim

n→∞
f{3

4
} =

2

3
= f(

2

3
).

lim
n→∞

hfxn = lim
n→∞

hf{1
3
+

1

n+ 3
} = lim

n→∞
h{1

3
} =

3

4
= h(

1

3
).

Therefore, the pair (f, h) is not subsequentially continuous.
Which implies that Corollary 1. of [21] cannot be applied here. But this example satisfies
the conditions of the Theorem 2.8. We will now check the contractive condition as it is
taken in Corallary 1 of [21]. and Theorem 2.8 for i = 4 i.e, for

m4(x, y) = max{d(hx, Jy), d(fx, hx), d(gy, Jy), d(hx, gy) + d(Jy, fx)

2
}.

Let us consider φ(t) : R+ → R+ by φ(t) = 2t and W (t) : R+ → R+ by W (t) = t
2
,∀t > 0.

Case 1: When x, y ∈ [ 1
3
, 2
3
). Then fx = 1

3
, hx = 3

4
, gy = 1

2
, Jy = 1

3
and d(fx, gy) = 1

6
.

Therefore,
∫ d(fx,gy)

0
φ(t)dt = 1

36
. Now,

m4(x, y) = max{d(hx, Jy), d(fx, hx), d(gy, Jy), d(hx, gy) + d(Jy, fx)

2
}

= max{ 5

12
,
5

12
,
1

6
,
1

8
}

=
5

12
.

Also
∫ 3

4
0

φ(t)dt−W (
∫ 3

4
0

φ(t)dt) = 25
144

− 25
288

= 25
288

.
Thus we have, ∫ d(fx,gy)

0

φ(t)dt ≤
∫ m4(x,y)

0

φ(t)dt)−W (

∫ m4(x,y)

0

φ(t)dt).

for x, y ∈ [ 1
3
, 2
3
).

Case 2: When x, y ∈ [ 2
3
, 1). Then fx = 2

3
, hx = 2

3
, gy = 2

3
, Jy = 1− y

2
, and d(fx, gy) = 0.
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Then
∫ d(fx,gy)

0
φ(t)dt = 0, where 2

3
≤ y < 1.

Now,

m4(x, y) = max{−1

3
+

x

2
, 0,−1

3
+

x

2
,
1

2
(
x

2
− 1

3
)}

=
x

2
− 1

3
,
2

3
≤ y < 1.

Thus we have, ∫ m4(x,y)

0

φ(t)dt−W (

∫ (m4(x,y))

0

φ(t)dt) >

∫ d(fx,gy)

0

φ(t)dt.

Hence, it follows from above cases that
∫ d(fx,gy)

0
φ(t)dt ≤

∫m4(x,y)

0
φ(t)dt−W (

∫ (m4(x,y))

0
φ(t)dt).

Thus the above example satisfies all the conditions of Theorem 2.8 and the unique common
fixed point of f, g, h, and J is 2

3
∈ X.

Theorem 2.12. Let (f, h) and (g, J) be two pairs of self mappings on a metric space
(X, d). Then if f, g, h and J posesses a unique common fixed point in X, then the
pair (f, h) and (g, J) satisfies common limit in the range of h and J property.

Proof: Suppose w is the unique fixed point of f, g, h and J , that is fw = gw =
hw = Jw = w.
Let xn = {w + 1

n}, yn = {w − 1
n} ,∀n ∈ N be a sequence in X. Then xn → w

as n → ∞ and since w is a fixed point of f , so f is continuous at w. Therefore,
fxn → fw = w as n→ ∞. Similarly we get, limn→∞ hxn = w, and limn→∞ gyn =
limn→∞ Jyn = w.
Thus we have,

lim
n→∞

fxn = lim
n→∞

hxn = lim
n→∞

gyn = lim
n→∞

Jyn = w ∈ h(X) ∩ J(X).

We present an example for the above Theorem 2.12, to show that the existence
of unique common fixed point of four mappings in a metric space will guarantee
that the four mappings satisfy common limit range property.

