NEW OSCILLATION RESULTS TO THIRD ORDER DAMPED DELAY DIFFERENCE EQUATIONS

M. MADHAN, S. SELVARANGAM AND E. THANDAPANI

Abstract

This paper deals with the oscillation of certain class of third order nonlinear delay difference equations with damping. Some new criteria of oscillation of the third order equation in terms of oscillation of a related second order linear difference equation without damping are obtained. Examples are provided to illustrate the main results.

1. Introduction

Consider nonlinear third order delay difference equation of the form

$$
\begin{equation*}
\Delta\left(a_{n} \Delta\left(b_{n}\left(\Delta y_{n}\right)^{\alpha}\right)\right)+p_{n}\left(\Delta y_{n+1}\right)^{\alpha}+q_{n} f\left(y_{n-k}\right)=0, n \geq n_{0} \tag{1}
\end{equation*}
$$

where $n_{0} \in \mathbb{N}$ is a fixed integer, and $\alpha \geq 1$ is a ratio of odd positive integers. We assume that
$\left(H_{1}\right)\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are real positive sequences for all $n \geq n_{0}$, and k is a positive integer;
$\left(H_{1}\right) f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $u f(u)>0$, and $\frac{f(u)}{u^{\beta}} \geq M>0$, for all $u \neq 0$, where $\beta \leq \alpha$ is a ratio of odd positive integers.
By a solution of equation (1), we mean a nontrivial sequence $\left\{y_{n}\right\}$ defined for all $n_{0}-k$, and satisfies equation (1) for all $n \geq n_{0}$. Clearly, if $y_{n}=c_{n}$ for $n=n_{0}-k, n_{0}-\sigma+1, \ldots, n_{0}-1$ are given, then equation (1) has a unique solution satisfying the above initial conditions. A solution of equation (1) is said to be oscillatory if it is neither eventually positive nor eventually negative, and nonoscillatory otherwise. A difference equation is called nonoscillatory if all its solutions are nonoscillatory.
Recently, there has been a great interest in determining the oscillation criteria for various types of second order difference equations, see for example [1] and the references cited therein. However, the study of oscillatory behavior of third order difference equations has considerably received less attention eventhough such equations have wide applications in the fields such as economics, mathematical biology, and many other areas of mathematics in which discrete models are used, see for example $[5,7,11]$.

[^0]The study of oscillation and asymptotic behavior of equation (1) in the continuous case (third-order delay differential equations with damping) and on time scales (third-order delay dynamic equations on time scales) has been investigated in the following papers $[12,13,26]$.
We note that the analog equation of (1) in the continuous case is the functional differential equation

$$
\left(a(t)\left(b(t)\left(y^{\prime}(t)\right)^{\alpha}\right)^{\prime}\right)^{\prime}+p(t)\left(y^{\prime}(t)\right)^{\alpha}+q(t) f(y(t-k))=0
$$

where a, b, p and q are positive real continuous functions, k is a positive constant and $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous with $u f(u)>0$ for $u \neq 0$. For related works regarding the oscillation of some special cases of equation (1), we refer to the papers $[3,6,9]$, and the references cited therein.
From the review of literature, one can see that most of the oscillation results are for the third order difference equations without damping term, see for example $[1,2,8,10,14,15]$, and the references cited therein and very few results available for the equation with damping term $[16,18,19]$. Recently in [5], the authors considered the equation (1) with $\alpha=\beta=1$, and established some sufficient conditions which ensure that all solutions of equation (1) are either oscillatory or tend to zero as $n \rightarrow \infty$.
The purpose of this paper to improve and generalize the results in $[2,4,8,10,14$, $15,16,17,18,19,20,21,22,23,24]$, and present some sufficient conditions which ensure that any solution of equation (1) oscillates when the related second order linear difference equation without delay

$$
\begin{equation*}
\Delta\left(a_{n} \Delta z_{n}\right)+\frac{p_{n}}{b_{n+1}} z_{n+1}=0 \tag{2}
\end{equation*}
$$

is nonoscillatory.
The paper is organized as follows. In Section 2, we present some preliminary lemmas which are used to prove the main results, and in Section 3, we state and prove oscillation theorems. Finally in Section 4, we provide some examples to illustrate the main results.

2. Preliminary Results

For the sake of convenience, we denote $L_{0}\left(y_{n}\right)=y_{n}, L_{1}\left(y_{n}\right)=b_{n}\left(\Delta\left(L_{0}\left(y_{n}\right)\right)\right)^{\alpha}$, $L_{2}\left(y_{n}\right)=a_{n} \Delta\left(L_{1}\left(y_{n}\right)\right)$ and $L_{3}\left(y_{n}\right)=\Delta\left(L_{2}\left(y_{n}\right)\right)$ for all $n \geq n_{0}$. Hence, equation (1) can be written as

$$
L_{3}\left(y_{n}\right)+\frac{p_{n}}{b_{n+1}} L_{1}\left(y_{n+1}\right)+q_{n} f\left(y_{n-k}\right)=0, n \geq n_{0}
$$

