
Electronic Journal of Mathematical Analysis and Applications
Vol. 9(1) Jan. 2021, pp. 59-66.
ISSN: 2090-729X(online)
http://math-frac.org/Journals/EJMAA/

————————————————————————————————

COMMON FIXED POINT THEOREM IN MENGER SPACE

USING (CLRg) PROPERTY

DR. VARSHA SHARMA

Abstract. The object of this paper is to establish a common fixed point
theorem for semi-compatible pair of self maps by using CLRg Property in

menger space.

1. Introduction

There have been a number of generalizations of metric space. One such general-
ization is Menger space initiated by Menger [2]. It is a probabilistic generalization in
which we assign to any two points x and y, a distribution function Fx,y. Schweizer
and Sklar [6] studied this concept and gave some fundamental results on this space.
Sehgal and Bharucha-Reid [7] obtained Banach contraction principal in a complete
Menger space, which is a milestone in developing fixed point theory in Menger
space. Sessa [8] initiated the tradition of improving comutativity in fixed point
theorems by introducing the notion of weakly commuting maps in metric spaces.
Jungck [1] soon enlarged this concept to compatible maps. The notion of com-
patible mapping in a Menger space has been introduced by Mishra [3]. Pant [4]
introduced the notion of reciprocal continuity of mappings in metric spaces. Popa
[5] proved theorem for weakly compatible non-continuous mapping using implicit
relation. Singh and Jain [9] have been introduced semi-compatible , compatible
and weak compatible maps in Menger space.

B. Singh et. al. [10] introduced the notion of semi compatible maps in fuzzy
metric space. In 2011, Sintunayarat and Kuman [11] introduced the concept of
common limit in the range property. Chouhan et. al. [12] utilize the notion of
common limit range property to prove fixed point theorems for weakly compatible
mapping in fuzzy metric space.

In 2012, Jain et al. [13] extended the concept of CLRg property in the coupled
case and also established a common fixed point theorem for weakly compatible
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mappings in fuzzy metric spaces. Most recently, Hierro and Sintunavarat [14] gen-
eralized the results in [13] by using the generalized contractive conditions and the
CLRg property in fuzzy metric spaces.

2. Preliminaries

Definition 2.1 A mapping F : R → R+ is called a distribution if it is non-
decreasing left continuous with inf{F (t) : t ∈ R} = 0 and sup{F (t) : t ∈ R} = 1.
We shall denote by L the set of all distribution functions while H will always denote
the specific distribution function defined by

H(x) =

{
0, x ≤ 0
1, x > 0.

Definition 2.2 A Probabilistic metric space (PM-space) is an ordered pair (X,F ),
where X is an abstract set of elements and F : X×X → L, defined by (p, q)→ Fp,q,
where L is the set of all distribution functions i.e. L =

{
Fp,q/p,q ∈ X

}
, if the func-

tions Fp,q satisfy.
(a) Fp,q(x) = 1, for all x > 0, if and only if p = q;
(b) Fp,q(0) = 0;
(c) Fp,q = Fq,p;
(d) If Fp,q(x) = 1 and Fq,r(y) = 1 then Fp,r(x+ y) = 1.

Definition 2.3 A mapping t : [0, 1]× [0, 1]→ [0, 1] is called a t-norm if
(a) t(a, 1) = a;
(b) t(a, b) = t(b, a);
(c) t(c, d) ≥ t(a, b) for c ≥ a, d ≥ b;
(d) t

(
t(a, b), c

)
= t

(
a, t(b, c)

)
,

for all a, b, c, d ∈ [0, 1].

Definition 2.4 A Menger space is a triplet (X,F, t) where (X,F ) is PM-space and
t is a t-norm such that ∀ p, q, r ∈ X and ∀ x, y ≥ 0

Fp,r(x+ y) ≥ t
(
Fp,q(x), Fq,r(y)

)
.

