COMMON COUPLED FIXED POINTS OF GENERALIZED CONTRACTION MAPS IN b-METRIC SPACES

N. SIVA PRASAD, D. RATNA BABU AND V. AMARENDRA BABU

Abstract

In this paper, we introduce generalized contraction condition for two pairs (F, f) and (G, g) of maps $F, G: X \times X \rightarrow X, f, g: X \rightarrow X$ where X is a b-metric space and prove the existence and uniqueness of common coupled fixed points of these two pairs under the assumptions that these pairs are w compatible and satisfying generalized contraction condition by restricting the completeness of X to its subspace. We draw some corollaries from our main results and provide examples in support of our results.

1. Introduction

The main idea of b-metric was initiated from the works of Bourbaki 8 and Bakhtin [4]. The concept of b-metric space or metric type space was introduced by Czerwik 9 as a generalization of metric space. Afterwards, many authors studied fixed point theorems for single-valued and multi-valued mappings in b-metric spaces, for more information we refer [3, 6, 7, 10, 14, 15, 19 .

In 2006, Bhaskar and Lakshmikantham [5] introduced the notion of coupled fixed point and established the existence of coupled fixed points for mixed monotone mappings in ordered metric spaces. Later, Lakshmikantham and Ćirić [16] introduced the notion of coupled coincidence points of mappings in two variables. Afterwards, many authors studied coupled fixed point theorems, we refer [11, 16, 17, 20, 21,
Definition 1.1. 9$]$ Let X be a non-empty set. A function $d: X \times X \rightarrow[0, \infty)$ is said to be a b-metric if the following conditions are satisfied: for any $x, y, z \in X$
(i) $0 \leq d(x, y)$ and $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$,
(iii) there exists $s \geq 1$ such that $d(x, z) \leq s[d(x, y)+d(y, z)]$.

In this case, the pair (X, d) is called a b-metric space with coefficient s.
Every metric space is a b-metric space with $s=1$. In general, every b-metric space is not a metric space.
Definition 1.2. 7] Let (X, d) be a b-metric space.
(i) A sequence $\left\{x_{n}\right\}$ in X is called b-convergent if there exists $x \in X$ such that

[^0]$d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. In this case, we write $\lim _{n \rightarrow \infty} x_{n}=x$ and x is unique.
(ii) A sequence $\left\{x_{n}\right\}$ in X is called b-Cauchy if $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.
(iii) A b-metric space (X, d) is said to be a complete b-metric space if every b-Cauchy sequence in X is b-convergent in X.
(iv) A set $B \subset X$ is said to be b-closed if for any sequence $\left\{x_{n}\right\}$ in B such that $\left\{x_{n}\right\}$ is b-convergent to $z \in X$ then $z \in B$.
In general, a b-metric is not necessarily continuous.
In this paper, we denote $\mathbb{R}^{+}=[0, \infty)$ and \mathbb{N} is the set of all natural numbers.
Example 1.3. [13] Let $X=\mathbb{N} \cup\{\infty\}$. We define a mapping $d: X \times X \rightarrow[0, \infty)$ as follows:

$d(m, n)=\left\{\begin{array}{cl}0 & \text { if } m=n, \\ \left|\frac{1}{m}-\frac{1}{n}\right| & \text { if one of } m, n \text { is even and the other is even or } \infty, \\ 5 & \begin{array}{l}\text { if one of } m, n \text { is odd and the other is odd or } \infty, \\ 2\end{array} \\ \text { otherwise. }\end{array}\right.$
Then (X, d) is a b-metric space with coefficient $s=\frac{5}{2}$.
Definition 1.4. [5] Let X be a nonempty set and $F: X \times X \rightarrow X$ be a mapping. Then we say that an element $(x, y) \in X \times X$ is a coupled fixed point, if $F(x, y)=x$ and $F(y, x)=y$.
Definition 1.5. [16] Let X be a nonempty set. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings. An element $(x, y) \in X \times X$ ia called
(i) a coupled coincidence point of the mappings F and g if $F(x, y)=g x$ and $F(y, x)=g y$
(ii) a common coupled fixed point of mappings F and g if $F(x, y)=g x=x$ and $F(y, x)=g y=y$.
In 2010, Abbas, Khan and Radenovic [1] introduced the concept of w-compatible mappings as follows.
Definition 1.6. [1 Let X be a non-empty set. We say that the mappings
$F: X \times X \rightarrow X$ and $g: X \rightarrow X$ are w-compatible if $g F(x, y)=F(g x, g y)$ whenever $g x=F(x, y)$ and $g y=F(x, y)$.
The following lemmas are useful in proving our main results.
Lemma 1.7. 2] Let (X, d) be a b-metric space with coefficient $s \geq 1$. Suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are b-convergent to x and y respectively, then we have

$$
\frac{1}{s^{2}} d(x, y) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq s^{2} d(x, y)
$$

In particular, if $x=y$, then we have $\lim _{n \rightarrow \infty}^{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$. Moreover for each $z \in X$ we have

$$
\frac{1}{s} d(x, z) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq s d(x, z)
$$

Lemma 1.8. 12 Let (X, d) be a b-metric space with coefficient $s \geq 1$ and $T: X \rightarrow$ X be a selfmap. Suppose that $\left\{x_{n}\right\}$ is a sequence in X induced by $x_{n+1}=T x_{n}$ such that $d\left(x_{n}, x_{n+1}\right) \leq \lambda d\left(x_{n-1}, x_{n}\right)$ for all $n \in \mathbb{N}$, where $\lambda \in[0,1)$ is a constant. Then $\left\{x_{n}\right\}$ is a b-Cauchy sequence in X.