If $\left\{y_{n}\right\}$ is a solution of equation (1), then $\left\{z_{n}\right\}=\left\{-y_{n}\right\}$ is a solution of the equation

$$
L_{3}\left(z_{n}\right)+\frac{p_{n}}{b_{n+1}} L_{1}\left(z_{n+1}\right)+q_{n} f^{*}\left(z_{n-k}\right)=0, n \geq n_{0}
$$

where $f^{*}\left(z_{n-k}\right)=-f\left(-z_{n-k}\right)$ and $u f^{*}(u)>0$ for $u \neq 0$. Thus, concerning nonoscillatory solutions of equation (1) we can restrict our attention only to solutions which are positive for all large n.
Define

$$
R_{1}(n, N)=\sum_{s=N}^{n-1} \frac{1}{b_{s}^{1 / \alpha}}, R_{2}(n, N)=\sum_{s=N}^{n-1} \frac{1}{a_{s}}
$$

and

$$
R_{3}(n, N)=\sum_{s=N}^{n-1}\left(\frac{R_{2}(s, N)}{b_{s}}\right)^{\frac{1}{\alpha}}, n \geq N \geq n_{0}
$$

We assume that

$$
\begin{equation*}
R_{1}(n, N) \rightarrow \infty \text { as } n \rightarrow \infty \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}(n, N) \rightarrow \infty \text { as } n \rightarrow \infty \tag{4}
\end{equation*}
$$

We begin with the following lemma given in [5].
Lemma 1 Suppose that equation (2) is nonoscillatory. If $\left\{y_{n}\right\}$ is a nonoscillatory solution of equation (1) for all $n \geq n_{0}$, then there exists an integer $N \geq n_{0}$ such that either $y_{n} L_{1}\left(y_{n}\right)>0$ or $y_{n} L_{1}\left(y_{n}\right)<0$ for all $n \geq N$.
Lemma 2 Let $\left\{y_{n}\right\}$ be a nonoscillatory solution of equation (1) with $y_{n} L_{1}\left(y_{n}\right)>0$ for $n \geq N \geq n_{0}$. Then

$$
\begin{equation*}
L_{1}\left(y_{n}\right) \geq R_{2}(n, N) L_{2}\left(y_{n}\right), n \geq N \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{n} \geq R_{3}(n, N) L_{2}^{1 / \alpha}\left(y_{n}\right), n \geq N \tag{6}
\end{equation*}
$$

Proof. Let $\left\{y_{n}\right\}$ be a nonoscillatory solution of equation (1), say $y_{n}>0, y_{n-k}>0$, and $L_{1}\left(y_{n}\right)>0$ for all $n \geq N$. Since

$$
\Delta\left(a_{n} \Delta\left(b_{n}\left(\Delta y_{n}\right)^{\alpha}\right)\right)=-\frac{p_{n}}{b_{n+1}} L_{1}\left(y_{n+1}\right)-q_{n} f\left(y_{n-k}\right) \leq 0, n \geq N
$$

we have that $a_{n} \Delta\left(b_{n}\left(\Delta y_{n}\right)^{\alpha}\right)$ is nonincreasing for all $n \geq N$, and hence

$$
\begin{aligned}
L_{1}\left(y_{n}\right)=b_{n}\left(\Delta y_{n}\right)^{\alpha} & =b_{N}\left(\Delta y_{N}\right)^{\alpha}+\sum_{s=N}^{n-1} \Delta\left(L_{1}\left(y_{s}\right)\right) \geq \sum_{s=N}^{n-1} \Delta\left(L_{1}\left(y_{s}\right)\right) \\
& \geq a_{n} \Delta\left(b_{n}\left(\Delta y_{n}\right)^{\alpha}\right) \sum_{s=N}^{n-1} \frac{1}{a_{s}}=R_{2}(n, N) L_{2}\left(y_{n}\right)
\end{aligned}
$$

It follows from the last inequality that

$$
\Delta y_{n} \geq\left(\frac{R_{2}(n, N)}{b_{n}}\right)^{1 / \alpha} L_{2}^{1 / \alpha}\left(y_{n}\right)
$$

Now, summing this inequality from N to $n-1$, and then using the fact that $L_{2}\left(y_{n}\right)$ is nonincreasing, we obtain

$$
\begin{aligned}
y_{n} & =y_{N}+\sum_{s=N}^{n-1} \Delta y_{s} \geq \sum_{s=N}^{n-1} \Delta y_{s} \\
& \geq \sum_{s=N}^{n-1}\left(\frac{R_{2}(s, N)}{b_{s}}\right)^{1 / \alpha} L_{2}^{1 / \alpha}\left(y_{s}\right) \\
& \geq R_{3}(n, N) L_{2}^{1 / \alpha}\left(y_{n}\right)
\end{aligned}
$$

for all $n \geq N$. This completes the proof.
Next, consider the second order delay difference equation

$$
\begin{equation*}
\Delta\left(a_{n} \Delta x_{n}\right)=Q_{n} x_{n-l} \tag{7}
\end{equation*}
$$

where $\left\{a_{n}\right\}$ is same as in equation (1), $\left\{Q_{n}\right\}$ is a positive real sequence, and l is a positive integer.
Lemma 3 If condition (3) and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n-l}^{n-1} Q_{s} R_{2}(n-l, s-l)>1 \tag{8}
\end{equation*}
$$

are satisfied, then every bounded solution of equation (7) is oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be a bounded nonoscillatory solution of equation (7), say $x_{n}>0$, and $x_{n-l}>0$ for all $n \geq N \geq n_{0}$. By (7), we have that $\left\{a_{n} \Delta x_{n}\right\}$ is strictly increasing for all $n \geq N$. Hence for any $N_{1} \geq N$, we obtain

$$
\begin{aligned}
x_{n} & =x_{N_{1}}+\sum_{s=N_{1}}^{n-1} \Delta x_{s}=x_{N_{1}}+\sum_{s=N_{1}}^{n-1} \frac{a_{s} \Delta x_{s}}{a_{s}} \\
& >x_{N_{1}}+a_{N_{1}} \Delta x_{N_{1}} \sum_{s=N_{1}}^{n-1} \frac{1}{a_{s}} \\
& =x_{N_{1}}+a_{N_{1}} \Delta x_{N_{1}} R_{2}\left(n, N_{1}\right) .
\end{aligned}
$$