Schweizer and Sklar [6] proved that if (X,F, t) is a Menger space with sup0<x<1 t(x, x) =
1, then (X,F, t) is a Hausdorff topological space in the topology induced by the
family of (ε, λ)-neighborhoods,

{
Up(ε, λ) : p ∈ X, ε > 0, λ > 0

}
, where Up(ε, λ) ={

x ∈ X : Fx,p(ε) > 1− λ
}

.

Definition 2.5 Let (X,F, t) be a Menger space with sup0<x<1 t(x, x) = 1. A se-
quence {pn} inX is said to converge to a point p inX (written as pn → p) if for every
ε > 0 and λ > 0,∃ an integer M(ε, λ) such that Fpn,p(ε) > 1 − λ, ∀ n ≥ M(ε, λ).
Further, the sequence is said to be a cauchy sequence if for each ε > 0 and λ > 0,∃,
an integer M(ε, λ) such that Fpn,pm(ε) > 1−λ, ∀ n,m ≥M(ε, λ). A Menger space
(X,F, t) is said to be complete if every cauchy sequence in it converges to a point
of it.
A complete metric space can be treated as a complete menger space in the following
way.
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Proposition 2.6 If (X, d) is a metric space then the metric d induces a mapping
X×X → L, defined by Fp,q(x) = H

(
x−d(p, q)

)
, ∀ p, q ∈ X and x ∈ R. Further, if

t : [0, 1]× [0, 1]→ [0, 1] is defined by t(a, b) = min{a, b}, then (X,F, t) is a Menger
space. It is complete if (X, d) is complete. Then space (X,F, t) so obtained is called
the induced Menger space.

Proposition 2.7 In a Menger space (X,F, t), if t(x, x) ≥ x, ∀ x ∈ [0, 1] then
t(a, b) = min{a, b}, ∀ a, b ∈ [0, 1].

Definition 2.8 Self mappings A and S of a Menger space (X,F, t) are said to be
weak compatible if they commute at their coincidence points i.e. Ax = Sx for
x ∈ X implies ASx = SAx.

Definition 2.9 Self mappings A and S of a Menger space (X,F, t) are called com-
patible if FASpn,SApn

(x)→ 1, ∀ x > 0, whenever {pn} is a sequence in X such that
Apn, Spn → u, for some u ∈ X, as n→∞.

Definition 2.10 Self mappings A and S of a Manger space (X,F, t) are called
semi-compatible if FASpn,Su(x) → 1, ∀ x > 0, whenever {pn} is a sequence in X
such that Apn

, Spn
→ u, for some u ∈ X, as n→∞.

Proposition 2.11 If self mappings A and S of a Menger space (X,F, t) are semi-
compatible then they are weak compatible.

Proposition 2.12 Let S and T be two self maps on a Menger space (X,F, t) with
t(a, a) ≥ a, ∀ a ∈ [0, 1] of which T is continuous. Then (S, T ) is semi-compatible if
and only if (S, T ) is compatible.

Lemma 2.13 Let {pn} be a sequence in a Menger space (X,F, t) with continu-
ous t-norm t(x, x) ≥ x, ∀ x ∈ [0, 1]. If k ∈ (0, 1) such that for all x > 0 and
n ∈ N, Fpn,pn+1(kx) ≥ Fpn−1,pn(x). Then {pn} is a Cauchy sequence in X.

Definition 2.14 Let (X,F, t) be a menger space with continuous t-norm t(x, x) ≥
x, ∀ x ∈ [0, 1]. Then two mappings f, g : X → X are said to have the CLRg
property if there exist a sequence {xn} in X and a point z in X such that

lim
n→∞

fxn = lim
n→∞

gxn = gz.

Definition 2.15 Two pairs (A,S) and (B, T ) of self mappings of a menger space
(X,F, t) are said to satisfy the (CLRST ) property if there exist two sequence {xn}
and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = Sz, for some z ∈ S(X) and z ∈ T (X).