Example 2.13. Let X = [0, ∞) be a metric space with the usual metric d(x, y) =
|x− y|, for all x, y ∈ X and f, g, h, and J : X → X, defined by

f(x) =

{
x
6
, for x ∈ [0, 2),

2x− 2, for x ∈ [2,∞),
h(x) =

{
x
4
, for x ∈ [0, 2),

3x− 4, for x ∈ [2,∞)

g(x) =

{
0, for x ∈ [0, 2),
x
2
− 1, for x ∈ [2,∞)

J(x) =

{
x, for x ∈ [0, 2),
x− 2, for x ∈ [2,∞)

Here 0 is the unique common fixed point of f, g, h, and J .
Let {xn} = { 1

n
} and {yn} = { 1

n+1
} be two sequences in X. Then

lim
n→∞

fxn = lim
n→∞

f(
1

n
) = lim

n→∞
(
1

6n
) = 0;

lim
n→∞

hxn = lim
n→∞

h(
1

n
) = lim

n→∞

1

4n
= 0;

lim
n→∞

gyn = lim
n→∞

g(
1

n+ 1
) = 0;

lim
n→∞

Jyn = lim
n→∞

J(
1

n+ 1
) = lim

n→∞
(

1

n+ 1
) = 0.

lim
n→∞

fxn = lim
n→∞

hxn = lim
n→∞

gyn = lim
n→∞

Jyn = 0 ∈ h(X) ∩ J(X).
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But the converse of the Theorem 2.12 is not true. That is the condition in
Theorem 2.12 is only sufficient, but not necessary. Below we present an example
to show that the mappings f, g, h, and J in a metric space satisfy common limit in
the range of h and J property but it has no common fixed point in X.

Example 2.14. Let X = [0, ∞) be a metric space with the usual metric d(x, y) =
|x− y|, for all x, y ∈ X and f, g, h, and J : X → X, defined by

f(x) =

{
x
3
, for x ∈ [0, 2),

2x− 2, for x ∈ [2,∞),
h(x) =

{
x
2
, for x ∈ [0, 2),

3x− 4, for x ∈ [2,∞)

g(x) =

{
1
2
, for x ∈ [0, 2),

x
2
− 1, for x ∈ [2,∞)

J(x) =

{
3
4
, for x ∈ [0, 2),

x− 2, for x ∈ [2,∞)

Let {xn} = { 1
n
} and {yn} = {2 + 1

n
} be two sequences in X. Then

lim
n→∞

fxn = lim
n→∞

f(
1

n
) = lim

n→∞
(
1

3n
) = 0;

lim
n→∞

hxn = lim
n→∞

h(
1

n
) = lim

n→∞

1

2n
= 0 = h(0);

lim
n→∞

gyn = lim
n→∞

g(2 +
1

n
) = lim

n→∞
(
1

2n
) = 0;

lim
n→∞

Jyn = lim
n→∞

J(2 +
1

n
) = lim

n→∞
(
1

n
) = 0 = J(2).

lim
n→∞

fxn = lim
n→∞

hxn = lim
n→∞

gyn = lim
n→∞

Jyn = 0 ∈ h(X) ∩ J(X).

But there is no common fixed point of f, g, h, and J in X.

Now we present a necessary condition for the existence of a unique common
fixed point of four mappings in a metric space which satisfies common limit range
property. First we prove a lemma.

Lemma 2.15. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) share (CLRhJ) property and for each x, y ∈ X

ϕ(

∫ d(fx,gy)

0

φ(t)dt) ≤ ϕ(

∫ m1(x,y)

0

φ(t)dt) −
∫ ψ(m1(x,y))

0

φ(t)dt.

where, (φ, ϕ, ψ) ∈ Φ1 × Φ2 × Φ3. Then if the pairs C(f, h) ̸= ϕ and C(g, J) ̸= ϕ .

Proof: Assume that the pairs (f, h) and (g, J) share (CLRhJ) property, then
there exist two sequences {xn} and {yn} in X such that

lim
n→∞

fxn = lim
n→∞

hxn = lim
n→∞

gyn = lim
n→∞

Jyn = z, (5)

for some z ∈ h(X) ∩ J(X).
Since z ∈ h(X), there exists a point u ∈ X such that hu = z. Thus equation 5
becomes

lim
n→∞

fxn = lim
n→∞

hxn = lim
n→∞

gyn = lim
n→∞

Jyn = z = hu.

Now, we claim that fu = hu. If not then fu ̸= hu.
Then on putting x = u and y = yn in the condition of the theorem , we have

ϕ(

∫ d(fu,gyn)

0

φ(t)dt) ≤ ϕ(

∫ m1(u,yn)

0

φ(t)dt) −
∫ ψ(m1(u,yn))

0

φ(t)dt (6)
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Now,m1(u, yn) = max{d(hu, Jyn), d(fu, hu), d(gyn, Jyn), d(hu,gyn)+d(Jyn,fu)2 , d(fu,hu)d(gyn,Jyn)1+d(hu,Jyn)
,

d(fu,Jyn)d(gyn,hu)
1+d(hu,Jyn)

, d(fu, hu) 1+d(hu,gyn)+d(Jyn,fu)1+d(fu,hu)+d(Jyn,gyn)
}.