So $\Delta x_{N_{1}}<0$, as otherwise (3) would imply that $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$, a contradiction to the boundedness of $\left\{x_{n}\right\}$. Therefore

$$
\begin{equation*}
x_{n}>0, \Delta x_{n}<0, \text { and } \Delta\left(a_{n} \Delta x_{n}\right)>0, n \geq N \tag{9}
\end{equation*}
$$

Now for $j \geq s \geq N$, we have

$$
\begin{align*}
x_{s} & >x_{s}-x_{j}=-\sum_{t=s}^{j-1} \Delta x_{t}=-\sum_{t=s}^{j-1} \frac{a_{t} \Delta x_{t}}{a_{t}} \\
& \geq-a_{j} \Delta x_{j} \sum_{t=s}^{j-1} \frac{1}{a_{t}}=-R_{2}(j, s) a_{j} \Delta x_{j} \tag{10}
\end{align*}
$$

For $n \geq t \geq N_{1}$, setting $s=i-l$ and $j=n-l$ in (10), we obtain

$$
x_{i-l}>-R_{2}(n-l, i-l) a_{n-l} \Delta x_{n-l}
$$

Summing the equation (7) from $n-l$ to $n-1$, and then using the last inequality we obtain

$$
\begin{aligned}
-a_{n-l} \Delta x_{n-l} & >a_{n} \Delta x_{n}-a_{n-l} \Delta x_{n-l} \\
& =\sum_{s=n-l}^{n-1} Q_{s} x_{s-l} \\
& >-\left[\sum_{s=n-l}^{n-1} Q_{s} R_{2}(n-l, s-l)\right] a_{n-l} \Delta x_{n-l}
\end{aligned}
$$

That is,

$$
\begin{equation*}
1>\sum_{s=n-l}^{n-1} Q_{s} R_{2}(n-l, s-l) \tag{11}
\end{equation*}
$$

Taking limit supremum as $n \rightarrow \infty$ on both sides of (11) yields a contradiction to (8). This completes the proof.

Lemma 4 If condition (3) and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=n-l}^{n-1}\left(\frac{1}{a_{s}} \sum_{t=s}^{n-1} Q_{t}\right)>1 \tag{12}
\end{equation*}
$$

are satisfied, then every bounded solution of equation (7) is oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be a bounded nonoscillatory solution of equation (7), say $x_{n}>0$, and $x_{n-l}>0$ for all $n \geq N \geq n_{0}$. As in Lemma 3, we obtain (9). Summing the equation (7) from s to $n-1$, we obtain

$$
\begin{aligned}
-a_{s} \Delta x_{s} & >a_{n} \Delta x_{n}-a_{s} \Delta x_{s}=\sum_{t=s}^{n-1} Q_{t} x_{t-l} \\
& \geq\left[\sum_{t=s}^{n-1} Q_{t}\right] x_{n-l}
\end{aligned}
$$

That is,

$$
-\Delta x_{s}>\left(\frac{1}{a_{s}} \sum_{t=s}^{n-1} Q_{t}\right) x_{n-l}
$$

Summing the last inequality from $n-l$ to $n-1$, we have

$$
x_{n-l}>x_{n-l}-x_{n}>\left[\sum_{s=n-l}^{n-1}\left(\frac{1}{a_{s}} \sum_{t=s}^{n-1} Q_{t}\right)\right] x_{n-l}
$$

or

$$
\begin{equation*}
1>\sum_{s=n-l}^{n-1}\left(\frac{1}{a_{s}} \sum_{t=s}^{n-1} Q_{t}\right) \tag{13}
\end{equation*}
$$

Taking limit supremum as $n \rightarrow \infty$ on both sides of (13) yields a contradiction with (12), and the proof is completed.

3. Oscillation Results

Now, we begin to present the main results.
Theorem 1 Let conditions (3) and (4) hold. Suppose that equation (2) is nonoscillatory. If there exists a positive real sequence $\left\{\rho_{n}\right\}$, and a positive integer l such that $l \leq k$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=N_{1}}^{n-1}\left[M \rho_{s} q_{s}-\frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}} \frac{A_{s}^{\alpha+1}}{B_{s}^{\alpha}}\right]=\infty \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{n} & =\frac{\Delta \rho_{n}}{\rho_{n+1}}-\frac{\rho_{n}}{\rho_{n+1}} \frac{p_{n}}{b_{n+1}} R_{2}(n+1, N) \\
B_{n} & =c^{*} \beta\left(R_{3}(n+1-k, N)\right)^{\frac{\beta}{\alpha}-1} \frac{R_{2}^{1 / \alpha}(n-k, N)}{b_{n-k+1}^{1 / \alpha}}
\end{aligned}
$$

and (8) or (12) holds with

$$
Q_{n}=\left[c M q_{n} R_{1}^{\beta}(n-l, n-k)-\frac{p_{n}}{b_{n+1}}\right] \geq 0 \text { for all } n \geq N_{1} \geq N
$$