In 1994, Matthews [18 introduced the notion of a partial metric in which the concept of self distance need not be equal to zero.
Definition 1.9. [18] Let X be a nonempty set. A mapping $p: X \times X \rightarrow \mathbb{R}^{+}$is said to be a partial metric, if it satisfies the following conditions:
For any $x, y, z \in X$
$(P 1) x=y \Leftrightarrow p(x, x)=p(x, y)=p(y, y)$,
$(P 2) p(x, x) \leq p(x, y), p(y, y) \leq p(x, y)$,
(P3) $p(x, y)=p(y, x)$,
$(P 4) p(x, y) \leq p(x, z)+p(z, y)-p(z, z)$.
The pair (X, p) is called a partial metric space.
Recently, Gu and Shatanawi [11] proved the following theorem in the setting of partial metric spaces.
Theorem 1.10. 11 Let (X, p) be a partial metric space. Let $F, G: X \times X \rightarrow$ $X, f, g: X \rightarrow X$ be four mappings. Suppose that there exist $k_{1}, k_{2}, k_{3}, k_{4}$ and k_{5} in $[0,1)$ with $k_{1}+k_{2}+k_{3}+2 k_{4}+2 k_{5}<1$ such that
$p(F(x, y), G(u, v))+p(F(y, x), G(v, u)) \leq k_{1}[p(f x, g u)+p(f y, g v)]$

$$
+k_{2}[p(f x, F(x, y))+p(f y, F(y, x))]
$$

$$
+k_{3}[p(g u, G(u, v))+p(g v, G(v, u))]
$$

$$
+k_{4}[p(f x, G(u, v))+p(f y, G(v, u))]
$$

$$
+k_{5}[p(g u, F(x, y))+p(g v, F(y, x))]
$$

for all $x, y, u, v \in X$. Also, suppose the following hypotheses:
(i) $F(X \times X) \subset g(X)$ and $G(X \times X) \subset f(X)$,
(ii) either $f(X)$ or $g(X)$ is a complete subspace of X ,
(iii) (F, f) and (G, g) are w-compatible.

Then F, G, f and g have a unique common coupled fixed point in $X \times X$. Moreover, the common coupled fixed point of F, G, f and g has the form (u, v).

Motivated by the works of Gu and Shatanawi [11] (Theorem 1.10) in Section 2, we introduce generalized contraction condition for two pairs (F, f) and (G, g) of maps $F, G: X \times X \rightarrow X, f, g: X \rightarrow X$ where X is a b-metric space and prove the existence and uniqueness of common coupled fixed points of these two pairs under the assumptions that these pairs are w-compatible and satisfying generalized contraction condition by restricting the completeness of X to its subspace. We draw some corollaries from our main results and provide examples in support of our results in Section 3.

2. Main Results

The following we introduce generalized contraction condition for two pairs (F, f) and (G, g) of maps $F, G: X \times X \rightarrow X, f, g: X \rightarrow X$ in b-metric spaces.
Definition 2.1. Let X be a b-metric space with coefficient $s \geq 1$ and F, G : $X \times X \rightarrow X, f, g: X \rightarrow X$ be four mappings. Suppose that there exists $k \in[0,1)$ such that

$$
\begin{equation*}
s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))] \leq k M(x, y, u, v) \tag{1}
\end{equation*}
$$

for all $x, y, u, v \in X$, where
$M(x, y, u, v)=\max \{d(f x, g u)+d(f y, g v), d(f x, F(x, y))+d(f y, F(y, x))$,
$\left.d(g u, G(u, v))+d(g v, G(v, u)), \frac{d(f x, G(u, v))+d(f y, G(v, u))}{2 s}, \frac{d(g u, F(x, y))+d(g v, F(y, x))}{2 s^{2}}\right\}$.
In this case, we say that the maps F, G, f, g satisfy generalized contraction condition on X.
Proposition 2.2. Let (X, d) be a b-metric space with coefficient $s \geq 1$ and F, G : $X \times X \rightarrow X, f, g: X \rightarrow X$ be four mappings satisfy the generalized contraction condition. Suppose that
(i) If $F(X \times X) \subseteq g(X)$ and the pair (G, g) is w-compatible, and if (u, v) is a common coupled fixed point of F and f then (u, v) is a common coupled fixed point of F, G, f and g and it is unique.
(ii) If $G(X \times X) \subseteq f(X)$ and the pair (F, f) is w-compatible, and if (u, v) is a common coupled fixed point of G and g then (u, v) is a common coupled fixed point of F, G, f and g and it is unique.
Then F, G, f and g have a unique common coupled fixed point in $X \times X$.
Proof. First, we assume that (i) holds. Let (u, v) be a common coupled fixed point of F and f.
Then $F(u, v)=f u=u$ and $F(v, u)=f v=v$.
Since $F(X \times X) \subseteq g(X)$, there exist $a, b \in X$ such that $u=F(u, v)=g a$ and $v=F(v, u)=g b$.
We now consider

$$
\begin{gathered}
\left\{\begin{aligned}
s^{4}[d(u, G(a, b))+d(v, G(b, a))] & =s^{4}[d(F(u, v), G(a, b))+d(F(v, u), G(b, a))] \\
& \leq k M(u, v, a, b)
\end{aligned}\right. \\
M(u, v, a, b)=\max \{d(f u, g a)+d(f v, g b), d(f u, F(u, v))+d(f v, F(v, u)), \\
\left.d(g a, G(a, b))+d(g b, G(b, a)), \frac{d(f u, G(a, b))+d(f v, G(b, a))}{2 s}, \frac{d(g a, F(u, v))+d(g b, F(v, u))}{2 s^{2}}\right\} \\
=d(u, G(a, b))+d(v, G(b, a))
\end{gathered}
$$

From the inequality (2), we have

$$
\begin{aligned}
s^{4}[d(u, G(a, b))+d(v, G(b, a))] & \leq k[d(u, G(a, b))+d(v, G(b, a))] \\
& <d(u, G(a, b))+d(v, G(b, a))
\end{aligned}
$$

a contradiction.
Therefore $u=G(a, b)=g a$ and $v=G(b, a)=g b$.
Since the pair (G, g) is w-compatible, we have
$g u=g(G(a, b))=G(g a, g b)=G(u, v)$ and $g v=g(G(b, a))=G(g b, g a)=G(v, u)$.
We now prove that $g u=u$ and $g v=v$.
Suppose that $g u \neq u$ and $g v \neq v$.
Now we consider
$s^{4}[d(u, g u)+d(v, g v)]=s^{4}[d(F(u, v), G(u, v))+d(F(v, u), G(v, u))] \leq k M(u, v, u, v)$
where

$$
\begin{align*}
& M(u, v, u, v)=\max \{d(f u, g u)+d(f v, g v), d(f u, F(u, v))+d(f v, F(v, u)), \tag{3}\\
& \left.\quad d(g u, G(u, v))+d(g v, G(v, u)), \frac{d(f u, G(u, v))+d(f v, G(v, u))}{2 s}, \frac{d(g u, F(u, v))+d(g v, F(v, u))}{2 s^{4}}\right\} \\
& \quad=d(u, g u)+d(v, g v) .
\end{align*}
$$