Taking the limit n→ ∞ we get,

limn→∞m1(u, yn) = max{d(z, z), d(fu, z), d(z, z), d(z,z)+d(z,fu)2 , d(fu,z)d(z,z)1+d(z,Jyn)
, d(fu,z)d(z,z)1+d(z,z) ,

d(fu, z) 1+d(z,z)+d(z,fu)1+d(fu,z)+d(z,z)}.

lim
n→∞

m1(u, yn) = max{0, d(fu, z), 0, d(z, fu)
2

, 0, 0, d(fu, z)} = d(fu, z). (7)

Now, taking the upper limit as n → ∞ in equation 6 and since (φ, ϕ, ψ) ∈ Φ1 ×
Φ2 × Φ3, we get,

ϕ(

∫ d(fu,z)

0

φ(t)dt) = lim
n→∞

supϕ(

∫ d(fu,gyn)

0

φ(t)dt)

≤ lim
n→∞

sup{ϕ(
∫ m1(u,yn)

0

φ(t)dt) −
∫ ψ(m1(u,yn))

0

φ(t)dt}

≤ lim
n→∞

supϕ(

∫ m1(u,yn)

0

φ(t)dt) − lim
n→∞

inf

∫ ψ(m1(u,yn))

0

φ(t)dt.

≤ lim
n→∞

sup ϕ(

∫ m1(u,yn)

0

φ(t)dt) − lim
n→∞

inf

∫ ψ(m1(u,yn))

0

φ(t)dt.

By using Lemma 1.25 we get,

ϕ(

∫ d(fu,z)

0

φ(t)dt) ≤ ϕ(

∫ d(fu,z)

0

φ(t)dt)−
∫ ψd(fu,z)

0

φ(t)dt < ϕ(

∫ d(fu,z)

0

φ(t)dt).

which leads to a contradiction. Hence, fu = hu. So

fu = hu = z. (8)

Similarly if one considers that z ∈ J(X), then there exists a point v ∈ X such that
Jv = z. Thus equation 5 becomes

lim
n→∞

fxn = lim
n→∞

hxn = lim
n→∞

gyn = lim
n→∞

Jyn = z = Jv.

Here, we claim that d(Jv, gv) = 0. Suppose if d(Jv, gv) > 0.
Then on putting x = xn and y = v in the theorem one gets,

Jv = gv = z. (9)

Thus by combining equation 8 and 9 we get, fu = hu = z = Jv = gv.
Thus the result follows.

Theorem 2.16. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) share (CLRhJ) property and for each x, y ∈ X

ϕ(

∫ d(fx,gy)

0

φ(t)dt) ≤ ϕ(

∫ m1(x,y)

0

φ(t)dt) −
∫ ψ(m1(x,y))

0

φ(t)dt

where, (φ, ϕ, ψ) ∈ Φ1 × Φ2 × Φ3. Then if the pairs (f, h) and (g, J) are weakly
compatible mappings, f, g, h, and J will have a unique common fixed point in X.
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Proof: From the proof of the above Lemma 2.15, we get,

fu = hu = z = Jv = gv.

If suppose that ft = ht for some t ̸= u. Then on putting x = t and y = yn in
the theorem we get, ft = z. So we have ht = ft = z = hu = fu, which implies
that z is the unique point of coincidence of (f, h), since (f, h) is weakly compatible
it follows from Lemma 1.24 that z is the unique common fixed point of f and h.
Similarly one can easily prove that z is the unique common fixed point of g and J .
Thus z is the unique common fixed point of f, g, h and J .

Example 2.17. Let (X, d) be a metric space with the usual metric d(x, y) = |x−y|,
for all x, y ∈ X and f, g, h, J : X → X, defined by

f(x) =

{
1, for x ∈ (0, 1],
1
6
, for x ∈ (1, 2),

g(x) =

{
1, for x ∈ (0, 1],
1
8
, for x ∈ (1, 2),

h(x) =

{
1, for x ∈ (0, 1],
1
2
, for x ∈ (1, 2),

J(x) =

{
1, for x ∈ (0, 1],
1
3
, for x ∈ (1, 2),

Let {xn} = 1
n and {yn} = 1

n+2 be two sequences in X. Then

lim
n→∞

fxn = lim
n→∞

f(
1

n
) = 1;

lim
n→∞

hxn = lim
n→∞

h(
1

n
) = 1;

lim
n→∞

gyn = lim
n→∞

g(
1

n+ 1
) = 1;

lim
n→∞

Jyn = lim
n→∞

J(
1

n+ 1
) = 1.