and $c, c^{*}>0$, then every solution $\left\{y_{n}\right\}$ or $\left\{L_{2}\left(y_{n}\right)\right\}$ of equation (1) is oscillatory.
Proof. Let $\left\{y_{n}\right\}$ be a nonoscillatory solution of equation (1). Without loss of generality, we may assume that $y_{n}>0$, and $y_{n-k}>0$ for all $n \geq N \geq n_{0}$. Then, it follows from Lemma 1 that $L_{1}\left(y_{n}\right)>0$ or $L_{1}\left(y_{n}\right)<0$ for all $n \geq N$. First we assume that $L_{1}\left(y_{n}\right)>0$ for all $n \geq N$. From equation (1), we see that $L_{2}\left(y_{n}\right)$ is decreasing for all $n \geq N$. Hence for any integer $N_{1} \geq N$, we have

$$
\begin{aligned}
L_{1}\left(y_{n}\right) & =L_{1}\left(y_{N_{1}}\right)+\sum_{s=N_{1}}^{n-1} \Delta\left(L_{1}\left(y_{s}\right)\right)=L_{1}\left(y_{N_{1}}\right)+\sum_{s=N_{1}}^{n-1} \frac{L_{2}\left(y_{s}\right)}{a_{s}} \\
& \leq L_{1}\left(y_{N_{1}}\right)+L_{2}\left(y_{N_{1}}\right) R_{2}\left(n, N_{1}\right)
\end{aligned}
$$

so $L_{2}\left(y_{N_{1}}\right)>0$, as otherwise (4) would imply that $L_{1}\left(y_{n}\right) \rightarrow-\infty$ as $n \rightarrow \infty$, a contradiction to the positivity of $L_{1}\left(y_{n}\right)$. Therefore $L_{2}\left(y_{n}\right)>0$ for all $n \geq N_{1}$. Define

$$
\begin{equation*}
w_{n}=\rho_{n} \frac{a_{n} \Delta\left(b_{n}\left(\Delta y_{n}\right)^{\alpha}\right)}{y_{n-k}^{\beta}}, n \geq N_{1} \tag{15}
\end{equation*}
$$

Then $w_{n}>0$ for all $n \geq N_{1}$, and

$$
\begin{align*}
\Delta w_{n}= & \rho_{n} \frac{\Delta\left(L_{2}\left(y_{n}\right)\right)}{y_{n-k}^{\beta}}+\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\rho_{n}}{\rho_{n+1}} \frac{w_{n+1} \Delta y_{n-k}^{\beta}}{y_{n-k}^{\beta}} \\
\leq & -M \rho_{n} q_{n}+\frac{\Delta \rho_{n}}{\rho_{n+1}} w_{n+1}-\frac{\rho_{n}}{\rho_{n+1}} \frac{\Delta y_{n-k}^{\beta}}{y_{n-k}^{\beta}} w_{n+1} \\
& -\frac{\rho_{n}}{\rho_{n+1}} \frac{p_{n}}{b_{n+1}} R_{2}(n+1, N) w_{n+1} . \tag{16}
\end{align*}
$$

Using Mean value theorem, we have

$$
\begin{equation*}
\frac{\Delta y_{n-k}^{\beta}}{y_{n-k}^{\beta}} \geq \beta \frac{\Delta y_{n-k}}{y_{n+1-k}}, \beta>0 \tag{17}
\end{equation*}
$$

In view of (17), (5), and the fact that $L_{2}\left(y_{n}\right)$ is decreasing, and y_{n} is increasing, we have from (16) that

$$
\begin{align*}
\Delta w_{n} \leq & -M \rho_{n} q_{n}+\left(\frac{\Delta \rho_{n}}{\rho_{n+1}}-\frac{\rho_{n}}{\rho_{n+1}} \frac{p_{n}}{b_{n+1}} R_{2}(n+1, N)\right) w_{n+1} \\
& -\beta \frac{\rho_{n}}{\rho_{n+1}^{1+1 / \alpha}} \frac{R_{2}^{1 / \alpha}(n-k, N)}{b_{n-k+1}^{1 / \alpha}} w_{n+1}^{1+1 / \alpha} y_{n+1-k}^{\beta / \alpha-1} \tag{18}
\end{align*}
$$

It follows from $L_{3}\left(y_{n}\right)<0$ that $0<L_{2}\left(y_{n}\right) \leq c_{1}<\infty$ for all $n \geq N_{1} \geq N$. Hence for $n \geq N_{1}$, we have

$$
\begin{aligned}
b_{n}\left(\Delta y_{n}\right)^{\alpha} & =L_{1}\left(y_{n}\right)=L_{1}\left(y_{N}\right)+\sum_{s=N}^{n-1} \Delta\left(L_{1}\left(y_{s}\right)\right) \\
& \leq L_{1}\left(y_{N}\right)+c_{1} R_{2}(n, N) \\
& =\left[\frac{L_{1}\left(y_{N}\right)}{R_{2}(n, N)}+c_{1}\right] R_{2}(n, N) \leq c_{2} R_{2}(n, N)
\end{aligned}
$$

holds where $c_{2}=c_{1}+\frac{L_{1}\left(y_{N}\right)}{R_{2}\left(N_{1}, N\right)}$. Therefore, we have for all $n \geq N_{2} \geq N_{1}$, that

$$
\begin{aligned}
y_{n} & =y_{N_{1}}+\sum_{s=N_{1}}^{n-1} \Delta y_{s} \leq y_{N_{1}}+\sum_{s=N_{1}}^{n-1}\left(\frac{c_{2} R_{2}(s, N)}{b_{s}}\right)^{1 / \alpha} \\
& \leq y_{N_{1}}+c_{2}^{1 / \alpha} R_{3}\left(n, N_{1}\right) \\
& =\left[\frac{y_{N_{1}}}{R_{3}\left(n, N_{1}\right)}+c_{2}^{1 / \alpha}\right] R_{3}\left(n, N_{1}\right) \leq c_{3} R_{3}\left(n, N_{1}\right)
\end{aligned}
$$

holds where $c_{3}=c_{2}^{1 / \alpha}+\frac{y_{N_{1}}}{R_{3}\left(N_{2}, N_{1}\right)}$. Thus, we have

$$
y_{n+1-k}^{\beta / \alpha-1} \geq c_{3}^{\beta / \alpha-1}\left(R_{3}\left(n+1-k, N_{1}\right)\right)^{\beta / \alpha-1} \text { for all } n \geq N_{2}
$$