From (3), we have
$s^{4}[d(u, g u)+d(v, g v)] \leq k[d(u, g u)+d(v, g v)]$ implies that $\left(s^{4}-k\right)[d(u, g u)+d(v, g v)] \leq 0$, which is a contradiction.
Therefore $g u=u$ and $g v=v$ and hence $G(u, v)=g u=u$ and $G(v, u)=g v=v$.
Thus (u, v) is a common coupled fixed point of F, G, f and g.
Let $\left(u^{\prime}, v^{\prime}\right)$ be another common coupled fixed point of F, G, f and g
with $(u, v) \neq\left(u^{\prime}, v^{\prime}\right)$.
We now consider

$$
\begin{aligned}
s^{4}\left[d\left(u, u^{\prime}\right)+d\left(v, v^{\prime}\right)\right]= & s^{4}\left[d\left(F(u, v), G\left(u^{\prime}, v^{\prime}\right)\right)+d\left(F(v, u), G\left(v^{\prime}, u^{\prime}\right)\right)\right] \\
\leq & k M\left(u, v, u^{\prime}, v^{\prime}\right) \\
= & k \max \left\{d\left(f u, g u^{\prime}\right)+d\left(f v, g v^{\prime}\right), d(f u, F(u, v))+d(f v, F(v, u)),\right. \\
& d\left(g u^{\prime}, G\left(u^{\prime}, v^{\prime}\right)\right)+d\left(g v^{\prime}, G\left(v^{\prime}, u^{\prime}\right)\right), \frac{d\left(f u, G\left(u^{\prime}, v^{\prime}\right)\right)+d\left(f v, G\left(v^{\prime}, u^{\prime}\right)\right)}{2 s}, \\
& \left.\frac{d\left(g u^{\prime}, F(u, v)\right)+d\left(g v^{\prime}, F(v, u)\right)}{2 s^{2}}\right\} \\
= & k\left[d\left(u, u^{\prime}\right)+d\left(v, v^{\prime}\right)\right]<d\left(u, u^{\prime}\right)+d\left(v, v^{\prime}\right),
\end{aligned}
$$

a contradiction.
Therefore $u=u^{\prime}$ and $v=v^{\prime}$.
Hence (u, v) is a unique coupled fixed point of F, G, f and g.
Lemma 2.3. Let (X, d) be a b-metric space with coefficient $s \geq 1, F, G: X \times X \rightarrow$ $X, f, g: X \rightarrow X$ be four mappings satisfy generalized contraction condition and $F(X \times X) \subseteq g(X)$ and $G(X \times X) \subseteq f(X)$. For $x_{0} \in X$ and $y_{0} \in X$, there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that $F\left(x_{2 n}, y_{2 n}\right)=g x_{2 n+1}=z_{2 n}$ (say), $F\left(y_{2 n}, x_{2 n}\right)=g y_{2 n+1}=w_{2 n}($ say $), G\left(x_{2 n+1}, y_{2 n+1}\right)=f x_{2 n+2}=z_{2 n+1}($ say $)$ and $G\left(y_{2 n+1}, x_{2 n+1}\right)=f y_{2 n+2}=w_{2 n+1}($ say $)$ for all $n=0,1,2, \ldots$. Then the sequences $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ are b-Cauchy in X.

Proof. Let $x_{0} \in X$ and $y_{0} \in X$. Then there exist $x_{1} \in X$ and $y_{1} \in X$ such that $F\left(x_{0}, y_{0}\right)=g x_{1}=z_{0}$ (say) and $F\left(y_{0}, x_{0}\right)=g y_{1}=w_{0}$ (say). In the same way, for $x_{1} \in X$ and $y_{1} \in X$, there exist $x_{2} \in X$ and $y_{2} \in X$ such that $G\left(x_{1}, y_{1}\right)=f x_{2}=$ z_{1} (say) and $G\left(y_{1}, x_{1}\right)=f y_{2}=w_{1}$ (say). On continuing this way, we get,
$F\left(x_{2 n}, y_{2 n}\right)=g x_{2 n+1}=z_{2 n}, F\left(y_{2 n}, x_{2 n}\right)=g y_{2 n+1}=w_{2 n}$,
$G\left(x_{2 n+1}, y_{2 n+1}\right)=f x_{2 n+2}=z_{2 n+1}$ and $G\left(y_{2 n+1}, x_{2 n+1}\right)=f y_{2 n+2}=w_{2 n+1}$, for all $n \geq 0$.
We have the following two cases.
Case (i). $h \in\left[0, \frac{1}{s}\right)(s \geq 1)$.
If n is odd, then $n=2 m+1, m \in \mathbb{N}$.
We now consider

$$
\left\{\begin{align*}
d\left(z_{n}, z_{n+1}\right)+d\left(w_{n}, w_{n+1}\right) & \leq s^{4}\left[d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right] \tag{4}\\
& =s^{4}\left[d\left(F\left(x_{2 m+2}, y_{2 m+2}\right), G\left(x_{2 m+1}, y_{2 m+1}\right)\right)\right. \\
& \left.+d\left(F\left(y_{2 m+2}, x_{2 m+2}\right), G\left(y_{2 m+1}, x_{2 m+1}\right)\right)\right] \\
& \leq k M\left(x_{2 m+2}, y_{2 m+2}, x_{2 m+1}, y_{2 m+1}\right)
\end{align*}\right.
$$