Thus

lim
n→∞

fxn = lim
n→∞

hxn = lim
n→∞

gyn = lim
n→∞

Jyn = 1 ∈ h(x) ∩ J(X).

That is, the pair (f, h) and (g, J) share (CLRhJ) property.
Also, we have fx = hx,∀x ∈ (0, 1] and f(h(x)) = 1 = h(f(x)). So (f, h) is weakly
compatible. Similarly (g, J) is also weakly compatilbe mappings.
Let us consider

φ(t) : R+ → R+ by φ(t) = 2t,

ϕ(t) : R+ → R+ by ϕ(t) = t,

and
ψ(t) : R+ → R+ by ψ(t) as ceiling function.

Case 1: When x, y ∈ (0, 1].

Then fx = hx = gy = Jy = 1 and m1(x, y) = 0. Therefore, ϕ(
∫ d(fx,gy)
0

φ(t)dt) = 0.

Also ϕ(
∫m1(x,y)

0
φ(t)dt) −

∫ ψ(m1(x,y))

0
φ(t)dt = 0

Case 2: When x, y ∈ (1, 2]). Then fx = 1
6 , hx = 1

3 , gy = 1
8 , Jy = 1

2 , and

m1(x, y) = max{1
6
,
1

6
,
3

8
,
13

48
,
3

50
,
1

15
,
1

6
} =

3

8
.

Thus we have,

ϕ(
∫ d(fx,gy)
0

φ(t)dt) = ϕ( 1
576 ) =

1
576 , and

ϕ(
∫m1(x,y)

0
φ(t)dt) −

∫ ψ(m1(x,y))

0
φ(t)dt = 9

64 > ϕ(
∫ d(fx,gy)
0

φ(t)dt).



342 JIGMI DORJEE BHUTIA AND KALISHANKAR TIWARY EJMAA-2020/8(2)

Hence, it follows from above cases that

ϕ(
∫ d(fx,gy)
0

φ(t)dt) ≤ ϕ(
∫m1(x,y)

0
φ(t)dt) −

∫ ψ(m1(x,y))

0
φ(t)dt.

Thus the above example satisfies all the conditions of Theorem 2.16 and The unique
common fixed point of f, g, h, and J is 1 ∈ X.

We now make one observation here that the Theorem 2.5 and Theorem 2.16
differ only by the contraction conditions of integral type. We present an example
to conclude that these two theorems are independent of each other.

Example 2.18. Let us take φ : R+ → R+ by φ(x) = 2x, ψ : R+ → R+ by ψ(x) = x
and

ϕ(x) =

{
3x
4 , for x ∈ (0, 34 ),
x
4 , for x ∈ [34 ,∞),

Clearly, (ϕ, ψ, φ) ∈ Φ3 × Φ2 × Φ1.

Suppose a > 0, then ϕ(
∫ a
0
φ(t)dt) = ϕ(a2) =

{
3a2

4 , for a ∈ (0, 34 ),
a2

4 , for a ∈ [34 ,∞),

and
∫ ϕ(a)
0

φ(t)dt = (ϕ(a))2 =

{
( 3a4 )2, for a ∈ (0, 34 ),
(a4 )

2, for a ∈ [ 34 ,∞),

Which implies that ϕ(
∫ a
0
φ(t)dt) >

∫ ϕ(a)
0

φ(t)dt.

Now we take another example:

Example 2.19. Let us take φ : R+ → R+ by φ(x) = 2x, ψ : R+ → R+ by ψ(x) = x
and

ϕ(x) =

{
2x, for x ∈ (0, 1),
x+ 1

2 , for x ∈ [1,∞),

Clearly, (ϕ, ψ, φ) ∈ Φ3 × Φ2 × Φ1.

Suppose a > 0, then ϕ(
∫ a
0
φ(t)dt) = ϕ(a2) =

{
2a2, for a ∈ (0, 1),
a2 + 1

2 , for a ∈ [1,∞),

and
∫ ϕ(a)
0

φ(t)dt = (ϕ(a))2 =

{
(2a)2, for a ∈ (0, 1),
(a+ 1

2 )
2, for a ∈ [1,∞),

Which implies that ϕ(
∫ a
0
φ(t)dt) <

∫ ϕ(a)
0

φ(t)dt.