Thus from (18), we obtain

$$
\begin{equation*}
\Delta w_{n} \leq-M \rho_{n} q_{n}+A_{n} w_{n+1}-B_{n} w_{n+1}^{1+1 / \alpha}, n \geq N_{2} \tag{19}
\end{equation*}
$$

Using the inequality $C u-D u^{1+1 / \alpha} \leq \frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}} \frac{C^{\alpha+1}}{D^{\alpha}}$, for $D>0$ in (19) with $C=A_{n}$ and $D=B_{n}$, we obtain

$$
\Delta w_{n} \leq-M \rho_{n} q_{n}+\frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}} \frac{A_{n}^{\alpha+1}}{B_{n}^{\alpha}}, n \geq N_{2}
$$

Summing the last inequality from N_{2} to $n-1$, we have

$$
\begin{equation*}
\sum_{s=N_{2}}^{n-1}\left(M \rho_{s} q_{s}-\frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}} \frac{A_{s}^{\alpha+1}}{B_{s}^{\alpha}}\right) \leq w_{N_{2}} \tag{20}
\end{equation*}
$$

Taking limit supremum as $n \rightarrow \infty$ in (20), we obtain a contradiction to (14).
Next consider the function $L_{2}\left(y_{n}\right)$. The case $L_{2}\left(y_{n}\right) \leq 0$ cannot hold for all large n, say $n \geq N_{2} \geq N_{1}$, since by the summation of

$$
\Delta y_{n}=\left(\frac{L_{1}\left(y_{n}\right)}{b_{n}}\right)^{1 / \alpha} \leq\left(\frac{L_{1}\left(y_{N_{2}}\right)}{b_{n}}\right)^{1 / \alpha}, n \geq N_{2}
$$

we have from (3) that $y_{n}<0$ for large n, which is a contradiction. Thus, assume $y_{n}>0, L_{1}\left(y_{n}\right)<0$, and $L_{2}\left(y_{n}\right)>0$ for all large n, say $n \geq N_{3} \geq N_{2}$. Now for $j \geq s \geq N_{3}$, we obtain

$$
\begin{aligned}
y_{s}-y_{j} & =-\sum_{t=s}^{j-1} \frac{\left(b_{t}\left(\Delta y_{t}\right)^{\alpha}\right)^{1 / \alpha}}{b_{t}^{1 / \alpha}} \geq\left(-L_{1}\left(y_{j}\right)\right)^{1 / \alpha}\left(\sum_{t=s}^{j-1} \frac{1}{b_{t}^{1 / \alpha}}\right) \\
& =R_{1}(j, s)\left(-L_{1}\left(y_{j}\right)\right)^{1 / \alpha}
\end{aligned}
$$

Setting $s=n-k$ and $j=n-l$, we obtain

$$
y_{n-k} \geq R_{1}(n-l, n-k)\left(-L_{1}\left(y_{n-l}\right)\right)^{1 / \alpha}=R_{1}(n-l, n-k) x_{n-l}
$$

for all $n \geq N_{3}$, where $x_{n}=\left(-L_{1}\left(y_{n}\right)\right)>0$ for $n \geq N_{3}$. From equation (1), and the fact that $\left\{x_{n}\right\}$ is decreasing, and $n-l \leq n-k<n$, we obtain

$$
\Delta\left(a_{n} \Delta z_{n}\right)+\left(\frac{p_{n}}{b_{n+1}}\right) z_{n+1-l} \geq M q_{n}\left(R_{1}(n-l, n-k)\right)^{\beta} z_{n-l} z_{n-l}^{\beta / \alpha-1}
$$

where $z_{n}=x_{n}^{\alpha}$. Since $\left\{z_{n}\right\}$ is decreasing and $\alpha \geq \beta$, there exists a constant $c_{4}>0$ such that $z_{n}^{\beta / \alpha-1} \geq c_{4}$ for $n \geq N_{3}$. Thus

$$
\Delta\left(a_{n} \Delta z_{n}\right) \geq Q_{n} z_{n-l}, n \geq N_{3}
$$

Proceeding exactly as in the proof of Lemmas 3 and 4, we arrive at the desired conclusion. This completes the proof.
From the above theorem, we obtain the following corollary.
Corollary 2 Let conditions (3) and (4) hold. Suppose that equation (2) is nonoscillatory, and $A_{n} \leq 0$, for all $n \geq n_{0}$, where A_{n} is defined as in Theorem 1. If there exists a positive function $\left\{\rho_{n}\right\}$, and a positive integer l such that $l \leq k$, and

$$
\begin{equation*}
\sum_{n=N}^{\infty} \rho_{n} q_{n}=\infty \tag{21}
\end{equation*}
$$

for any $N \geq n_{0}$, and (8) or (12) holds with Q_{n} as in Theorem 1, then every solution $\left\{y_{n}\right\}$ or $\left\{L_{2}\left(y_{n}\right)\right\}$ of equation (1) is oscillatory.
For $n \geq N \geq n_{0}$, we set