where

$$
\begin{gathered}
M\left(x_{2 m+2}, y_{2 m+2}, x_{2 m+1}, y_{2 m+1}\right)=\max \left\{d\left(f x_{2 m+2}, g x_{2 m+1}\right)+d\left(f y_{2 m+2}, g y_{2 m+1}\right),\right. \\
d\left(f x_{2 m+2}, F\left(x_{2 m+2}, y_{2 m+2}\right)\right)+d\left(f y_{2 m+2}, F\left(y_{2 m+2}, x_{2 m+2}\right)\right), \\
d\left(g x_{2 m+1}, G\left(x_{2 m+1}, y_{2 m+1}\right)\right)+d\left(g y_{2 m+1}, G\left(y_{2 m+1}, x_{2 m+1}\right)\right), \\
\frac{d\left(f x_{2 m+2}, G\left(x_{2 m+1}, y_{2 m+1}\right)\right)+d\left(f y_{2 m+2}, G\left(y_{2 m+1}, x_{2 m+1}\right)\right)}{2 s}, \\
\left.\frac{d\left(g x_{2 m+1}, F\left(x_{2 m+2}, y_{2 m+2}\right)\right)+d\left(g y_{2 m+1}, F\left(y_{2 m+2}, x_{2 m+2}\right)\right)}{2 s^{2}}\right\} \\
=\max \left\{d\left(z_{2 m+1}, z_{2 m}\right)+d\left(w_{2 m+1}, w_{2 m}\right),\right. \\
d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right), \\
d\left(z_{2 m}, z_{2 m+1}\right)+d\left(w_{2 m}, w_{2 m+1}\right), \\
\left.\frac{d\left(z_{2 m+1}, z_{2 m+1}\right)+d\left(w_{2 m+1}, w_{2 m+1}\right)}{2 s}, \frac{d\left(z_{2 m}, z_{2 m+2}\right)+d\left(w_{2 m}, w_{2 m+2}\right)}{2 s^{2}}\right\} \\
\leq \max \left\{d\left(z_{2 m+1}, z_{2 m}\right)+d\left(w_{2 m+1}, w_{2 m}\right),\right. \\
\left.d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right\} .
\end{gathered}
$$

If $M\left(x_{2 m+2}, y_{2 m+2}, x_{2 m+1}, y_{2 m+1}\right)=d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)$ then from (4), we get that
$s^{4}\left[d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right] \leq k\left[d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right]$
implies that
$d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) \leq 0$,
a contradiction.
Therefore, $M\left(x_{2 m+2}, y_{2 m+2}, x_{2 m+1}, y_{2 m+1}\right)=d\left(z_{2 m}, z_{2 m+1}\right)+d\left(w_{2 m}, w_{2 m+1}\right)$.
Hence from (4), we have
$s^{4}\left[d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right] \leq k\left[d\left(z_{2 m}, z_{2 m+1}\right)+d\left(w_{2 m}, w_{2 m+1}\right)\right]$ implies
that

$$
\begin{equation*}
d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) \leq h\left[d\left(z_{2 m}, z_{2 m+1}\right)+d\left(w_{2 m}, w_{2 m+1}\right)\right] \tag{5}
\end{equation*}
$$

where $h=\frac{k}{s^{4}}<1$.
On the similar lines, if n is even, it follows that

$$
\begin{equation*}
d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) \leq h\left[d\left(z_{2 m}, z_{2 m+1}\right)+d\left(w_{2 m}, w_{2 m+1}\right)\right] \tag{6}
\end{equation*}
$$

From (5) and (6), it follows that

$$
\left\{\begin{align*}
d\left(z_{n}, z_{n+1}\right)+d\left(w_{n}, w_{n+1}\right) \leq & h\left[d\left(z_{n-1}, z_{n}\right)+d\left(w_{n-1}, w_{n}\right)\right] \tag{7}\\
d\left(z_{n}, z_{n+1}\right)+d\left(w_{n}, w_{n+1}\right) & \leq h\left[d\left(z_{n-1}, z_{n}\right)+d\left(w_{n-1}, w_{n}\right)\right] \\
& \leq h^{2}\left[d\left(z_{n-2}, z_{n-1}\right)+d\left(w_{n-2}, w_{n-1}\right)\right] \\
& \vdots \\
& \leq h^{n}\left[d\left(z_{0}, z_{1}\right)+d\left(w_{0}, w_{1}\right)\right]
\end{align*}\right.
$$

For each $n, m \in \mathbb{N}$ with $n>m$ and using (4), we obtain that

$$
\begin{aligned}
d\left(z_{m}, z_{n}\right)+d\left(w_{m}, w_{n}\right) \leq & s\left[d\left(z_{m}, z_{m+1}\right)+d\left(z_{m+1}, z_{n}\right)+d\left(w_{m}, w_{m+1}\right)+d\left(w_{m+1}, w_{n}\right)\right] \\
\leq & s\left[d\left(z_{m}, z_{m+1}\right)+d\left(w_{m}, w_{m+1}\right)\right] \\
& +s^{2}\left[d\left(z_{m+1}, z_{m+2}\right)+d\left(z_{m+2}, z_{n}\right)+d\left(w_{m+1}, w_{m+2}\right)\right. \\
& \left.+d\left(w_{m+2}, w_{n}\right)\right] \\
\leq & s\left[d\left(z_{m}, z_{m+1}\right)+d\left(w_{m}, w_{m+1}\right)\right]+s^{2}\left[d\left(z_{m+1}, z_{m+2}\right)+d\left(w_{m+1}, w_{m+2}\right)\right] \\
& +s^{3}\left[d\left(z_{m+2}, z_{m+3}\right)+d\left(w_{m+2}, w_{m+3}\right)\right]+\ldots+ \\
& s^{n-m-1}\left[d\left(z_{n-1}, z_{n}\right)+d\left(w_{n-1}, w_{n}\right)\right] \\
\leq & s h^{m}\left[d\left(z_{0}, z_{1}\right)+d\left(w_{0}, w_{1}\right)\right]+s^{2} h^{m+1}\left[d\left(z_{0}, z_{1}\right)+d\left(w_{0}, w_{1}\right)\right] \\
& +s^{3} h^{m+2}\left[d\left(z_{0}, z_{1}\right)+d\left(w_{0}, w_{1}\right)\right]+\ldots++s^{n-m-1} h^{n-1}\left[d\left(z_{0}, z_{1}\right)\right. \\
& \left.+d\left(w_{0}, w_{1}\right)\right] \\
= & s h^{m}\left[1+s h+(s h)^{2}+\ldots+(s h)^{n-m-1}\right]\left[d\left(z_{0}, z_{1}\right)+d\left(w_{0}, w_{1}\right)\right] \\
\leq & s h^{m}\left[1+s h+(s h)^{2}+\ldots\right]\left[d\left(z_{0}, z_{1}\right)+d\left(w_{0}, w_{1}\right)\right] \\
= & \frac{h^{m}}{1-s h}\left[d\left(z_{0}, z_{1}\right)+d\left(w_{0}, w_{1}\right)\right] \rightarrow 0 \text { as } m \rightarrow \infty
\end{aligned}
$$