Definition 2.16 Two pairs (A,S) and (B, T ) of self mappings of a menger space
(X,F, t) are said to share CLRg of S property if there exist two sequence {xn} and
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{yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = Sz, for some z ∈ X.

Example 2.17 Let X = [0,∞) be the usual metric space. Define g, h : X → X by
gx = x+3 and gx = 4x, for all x ∈ X. We consider the sequence {xn} = {1+1/n}.
Since, limn→∞ gxn = limn→∞ hxn = 4 = h(1) ∈ X. Therefore g and h satisfy the
(CLRg) property.

Definition 2.18 We will apply an implicit relation as, Let Φ be set of all real con-
tinuous functions φ : (R+)4 → R, nondecreasing in first argument and satisfying
the following conditions:
(i) For u, v ≥ 0, φ(u, v, v, u) ≥ 0 or φ(u, v, u, v) ≥ 0 imply u ≥ v.
(ii) φ(u, u, 1, 1) ≥ 0 implies u ≥ 1.

Example 2.19 Define φ(t1, t2, t3, t4) = 15t1 − 13t2 + 5t3 − 7t4. Then φ ∈ Φ.

3. Main Result

In the following theorem we replace the continuity condition by using (CLRg) prop-
erty.

Theorem 3.1 Let A,B, S and T be self mapping on a complete menger space
(X,F, t), satisfying
(a) A(X) ⊆ T (X), B(X) ⊆ S(X),
(b) (B, T ) is semi compatible,
(c) For some φ ∈ Φ, there exists k ∈ (0, 1) such that for all x, y ∈ X and t > 0,

φ
(
FAx,By(kt), FSx,Ty(t), FAx,Sx(t), FBy,Ty(kt)

)
≥ 0 (1)

φ
(
FAx,By(kt), FSx,Ty(t), FAx,Sx(kt), FBy,Ty(t)

)
≥ 0 (2)

If the pair (A,S) and (B, T ) share the common limit in the range of S property,
then A,B, S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. Since A(X) ⊂ T (X) and B(X) ⊂ S(X),
there exist x1, x2 ∈ X such that Ax0 = Tx1 and Bx1 = Sx2. Inductively, we
construct the sequences {yn} and {xn} in X such that

y2n+1 = Ax2n = Tx2n+1, y2n+2 = Bx2n+1 = Sx2n+2

for n = 0, 1, 2, .... Now putting in (1) x = x2n, y = x2n+1, we obtain

φ
(
FAx2n,Bx2n+1(kt), FSx2n,Tx2n+1(t), FAx2n,Sx2n(t), FBx2n+1,Tx2n+1(kt)

)
≥ 0

that is

φ
(
Fy2n+1,y2n+2

(kt), Fy2n,y2n+1
(t), Fy2n+1,y2n

(t), Fy2n+2,y2n+1
(kt)

)
≥ 0

Using (i), we get

Fy2n+2,y2n+1
(kt) ≥ Fy2n+1,y2n

(t) (3)
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Analogously, putting x = x2n+2, y = x2n+1 in (2), we have

φ
(
FAx2n,Bx2n+1(kt), FSx2n+2,Tx2n+1(t), FAx2n+2,Sx2n+2(kt), FBx2n+1,Tx2n+1(t)

)
≥ 0

φ
(
Fy2n+3,y2n+2(kt), Fy2n+2,y2n+1(t), Fy2n+3,y2n+2(kt), Fy2n+2,y2n+1(t)

)
≥ 0

Using (i), we get

Fy2n+3,y2n+2(kt) ≥ Fy2n+1,y2n+2(t) (4)

Thus, from (3) and (4), for n and t, we have

Fyn,yn+1
(kt) ≥ Fyn−1,yn

(t)