$$
P_{n}=\frac{p_{n}}{b_{n+1}} R_{2}(n+1, N), R_{n}=M q_{n} R_{3}^{\beta}(n-l, N)
$$

and

$$
E_{n}=\prod_{s=N}^{n-1}\left(1+P_{s}\right)
$$

In the following, we present comparison results for the oscillation of equation (1). Theorem 3 Let conditions (3) and (4) hold. Suppose that equation (2) is nonoscillatory. Further assume that there exists a positive integer l such that $l \leq k$ for $n \geq n_{0}$, and (8) or (12) holds with Q_{n} as in Theorem 1. If every solution of the first order delay difference equation

$$
\begin{equation*}
\Delta u_{n}+E_{n-k}^{1-\beta / \alpha} R_{n} u_{n-k}^{\beta / \alpha}=0 \tag{22}
\end{equation*}
$$

is oscillatory, then every solution $\left\{y_{n}\right\}$ or $\left\{L_{2}\left(y_{n}\right)\right\}$ of equation (1) is oscillatory. Proof. Let $\left\{y_{n}\right\}$ be a nonoscillatory solution of equation (1). Without loss of generality, we may assume that $y_{n}>0$, and $y_{n-k}>0$ for all $n \geq N \geq n_{0}$. Further, it follows from Lemma 1 that $L_{1}\left(y_{n}\right)>0$ or $L_{1}\left(y_{n}\right)<0$ for all $n \geq N$. First assume $L_{1}\left(y_{n}\right)>0$. Choose an integer $N_{1} \geq N$ such that $n-k \geq N$ for all $n \geq N_{1} \geq N+k$. Using (5) and (6) in equation (1), we obtain

$$
\Delta\left(L_{2}\left(y_{n}\right)\right)+\frac{p_{n}}{b_{n+1}} R_{2}(n+1, N) L_{2}\left(y_{n+1}\right)+M q_{n} R_{3}^{\beta}(n-k, N) L_{2}^{\beta / \alpha}\left(y_{n-k}\right) \leq 0
$$

for all $n \geq N_{1}$, which can be rewritten as

$$
\Delta w_{n}+P_{n} w_{n+1}+R_{n} w_{n-k}^{\beta / \alpha} \leq 0, n \geq N_{1}
$$

where $w_{n}=L_{2}\left(y_{n}\right)$, that is,

$$
\Delta\left(E_{n} w_{n}\right)+E_{n} R_{n} w_{n-k}^{\beta / \alpha} \leq 0, n \geq N_{1}
$$

Setting $u_{n}=E_{n} w_{n}>0$ in the last inequality, and noting that $E_{n-k} \leq E_{n}$, we obtain

$$
\Delta u_{n}+E_{n-k}^{1-\beta / \alpha} R_{n} u_{n-k}^{\beta / \alpha} \leq 0
$$

This difference inequality has a positive solution, and by Lemma 2.7 of [25], the corresponding difference equation (22) has a positive solution, which is a contradiction. The case $L_{2}\left(y_{n}\right)<0$ for $n \geq N$ is similar to that of Theorem 1, and hence is omitted. This completes the proof.
From the above theorem, we obtain the following corollary.

Corollary 4 Let conditions (3) and (4) hold. Suppose that equation (2) is nonoscillatory. Further, assume that there exists a positive integer l such that $l \leq k$ for all $n \geq n_{0}$, and (8) or (12) holds with Q_{n} as in Theorem 1. If

$$
\lim _{n \rightarrow \infty} \inf \sum_{s=n-k}^{n-1} R_{s}>\left(\frac{k}{k+1}\right)^{k+1} \text { when } \alpha=\beta
$$

or

$$
\sum_{s=N}^{\infty} E_{n-k}^{1-\beta / \alpha} R_{s}=\infty \text { when } \alpha>\beta
$$

holds, then every solution $\left\{y_{n}\right\}$ or $\left\{L_{2}\left(y_{n}\right)\right\}$ of equation (1) is oscillatory.
Proof. The proof follows from Theorem 3 and Theorem 7.5.1 of [11] for $\alpha=\beta$ or Theorem 1 of [22] for the case $\alpha>\beta$.
For $\alpha=1$, we derive the following new oscillation criteria for equation (1).
Theorem 5 Let conditions (3), (4) and $\alpha=1$ hold. Suppose that equation (2) is nonoscillatory. If there exists a positive real sequence $\left\{\rho_{n}\right\}$ and a positive integer l such that $k \geq l$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \sum_{s=N}^{n-1}\left[\prod_{t=N}^{s-1}\left(1+\rho_{t}-A_{t}\right)\right]\left(M \rho_{s} q_{s}-\frac{\rho_{s}^{2}}{B_{s}}\right)=\infty \tag{23}
\end{equation*}
$$

for every $N \geq n_{0}$. If (8) or (12) holds with Q_{n} as in Theorem 1, then every solution $\left\{y_{n}\right\}$ or $\left\{L_{2}\left(y_{n}\right)\right\}$ of equation (1) is oscillatory.
Proof. Let $\left\{y_{n}\right\}$ be a nonoscillatory solution of equation (1). Without loss of generality, we may assume that $y_{n}>0$, and $y_{n-k}>0$ for all $n \geq N \geq n_{0}$. Proceeding as in the proof of Theorem 1, we obtain (19), that is,

$$
\Delta w_{n} \leq-M \rho_{n} q_{n}+A_{n} w_{n+1}-B_{n} w_{n+1}^{2}
$$

and so

$$
\Delta w_{n} \leq-M \rho_{n} q_{n}+\left(A_{n}-\rho_{n}\right) w_{n+1}+\rho_{n} w_{n+1}-B_{n} w_{n+1}^{2}
$$

or

$$
\Delta w_{n}+\left(\rho_{n}-A_{n}\right) w_{n+1}+\left(M \rho_{n} q_{n}-\frac{\rho_{n}^{2}}{B_{n}}\right) \leq 0, n \geq N
$$