which implies that $\lim _{m, n \rightarrow \infty} d\left(z_{m}, z_{n}\right)=0$ and $\lim _{m, n \rightarrow \infty} d\left(w_{m}, w_{n}\right)=0$.
Therefore $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ are b-Cauchy sequences in (X, d).
Case (ii). $h \in\left[\frac{1}{s}, 1\right)$.
In this case, we have $h^{n} \rightarrow 0$ as $n \rightarrow \infty$, so there exists $n_{0} \in \mathbb{N}$ such that $h^{n_{0}}<\frac{1}{s}$.
Thus by Case (i), we have $\left\{z_{n_{0}}, z_{n_{0}+1}, z_{n_{0}+2}, \ldots, z_{n_{0}+n}, \ldots\right\}$ and
$\left\{w_{n_{0}}, w_{n_{0}+1}, w_{n_{0}+2}, \ldots, w_{n_{0}+n}, \ldots\right\}$ are b-Cauchy sequences.
Therefore $z_{n}=\left\{z_{0}, z_{1}, z_{2}, \ldots, z_{n_{0}-1}\right\} \cup\left\{z_{n_{0}}, z_{n_{0}+1}, z_{n_{0}+2}, \ldots, z_{n_{0}+n}, \ldots\right\}$ and $w_{n}=\left\{w_{0}, w_{1}, w_{2}, \ldots, w_{n_{0}-1}\right\} \cup\left\{w_{n_{0}}, w_{n_{0}+1}, w_{n_{0}+2}, \ldots, w_{n_{0}+n}, \ldots\right\}$ are b-Cauchy sequences in X.
Theorem 2.4. Let (X, d) be a b-metric space with coefficient $s \geq 1$ and F, G : $X \times X \rightarrow X, f, g: X \rightarrow X$ be four mappings satisfying generalized contraction condition. Assume that
(i) $F(X \times X) \subseteq g(X)$ and $G(X \times X) \subseteq f(X)$,
(ii) either $f(X)$ or $g(X)$ is a complete subspace of X ,
(iii) (F, f) and (G, g) are w-compatible.

Then F, G, f and g have a unique common coupled fixed point in $X \times X$.
Proof. From (i), there exist sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ in X such that $F\left(x_{2 n}, y_{2 n}\right)=g x_{2 n+1}=z_{2 n}$, for all $n \geq 0$
$F\left(y_{2 n}, x_{2 n}\right)=g y_{2 n+1}=w_{2 n}$, for all $n \geq 0$
$G\left(x_{2 n+1}, y_{2 n+1}\right)=f x_{2 n+2}=z_{2 n+1}$, for all $n \geq 0$
$G\left(y_{2 n+1}, x_{2 n+1}\right)=f y_{2 n+2}=w_{2 n+1}$, for all $n \geq 0$.
Assume that $z_{n}=z_{n+1}$ and $w_{n}=w_{n+1}$ for some $n=\{0,1,2, \ldots\}$.
Case (i): n even.
We write $n=2 m, m \in \mathbb{N}$.
Now we consider

$$
\begin{align*}
d\left(z_{n+1}, z_{n+2}\right)+d\left(w_{n+1}, w_{n+2}\right) \leq & s^{4}\left[d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right] \\
= & s^{4}\left[d\left(F\left(x_{2 m+2}, y_{2 m+2}\right), G\left(x_{2 m+1}, y_{2 m+1}\right)\right)\right. \\
& \left.\quad+d\left(F\left(y_{2 m+2}, x_{2 m+2}\right), G\left(y_{2 m+1}, x_{2 m+1}\right)\right)\right] \\
\leq & k M\left(x_{2 m+2}, y_{2 m+2}, x_{2 m+1}, y_{2 m+1}\right) \tag{8}
\end{align*}
$$

where

$$
\begin{gathered}
M\left(x_{2 m+2}, y_{2 m+2}, x_{2 m+1}, y_{2 m+1}\right)=\max \left\{d\left(f x_{2 m+2}, g x_{2 m+1}\right)+d\left(f y_{2 m+2}, g y_{2 m+1}\right),\right. \\
d\left(f x_{2 m+2}, F\left(x_{2 m+2}, y_{2 m+2}\right)\right)+d\left(f y_{2 m+2}, F\left(y_{2 m+2}, x_{2 m+2}\right)\right), \\
d\left(g x_{2 m+1}, G\left(x_{2 m+1}, y_{2 m+1}\right)\right)+d\left(g y_{2 m+1}, G\left(y_{2 m+1}, x_{2 m+1}\right)\right), \\
\frac{d\left(f x_{2 m+2}, G\left(x_{2 m+1}, y_{2 m+1}\right)\right)+d\left(f y_{2 m+2}, G\left(y_{2 m+1}, x_{2 m+1}\right)\right)}{2 s}, \\
\left.\frac{d\left(g x_{2 m+1}, F\left(x_{2 m+2}, y_{2 m+2}\right)\right)+d\left(g y_{2 m+1}, F\left(y_{2 m+2}, x_{2 m+2}\right)\right)}{2 s^{2}}\right\} \\
=\max \left\{d\left(z_{2 m+1}, z_{2 m}\right)+d\left(w_{2 m+1}, w_{2 m}\right),\right. \\
d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right), \\
\begin{array}{l}
d\left(z_{2 m}, z_{2 m+1}\right)+d\left(w_{2 m}, w_{2 m+1}\right), \\
\left.\frac{d\left(z_{2 m+1}, z_{2 m+1}\right)+d\left(w_{2 m+1}, w_{2 m+1}\right)}{2 s}, \frac{d\left(z_{2 m}, z_{2 m+2}\right)+d\left(w_{2 m}, w_{2 m+2}\right)}{2 s^{2}}\right\} \\
\leq \max \left\{0, d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right), 0,0,\right. \\
\left.\frac{d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)}{2 s}\right\}
\end{array} \\
=d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) .
\end{gathered}
$$