Corollary 2.20. Let (X, d) be a metric space and f, h, J : X → X such that (f, h)
and (f, J) share (CLRhJ) property and for each x, y ∈ X

ϕ(

∫ d(fx,fy)

0

φ(t)dt) ≤ ϕ(

∫ p(x,y)

0

φ(t)dt) −
∫ ψ(p(x,y))

0

φ(t)dt

where, (φ, ϕ, ψ) ∈ Φ1×Φ2×Φ3 and p(x, y) = max{d(hx, Jy), d(fx, hx), d(fy, Jy), d(hx,fy)+d(Jy,fx)2 ,
d(fx,hx)d(fy,Jy)

1+d(hx,Jy) , d(fx,Jy)d(fy,hx)1+d(hx,Jy) , d(fx, hx) 1+d(hx,fy)+d(Jy,fx)1+d(fx,hx)+d(Jy,fy)}.
Then if the pairs (f, h) and (f, J) are weakly compatible that f, h, J will have a
unique common fixed point in X.

Corollary 2.21. Let (X, d) be a metric space and f, J : X → X such that (f, J)
share (CLRJ) property and for each x, y ∈ X

ϕ(

∫ d(fx,fy)

0

φ(t)dt) ≤ ϕ(

∫ q(x,y)

0

φ(t)dt) −
∫ ψ(q(x,y))

0

φ(t)dt)
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where (φ, ϕ, ψ) ∈ Φ1 × Φ2 × Φ3 and

q(x, y) = max{d(Jx, Jy), d(fx, Jx), d(fy, Jy), d(Jx,fy)+d(Jy,fx)2 , d(fx,Jx)d(fy,Jy)1+d(Jx,Jy) , d(fx,Jy)d(fy,Jx)1+d(Jx,Jy) ,

d(fx, Jx) 1+d(Jx,fy)+d(Jy,fx)1+d(fx,Jx)+d(Jy,fy)}.
Then if the pair (f, J) are weakly compatible that f and J will have a unique com-
mon fixed point in X.

Theorem 2.22. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) share (CLRhJ) property and for each x, y ∈ X

ϕ(

∫ d(fx,gy)

0

φ(t)dt) ≤ ϕ(

∫ m2(x,y)

0

φ(t)dt) −
∫ ψ(m2(x,y))

0

φ(t)dt

where, (φ, ϕ, ψ) ∈ Φ1 × Φ2 × Φ3. Then if the pairs (f, h) and (g, J) are weakly
compatible that f, g, h, J will have a unique common fixed point in X.

Proof: Proof is same as Theorem 2.16.

Theorem 2.23. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) share (CLRhJ) property and for each x, y ∈ X

ϕ(

∫ d(fx,gy)

0

φ(t)dt) ≤ ϕ(

∫ m3(x,y)

0

φ(t)dt) −
∫ ψ(m3(x,y))

0

φ(t)dt)

where, (φ, ϕ, ψ) ∈ Φ1 × Φ2 × Φ3. Then if the pairs (f, h) and (g, J) are weakly
compatible then f, g, h, J will have a unique common fixed point in X.

Proof: Proof is same as Theorem 2.16.

Theorem 2.24. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) share (CLRhJ) property and for each x, y ∈ X

ϕ(

∫ d(fx,gy)

0

φ(t)dt) ≤ ϕ(

∫ m4(x,y)

0

φ(t)dt) −
∫ ψ(m4(x,y))

0

φ(t)dt

where, (φ, ϕ, ψ) ∈ Φ1 × Φ2 × Φ3. Then if the pairs (f, h) and (g, J) are weakly
compatible then f, g, h, J will have a unique common fixed point in X.

Proof: Proof is same as Theorem 2.16.

Theorem 2.25. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) share (CLRhJ) property and for each x, y ∈ X

ϕ(

∫ d(fx,gy)

0

φ(t)dt) ≤ ϕ(

∫ M3(x,y)

0

φ(t)dt) −
∫ ψ(M3(x,y))

0

φ(t)dt

where, (φ, ϕ, ψ) ∈ Φ1 × Φ2 × Φ3. Then if the pairs (f, h) and (g, J) are weakly
compatible then f, g, h, J will have a unique common fixed point in X.

Proof: Proof is same as Theorem 2.16.

The following theorem is Theorem 2.2 in [19].

Theorem 2.26. Let (X, d) be a metric space and f, g, h, J : X → X such that (f, h)
and (g, J) share (CLRhJ) property and for each x, y ∈ X∫ d(fx,gy)

0

φ(t)dt ≤
∫ M3(x,y)

0

φ(t)dt−
∫ ψ(M3(x,y))

0

φ(t)dt
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where, (φ,ψ) ∈ Φ1 × Φ3. Then if the pairs (f, h) and (g, J) are weakly compatible
then f, g, h, J will have a unique common fixed point in X.

Proof: Consider ϕ(t) = t in the Theorem 2.25 we get the result.

If we consider M3(x, y) = d(x, y) in the above theorem then we get the Theorem
2.1 from [19].
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