It follows that

$$
\sum_{s=N}^{n}\left[\prod_{t=N}^{s-1}\left(1+\rho_{t}-A_{t}\right)\right]\left(M \rho_{s} q_{s}-\frac{\rho_{s}^{2}}{B_{s}}\right) \leq w_{N}
$$

Hence

$$
\lim _{n \rightarrow \infty} \sup \sum_{s=N}^{n}\left[\prod_{t=N}^{s-1}\left(1+\rho_{t}-A_{t}\right)\right]\left(M \rho_{s} q_{s}-\frac{\rho_{s}^{2}}{B_{s}}\right) \leq w_{N}
$$

which contradicts (23). The rest of the proof is similar to that of Theorem 1, and hence is omitted. This completes the proof.

4. Examples

In this section, we provide some examples to illustrate the main results.
Example 1 Consider the delay difference equation

$$
\begin{equation*}
\Delta^{2}\left(\left(\Delta y_{n}\right)^{3}\right)+\frac{1}{5 n^{2}}\left(\Delta y_{n+1}\right)^{3}+\left(8-\frac{2}{5 n^{2}}\right) y_{n-2}=0, n \geq 1 \tag{24}
\end{equation*}
$$

Here $a_{n}=b_{n}=1, p_{n}=\frac{1}{5 n^{2}}, q_{n}=8-\frac{2}{5 n^{2}}, \alpha=3, \beta=1$ and $k=2$. Note that the corresponding second order difference equation $\Delta^{2} z_{n}+\frac{1}{5 n^{2}} z_{n+1}=0$ is nonoscillatory by [1 , Theorem 1.14.2]. Taking $l=1$ and $\rho_{n}=1$, we have $A_{n}=\frac{-1}{5 n}<0$ for all $n \geq 1$, and

$$
\sum_{n=N}^{\infty} \rho_{n} q_{n}=\sum_{n=1}^{\infty}\left(8-\frac{2}{5 n^{2}}\right)=\infty
$$

Further

$$
Q_{n}=c\left(8-\frac{2}{5 n^{2}}\right)-\frac{1}{5 n^{2}}>0 \text { for } n \geq 1
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sup \sum_{s=n-l}^{n-1} Q_{s} R_{2}(n-l, s-1) & =\lim _{n \rightarrow \infty} \sup \sum_{s=n-1}^{n-1}\left[c\left(8-\frac{2}{5 s^{2}}\right)-\frac{1}{5 s^{2}}\right](n-s+1) \\
& =\lim _{n \rightarrow \infty} \sup \left[c\left(8-\frac{2}{5(n-1)^{2}}\right)-\frac{1}{5(n-1)^{2}}\right] 2 \\
& =16 c>1
\end{aligned}
$$

for $c>\frac{1}{16}>0$. Thus, all conditions of Corollary 2 are satisfied, and hence every solution of equation (24) is oscillatory. In fact $\left\{y_{n}\right\}=\left\{\frac{(-1)^{n}}{2}\right\}$ is one such oscillatory solution of equation (24).
Example 2 Consider the third order delay difference equation

$$
\begin{equation*}
\Delta^{2}\left(\left(\Delta y_{n}\right)^{3}\right)+\frac{9}{2^{n+1}}\left(\Delta y_{n+1}\right)^{3}+\left(32-\frac{36}{2^{n}}\right) y_{n-2}^{3}=0, n \geq 1 \tag{25}
\end{equation*}
$$

Here $a_{n}=b_{n}=1, p_{n}=\frac{9}{2^{n+1}}, q_{n}=32-\frac{36}{2^{n}}, \alpha=\beta=3$, and $k=2$. Note that the corresponding second order difference equation $\Delta^{2} z_{n}+\frac{9}{2^{n+1}} z_{n+1}=0$ is nonoscillatory by [1, Theorem 1.14.2]. The other conditions of Corollary 4 are satisfied, and hence every solution of equation (25) is oscillatory. In fact $\left\{y_{n}\right\}=$ $\left\{(-1)^{n}\right\}$ is one such oscillatory solution of equation (25).
Example 3 Consider the third order delay difference equation

$$
\begin{equation*}
\Delta^{3} y_{n}+\frac{1}{6 n^{2}} \Delta y_{n+1}+\left(8-\frac{1}{3 n^{2}}\right) y_{n-2}^{1 / 3}=0, n \geq 1 \tag{26}
\end{equation*}
$$

Here $a_{n}=b_{n}=1, p_{n}=\frac{1}{6 n^{2}}, q_{n}=8-\frac{1}{3 n^{2}}, \alpha=1, \beta=\frac{1}{3}$, and $k=2$. Note that the corresponding second order difference equation $\Delta^{2} z_{n}+\frac{1}{6 n^{2}} z_{n+1}=0$ is nonoscillatory by [1, Theorem 1.14.2]. With $\rho_{n}=1$ it is easy to see that all conditions of Theorem 5 are satisfied, and hence every solution of equation (26) is oscillatory. One oscillatory solution of equation (26) is $\left\{y_{n}\right\}=\left\{(-1)^{n}\right\}$.
we conclude this paper with the following remark.
Remark 1 The results presented in this paper are new and high degree of generality. We note that the results in $[1,2,4,18,19]$ are applicable only when $\alpha=\beta=1$, and therefore the results obtained in this paper are complement and generalize to that of in $[2,4,8,10,14,15,16,17,18,19,20,21,22,23,24]$. It would be interesting
to consider equation (1) and try to obtain some oscillation criteria if $p_{n}<0$ and $q_{n}<0$ for all $n \geq n_{0}$. This has been left to future research.