From (8), we have
$s^{4} d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) \leq k\left[d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right]$ implies that
$d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) \leq 0$ which implies that $z_{2 m+1}=z_{2 m+2}$ and
$w_{2 m+1}=w_{2 m+2}$.
Hence $z_{2 m}=z_{2 m+1}=z_{2 m+2}$ and $w_{2 m}=w_{2 m+1}=w_{2 m+2}$.
In general, $z_{2 m}=z_{2 m+k}$ and $w_{2 m}=w_{2 m+k}$ for $k=0,1,2, \ldots$.
Case (ii): n odd.
We write $n=2 m+1, m \in \mathbb{N}$.
Now we consider

$$
\begin{align*}
d\left(z_{n+1}, z_{n+2}\right)+d\left(w_{n+1}, w_{n+2}\right) \leq & s^{4}\left[d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right)\right] \\
= & s^{4}\left[d\left(F\left(x_{2 m+2}, y_{2 m+2}\right), G\left(x_{2 m+3}, y_{2 m+3}\right)\right)\right. \\
& \left.\quad+d\left(F\left(y_{2 m+2}, x_{2 m+2}\right), G\left(y_{2 m+3}, x_{2 m+3}\right)\right)\right] \\
\leq & k M\left(x_{2 m+2}, y_{2 m+2}, x_{2 m+3}, y_{2 m+3}\right) \tag{9}
\end{align*}
$$

where

$$
\begin{gathered}
M\left(x_{2 m+2}, y_{2 m+2}, x_{2 m+3}, y_{2 m+3}\right)=\max \left\{d\left(f x_{2 m+2}, g x_{2 m+3}\right)+d\left(f y_{2 m+2}, g y_{2 m+3}\right),\right. \\
d\left(f x_{2 m+2}, F\left(x_{2 m+2}, y_{2 m+2}\right)\right)+d\left(f y_{2 m+2}, F\left(y_{2 m+2}, x_{2 m+2}\right)\right), \\
\\
\frac{d\left(g x_{2 m+3}, G\left(x_{2 m+3}, y_{2 m+3}\right)\right)+d\left(g y_{2 m+3}, G\left(y_{2 m+3}, x_{2 m+3}\right)\right),}{} \frac{d\left(f x_{2 m+2}, G\left(x_{2 m+3}, y_{2 m+3}\right)\right)+d\left(f y_{2 m+2}, G\left(y_{2 m+3}, x_{2 m+3}\right)\right)}{2 s}, \\
\left.\frac{d\left(g x_{2 m+3}, F\left(x_{2 m+2}, y_{2 m+2}\right)\right)+d\left(g y_{2 m+3}, F\left(y_{2 m+2}, x_{2 m+2}\right)\right)}{2 s^{2}}\right\} \\
=\max \left\{d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right),\right. \\
d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right),
\end{gathered}
$$

$$
\begin{aligned}
& d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right) \\
& \left.\frac{d\left(z_{2 m+1}, z_{2 m+3}\right)+d\left(w_{2 m+1}, w_{2 m+3}\right)}{2 s}, \frac{d\left(z_{2 m+2}, z_{2 m+2}\right)+d\left(w_{2 m+2}, w_{2 m+2}\right)}{2 s^{2}}\right\} \\
& \quad \leq \max \left\{0,0, d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right)\right. \\
& \left.\quad \frac{d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right)}{2}, 0\right\} \\
& \quad=d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right) .
\end{aligned}
$$

From (9), we have
$s^{4} d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right) \leq k\left[d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right)\right]$ implies that
$d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right) \leq 0$ which implies that $z_{2 m+2}=z_{2 m+3}$ and $w_{2 m+2}=w_{2 m+3}$.
Hence $z_{2 m+1}=z_{2 m+2}=z_{2 m+3}$ and $w_{2 m+1}=w_{2 m+2}=w_{2 m+3}$.
In general, $z_{2 m+1}=z_{2 m+k}$ and $w_{2 m+1}=w_{2 m+k}$ for $k=0,1,2, \ldots$.
From Case (i) and Case (ii), we have $z_{n+k}=z_{n}$ and $w_{n+k}=w_{n}$ for $k=0,1,2, \ldots$.
Therefore, $\left\{z_{n+k}\right\}$ and $\left\{w_{n+k}\right\}$ are constant sequences and hence $\left\{z_{n+k}\right\}$ and $\left\{w_{n+k}\right\}$ are Cauchy sequences.
Now we assume that $z_{n} \neq z_{n+1}$ and $w_{n} \neq w_{n+1}$ for all $n \in \mathbb{N}$.
If n is odd, then $n=2 m+1, m \in \mathbb{N}$.
We now consider

$$
\begin{align*}
d\left(z_{n}, z_{n+1}\right)+d\left(w_{n}, w_{n+1}\right) \leq & s^{4}\left[d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right] \\
& =s^{4}\left[d\left(F\left(x_{2 m+2}, y_{2 m+2}\right), G\left(x_{2 m+1}, y_{2 m+1}\right)\right)\right. \\
& \left.\quad+d\left(F\left(y_{2 m+2}, x_{2 m+2}\right), G\left(y_{2 m+1}, x_{2 m+1}\right)\right)\right] \\
& \leq k M\left(x_{2 m+2}, y_{2 m+2}, x_{2 m+1}, y_{2 m+1}\right) \tag{10}
\end{align*}
$$