Hence, by Lemma 2.13, {yn} is a Cauchy sequence in X, which is complete. There-
fore, {yn} converges to z in X. That is {Ax2n}, {Tx2n+1}, {Bx2n+1} and {Sx2n}
also converges to z in X.
Since the pair (A,S) and (B, T ) share the common limit in the range of S property,
then there exist two sequences {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = Sz, for some z ∈ X

First we prove that Az = Sz
By (1), putting x = z and y = yn, we get

φ
(
FAz,Byn(kt), FSz,Tyn(t), FAz,Sz(t), FByn,Tyn(kt)

)
≥ 0

Taking limit n→∞, we get

φ
(
FAz,Sz(kt), FSz,Sz(t), FAz,Sz(t), FSz,Sz(kt)

)
≥ 0

As φ is non-decreasing in first argument, we have

φ
(
FAz,Sz(t), 1, FAz,Sz(t), 1

)
≥ 0

using (ii) , we have
FAz,Sz(t) ≥ 1 for all t > 0

which gives FAz,Sz(t) = 1, that is Az = Sz (5)

Since, A(X) ⊆ T (X), therefore there exist u ∈ X, such that Az = Tu
(6)

Again by inequality (1), putting x = z and y = u, we get

φ
(
FAz,Bu(kt), FSz,Tu(t), FAz,Sz(t), FBu,Tu(kt)

)
≥ 0

using (5) and (6), we get

φ
(
FTu,Bu(kt), FAz,Az(t), FSz,Sz(t), FBu,Tu(kt)

)
≥ 0

φ
(
FTu,Bu(kt), 1, 1, FBu,Tu(kt)

)
≥ 0

using (i) , we have FTu,Bu(kt) ≥ 1 for all t > 0,

which gives FTu,Bu(kt) = 1. Thus Tu = Bu (7)

Thus from (5), (6), (7), we get Az = Sz = Tu = Bu (8)



64 DR. VARSHA SHARMA EJMAA-2021/9(1)

Now we will prove that Az = z
By inequality (1), putting x = z and y = x2n+1,

φ
(
FAz,Bx2n+1

(kt), FSz,Tx2n+1
(t), FAz,Sz(t), FBx2n+1,Tx2n+1

(kt)
)
≥ 0

taking limit n→∞, using (i) we get

φ
(
FAz,z(kt), FSz,z(t), FAz,Sz(t), Fz,z(kt)

)
≥ 0

φ
(
FAz,z(kt), FAz,z(t), FAz,Az(t), Fz,z(kt)

)
≥ 0

φ
(
FAz,z(kt), FAz,z(t), 1, 1

)
≥ 0

as φ is non-decreasing in first argument, we have

φ
(
FAz,z(t), FAz,z(t), 1, 1

)
≥ 0

using (ii) , we have FAz,z(t) ≥ 1 for all t > 0, which gives FAz,z(t) = 1. Thus
Az = z.
Therefore from (8), we get z = Tu = Bu
Now Semicompatibility of (B, T ) gives BTy2n+1 → Tz, i. e. Bz = Tz Now putting
x = z and y = z in inequality (1), we get

φ
(
FAz,Bz(kt), FSz,Tz(t), FAz,Sz(t), FBz,Tz(kt)

)
≥ 0

φ
(
FAz,Bz(kt), FAz,Bz(t), FAz,Az(t), FBz,Bz(kt)

)
≥ 0

φ
(
FAz,Bz(kt), FAz,Bz(t), 1, 1

)
≥ 0

as φ is non-decreasing in first argument, we have

φ
(
FAz,Bz(t), FAz,Bz(t), 1, 1

)
≥ 0

using (ii), we have FAz,Bz(t) ≥ 1 for all t > 0, which gives FAz,Bz(t) = 1. Thus
Az = Bz and hence Az = Bz = z. combining all results , we get z = Az = Bz =
Sz = Tz.
From this we conclude that z is a common fixed point of A,B, S and T .