References

[1] R.P.Agarwal, M.Bohner, S.R.Grace, D.O‘Regan, Discrete Oscillation Theory, Hindawi, New York, 2005.
[2] R.P.Agarwal and S.R.Grace, Oscillation of certain third order difference equations, Comput. Math. Appl., 42(2001), 379-384.
[3] Ravi P. Agarwal, M.F. Aktas, and A. Tiryaki, On oscillation criteria for third order non-linear delay differential equations, Arch. Math.(Brno), 45(2009), 1-18.
[4] M.F.Aktas, A.Tiryaki and A.Zafer, Oscillation of third order nonlinear delay difference equations, Turk.J.Math., 36(2012), 422-436.
[5] M.Artzrouni, Generalized stable population theory, J. Math. Priol., 21(1985), 363-381.
[6] J. Dzurina, B. Baculikova, Oscillation of third-order quasi-linear advanced differential equations. Differ. Equ. Appl. 4 (2012), 411-421.
[7] S.Elayadi, An Introduction to Difference Equations, Third Edition, Springer, New York, 2005.
[8] S.R.Grace, Oscillation of certain third order difference equations, Comput. Math. Appl., 42 (2001), 379-384.
[9] S.R. Grace, Oscillation criteria for third order nonlinear delay differential equations with damping, Opusc. Math. 35, No. 4, 485-497 (2015).
[10] J.R.Graef and E.Thandapani, Oscillatory and asymptotic behavior of solutions of third order delay difference equations, Funkcial. Ekvac., 42(1999) 355-369.
[11] I.Gyori and G.Ladas, Oscillation Theorey of Delay Differential Equations with Applications, Claredon Press, Oxford, 1991.
[12] T.Li and Yu.V.Rogovchenko, Asymptotic behavior of an odd-order delay differential equation, Bound. Value Probl., 2014(2014), 1-10.
[13] Y.C.Qiu, A.Zada, H.Qin and T.Li, Oscillation criteria for nonlinear third-order neutral dynamic equations with damping on time scales, J. Funct. Spaces, 2017(2017), 1-8.
[14] S.H.Saker, J.O.Alzabut and A.A.Mukheimer, On the oscillatory behavior for a certain class of third order nonlinear delay difference equations, Elec.J.Qual.Theory Differ. Eqns., 67(2010), 1-16.
[15] S.H.Saker, Oscillation of a certain class of third order nonlinear difference equations, Bull.Malays. Math. Sci. Soc., (2)35(3)(2012), 651-669.
[16] B.Smith, Oscillation and nonoscillation theorems for third order quasi adjoint difference equations, Port. Math., 45(1988), 229-243.
[17] B.Smith and Jr.W.E.Taylor, Asymptotic behavior of solutions of a third order difference equations, Port. Math., 44(1987), 113-117.
[18] B.Smith and Jr.W.E.Taylor, Nonlinear third order difference equation: oscillatory and asymptotic behavior, Tamkang J. Math., 19(1988), 91-95.
[19] B.Smith, Linear third order difference equations: Oscillatory and asymptotic behavior, Rocky Mountain J.Math., 22(1992), 1559-1564.
[20] B.Smith and Jr.W.E.Taylor, Oscillation and nonoscillation theorems for some mixed difference equations, Inter. J. Math. Sci., 15(1992), 537-542.
[21] B.Smith and W.E.Taylor Jr., Oscillation and nonoscillation in nonlinear third order difference equations, Int. J. Math. Math. Sci., 13(1990), 281-286.
[22] X.H.Tang and Y.J.Liu, Oscillation for nonlinear delay difference equations, Tamkang J.Math., 32(2001), 275-280.
[23] E.Thandapani and K.Mahalingam, Oscillatory properties of third order neutral delay difference equations, Demonstr. Math., 35(2002), 325-337.
[24] E.Thandapani, S.Pandian and R.K.Balasubramanian, Oscillatory behavior of solutions of third order quasilinear delay difference equations, Stud. Univ. Zilina Math. Ser., 19(2005), 65-78.
[25] E.Thandapani and S.Selvarangam, Oscillation theorems for second order quasilinear neutral difference equations, J.Math.Comput.Sci., 2(2012), 866-879.
[26] C.Zhang, R.P.Agarwal and T.Li, Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators, J. Math. Anal. Appl., 409(2014), 10931106.
M. Madhan

Department of Mathematics, C.Kandaswami Naidu College For Men, Chennai-600 102, India

E-mail address: mcmadhan24@gmail.com
S. Selvarangam

Department of Mathematics, Presidency College, Chennai - 600 005, India
E-mail address: selvarangam.9962@gmail.com
E. Thandapani

Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600 005, India

E-mail address: ethandapani@yahoo.co.in

[^0]: 2010 Mathematics Subject Classification. 39A10.
 Key words and phrases. Oscillation, nonoscillation, third order, delay, difference equation.
 Submitted Feb. 8, 2020. Revised April 25, 2020.