where

$$
\begin{gathered}
M\left(x_{2 m+2}, y_{2 m+2}, x_{2 m+1}, y_{2 m+1}\right)=\max \left\{d\left(f x_{2 m+2}, g x_{2 m+1}\right)+d\left(f y_{2 m+2}, g y_{2 m+1}\right),\right. \\
d\left(f x_{2 m+2}, F\left(x_{2 m+2}, y_{2 m+2}\right)\right)+d\left(f y_{2 m+2}, F\left(y_{2 m+2}, x_{2 m+2}\right)\right), \\
d\left(g x_{2 m+1}, G\left(x_{2 m+1}, y_{2 m+1}\right)\right)+d\left(g y_{2 m+1}, G\left(y_{2 m+1}, x_{2 m+1}\right)\right), \\
\frac{d\left(f x_{2 m+2}, G\left(x_{2 m+1}, y_{2 m+1}\right)\right)+d\left(f y_{2 m+2}, G\left(y_{2 m+1}, x_{2 m+1}\right)\right)}{2 s}, \\
\left.\frac{d\left(g x_{2 m+1}, F\left(x_{2 m+2}, y_{2 m+2}\right)+d\left(g y_{2 m+1}, F\left(y_{2 m+2}, x_{2 m+2}\right)\right)\right.}{2 s^{2}}\right\} \\
=\max \left\{d\left(z_{2 m+1}, z_{2 m}\right)+d\left(w_{2 m+1}, w_{2 m}\right),\right. \\
d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right), \\
d\left(z_{2 m}, z_{2 m+1}\right)+d\left(w_{2 m}, w_{2 m+1}\right), \\
\left.\frac{d\left(z_{2 m+1}, z_{2 m+1}\right)+d\left(w_{2 m+1}, w_{2 m+1}\right)}{2 s}, \frac{d\left(z_{2 m}, z_{2 m+2}\right)+d\left(w_{2 m}, w_{2 m+2}\right)}{2 s^{2}}\right\} \\
\leq \max \left\{d\left(z_{2 m+1}, z_{2 m}\right)+d\left(w_{2 m+1}, w_{2 m}\right),\right. \\
\left.d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right\} .
\end{gathered}
$$

If $M\left(x_{2 m+2}, y_{2 m+2}, x_{2 m+1}, y_{2 m+1}\right)=d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)$ then from (10), we get that
$s^{4}\left[d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right] \leq k\left[d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right]$ implies that
$d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) \leq 0$,
a contradiction.
Therefore, $M\left(x_{2 m+2}, y_{2 m+2}, x_{2 m+1}, y_{2 m+1}\right)=d\left(z_{2 m}, z_{2 m+1}\right)+d\left(w_{2 m}, w_{2 m+1}\right)$.
Hence from (10), we have
$s^{4}\left[d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right] \leq k\left[d\left(z_{2 m}, z_{2 m+1}\right)+d\left(w_{2 m}, w_{2 m+1}\right)\right]$ implies that

$$
\begin{equation*}
d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) \leq h\left[d\left(z_{2 m}, z_{2 m+1}\right)+d\left(w_{2 m}, w_{2 m+1}\right)\right] \tag{11}
\end{equation*}
$$

where $h=\frac{k}{s^{4}}<1$.
On the similar lines, if n is even, it follows that

$$
\begin{equation*}
d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) \leq h\left[d\left(z_{2 m}, z_{2 m+1}\right)+d\left(w_{2 m}, w_{2 m+1}\right)\right] \tag{12}
\end{equation*}
$$

From (11) and (12), it follows that

$$
\begin{aligned}
d\left(z_{n}, z_{n+1}\right)+d\left(w_{n}, w_{n+1}\right) \leq & h\left[d\left(z_{n-1}, z_{n}\right)+d\left(w_{n-1}, w_{n}\right)\right] \\
& \leq h^{2}\left[d\left(z_{n-2}, z_{n-1}\right)+d\left(w_{n-2}, w_{n-1}\right)\right] \\
& \vdots \\
& \leq h^{n}\left[d\left(z_{0}, z_{1}\right)+d\left(w_{0}, w_{1}\right)\right] \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty} d\left(z_{n}, z_{n+1}\right)=0$ and $\lim _{n \rightarrow \infty} d\left(z_{n}, z_{n+1}\right)=0$.
By Lemma 2.3, we have $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ are Cauchy sequences in b-metric space (X, d). Therefore $\left\{z_{2 n+1}\right\}$ and $\left\{w_{2 n+1}\right\}$ are Cauchy sequences in the subspace $(f(X), d)$.
Suppose that $f(X)$ is complete. Since $\left\{z_{2 n+1}\right\} \subseteq f(X)$ and $\left\{w_{2 n+1}\right\} \subseteq f(X)$, it follows that the sequences $\left\{z_{2 n+1}\right\}$ and $\left\{w_{2 n+1}\right\}$ are convergent in $(f(X), d)$.
Hence, there exist $u, v \in f(X)$ such that $\lim _{n \rightarrow \infty} d\left(z_{2 n+1}, u\right)=0$ and
$\lim _{n \rightarrow \infty} d\left(w_{2 n+1}, v\right)=0$.
Since $u, v \in f(X)$, there exist $s, t \in X$ such that $u=f s$ and $v=f t$.
Since $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ are b-Cauchy sequences in X and $\left\{z_{2 n+1}\right\} \rightarrow u$
and $\left\{w_{2 n+1}\right\} \rightarrow v$ as $n \rightarrow \infty$, so that $\left\{z_{2 n}\right\} \rightarrow u$ and $\left\{w_{2 n}\right\} \rightarrow v$ as $n \rightarrow \infty$.
Therefore $\lim _{n \rightarrow \infty} d\left(z_{2 n}, u\right)=0$ and $\lim _{n \rightarrow \infty} d\left(w_{2 n}, v\right)=0$.
By Lemma 1.7, we have
$\frac{1}{s} d(F(s, t), u) \leq \liminf _{n \rightarrow \infty} d\left(F(s, t), z_{2 n+1}\right) \leq \limsup _{n \rightarrow \infty} d\left(F(s, t), z_{2 n+1}\right) \leq s d(F(s, t), u)$
and
$\frac{1}{s} d(F(t, s), v) \leq \liminf _{n \rightarrow \infty} d\left(F(t, s), w_{2 n+1}\right) \leq \limsup _{n \rightarrow \infty} d\left(F(t, s), w_{2 n+1}\right) \leq s d(F(t, s), v)$.
We now prove that $F(s, t)=u=f s$ and $F(t, s)=v=f t$.
Suppose that $F(s, t) \neq u \neq f s$ and $F(t, s) \neq v \neq f t$.
Now we consider