Uniqueness. Let z1 be another common fixed point of A,B, S and T . Then
z1 = Az1 = Bz1 = Sz1 = Tz1 and z = Az = Bz = Sz = Tz then by inequality (1),
putting x = z and y = z1, we get

φ
(
FAz,Bz1(kt), FSz,Tz1(t), FAz,Sz(t), FBz1,Tz1(kt)

)
≥ 0

φ
(
Fz,z1(kt), Fz,z1(t), Fz,z(t), Fz1,z1(kt)

)
≥ 0

φ
(
Fz,z1(kt), Fz,z1(t), 1, 1

)
≥ 0

as φ is non-decreasing in first argument, we have

φ
(
Fz,z1(t), Fz,z1(t), 1, 1

)
≥ 0

using (ii), we have Fz,z1(t) ≥ 1 for all t > 0, which gives Fz,z1(t) = 1. Thus z = z1.
Thus z is the unique common fixed point of A,B, S and T .
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If we increase the number of self maps from four to six then we have the following.

Corollary 3.2 Let A,B, S, T, I and J be self mappings on a complete menger space
(X,F, t), satisfying
(a) AB(X) ⊆ J(X) and ST (X) ⊆ I(X),
(b) (ST, J) is semi compatible,
(c) For some φ ∈ Φ, there exists k ∈ (0, 1) such that for all x, y ∈ X and t > 0,

φ
(
FABx,STy(kt), FIx,Jy(t), FABx,Ix(t), FSTy,Jy(kt)

)
≥ 0 (1)

φ
(
FABx,STy(kt), FIx,Jy(t), FABx,Ix(kt), FSTy,Jy(t)

)
≥ 0 (2)

If the pair (AB, I) and (ST, J) share the common limit in the range of I prop-
erty, then AB,ST, I and J have a unique common fixed point. Furthermore, if the
pairs (A,B), (A, I), (B, I), (S, T ), (S, J) and (T, J) are commuting mapping then
A,B, S, T, I and J have a unique common fixed point.

Proof. From theorem 3.1, z is the unique common fixed point of AB,ST, I and J .
Finally, we need to show that z is also a common fixed point of A,B, S, T, I, and
J . For this, let z be the unique common fixed point of both the pairs (AB, I) and
(ST, J). Then, by using commutativity of the pair (A,B), (A, I) and (B, I), we
obtain

Az = A(ABz) = A(BAz) = AB(Az), Az = A(Iz) = I(Az),

Bz = B(ABz) = B
(
A(Bz)

)
= BA(Bz) = AB(Bz), Bz = B(Iz) = I(Bz),

(3)
which shows that Az and Bz are common fixed point of (AB, I), yielding thereby

Az = z = Bz = Iz = ABz (4)

in the view of uniqueness of the common fixed point of the pair (AB, I). Similarly,
using the commutativity of (S, T ), (S, J), (T, J), it can be shown that

Sz = Tz = Jz = STz = z. (5)

Now, we need to show that Az = Sz(Bz = Tz) also remains a common fixed point
of both the pairs (AB, I) and (ST, I). For this, put x = z and y = z in (1) and
using (4) and (5), we get

φ
(
FABz,STz(kt), FIz,Jz(t), FABz,Iz(t), FSTz,Jz(kt)

)
≥ 0

that is,

φ
(
FAz,Sz(kt), FAz,Sz(t), FAz,Az(t), FSz,Sz(kt)

)
≥ 0

as φ is nondecreasing in first argument, we have

φ
(
FAz,Sz(t), FAz,Sz(t), FAz,Az(t), FSz,Sz(kt)

)
≥ 0

φ
(
FAz,Sz(kt), FAz,Sz(t), 1, 1

)
≥ 0

using (ii), we obtain FAz,Sz(t) ≥ 1 for all t > 0, which gives FAz,Sz(t) = 1, that is,
Az = Sz. Similarly, it can be shown that Bz = Tz. Thus, z is the unique common
fixed point of A,B, S, T, I, and J .
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