$$
\begin{align*}
d\left(F(s, t), z_{2 n+1}\right)+d\left(F(t, s), w_{2 n+1}\right)= & d\left(F(s, t), G\left(x_{2 n+1}, y_{2 n+1}\right)\right) \\
& +d\left(F(t, s), G\left(y_{2 n+1}, x_{2 n+1}\right)\right) \\
\leq & s^{4}\left[d\left(F(s, t), G\left(x_{2 n+1}, y_{2 n+1}\right)\right)\right. \\
& \left.\quad+d\left(F(t, s), G\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right] \\
\leq & k M\left(s, t, x_{2 n+1}, y_{2 n+1}\right) \tag{13}
\end{align*}
$$

where

$$
\begin{array}{r}
M\left(s, t, x_{2 n+1}, y_{2 n+1}\right)=\max \left\{d\left(f s, g x_{2 n+1}\right)+d\left(f t, g y_{2 n+1}\right), d(f s, F(s, t))+d(f t, F(t, s)),\right. \\
d\left(g x_{2 n+1}, G\left(x_{2 n+1}, y_{2 n+1}\right)\right)+d\left(g y_{2 n+1}, G\left(y_{2 n+1}, x_{2 n+1}\right)\right), \\
\left.\frac{d\left(f s, G\left(x_{2 n+1}, y_{2 n+1}\right)\right)+d\left(f t, G\left(y_{2 n+1}, x_{2 n+1}\right)\right)}{2 s}, \frac{d\left(g x_{2 n+1}, F(s, t)\right)+d\left(g y_{2 n+1}, F(t, s)\right)}{2 s^{2}}\right\} \\
=\max \left\{d\left(u, z_{2 n}\right)+d\left(v, w_{2 n}\right), d(u, F(s, t))+d(v, F(t, s)),\right. \\
d\left(z_{2 n}, z_{2 n+1}\right)+d\left(w_{2 n}, w_{2 n+1}\right), \frac{d\left(u, z_{2 n+1}\right)+d\left(v, w_{2 n+1}\right)}{2 s}, \\
\left.\frac{d\left(z_{2 n}, F(s, t)\right)+d\left(w_{2 n}, F(t, s)\right)}{2 s^{2}}\right\} \\
\leq \max \left\{d\left(u, z_{2 n}\right)+d\left(v, w_{2 n}\right), d(u, F(s, t))+d(v, F(t, s)),\right. \\
d\left(z_{2 n}, z_{2 n+1}\right)+d\left(w_{2 n}, w_{2 n+1}\right), \frac{d\left(u, z_{2 n+1}\right)+d\left(v, w_{2 n+1}\right)}{2 s}, \\
\left.\frac{d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, F(s, t)\right)+d\left(w_{2 n}, w_{2 n+1}\right)+d\left(w_{2 n+1}, F(t, s)\right)}{2 s}\right\}
\end{array}
$$

On letting limit superior as $n \rightarrow \infty$ on $M\left(s, t, x_{2 n+1}, y_{2 n+1}\right)$, we get
$\limsup M\left(s, t, x_{2 n+1}, y_{2 n+1}\right) \leq d(u, F(s, t))+d(v, F(t, s))$.
$\left.\begin{array}{c}n \rightarrow \infty \\ \text { On taking limit superior as } n \rightarrow \infty\end{array}\right)$ in (13), we get

$$
\begin{aligned}
s^{4} \frac{1}{s}[d(u, F(s, t))+d(v, F(t, s))] \leq & s^{4} \limsup _{n \rightarrow \infty}\left[d\left(F(s, t), G\left(x_{2 n+1}, y_{2 n+1}\right)\right)\right. \\
& \left.+d\left(F(t, s), G\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right] \\
& \leq k \limsup _{n \rightarrow \infty} M\left(s, t, x_{2 n+1}, y_{2 n+1}\right) \\
& \leq k[d(u, F(s, t))+d(v, F(t, s))] \\
& <d(u, F(s, t))+d(v, F(t, s))
\end{aligned}
$$

which implies that $\left(s^{3}-1\right)[d(u, F(s, t))+d(v, F(t, s))]<0$,
which is a contracdiction.
Therefore $d(u, F(s, t))+d(v, F(t, s))=0$ implies that $F(s, t)=u=f s$ and $F(t, s)=v=f t$.
Hence (s, t) is a coincidence point of F and f. Since the pair (F, f) is w-compatible, we have
$f u=f(F(s, t))=F(f s, f t)=F(u, v)$ and $f v=f(F(t, s))=F(f t, f s)=F(v, u)$. We now prove that $f u=u$ and $f v=v$. Suppose that $f u \neq u$ and $f v \neq v$.
We now consider

$$
\begin{align*}
s^{4}[d(f u, u)+d(f v, v)] \leq & s^{5}\left[d\left(f u, z_{2 n+1}\right)+d\left(f v, w_{2 n+1}\right)\right]+s^{5}\left[d\left(z_{2 n+1}, u\right)+d\left(w_{2 n+1}, v\right)\right] \\
= & s\left(s^{4}\left[d\left(F(u, v), G\left(x_{2 n+1}, y_{2 n+1}\right)\right)+d\left(F(v, u), G\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right]\right) \\
& \quad+s^{5}\left[d\left(z_{2 n+1}, u\right)+d\left(w_{2 n+1}, v\right)\right] \\
\leq & s k M\left(u, v, x_{2 n+1}, y_{2 n+1}\right)+s^{5}\left[d\left(z_{2 n+1}, u\right)+d\left(w_{2 n+1}, v\right)\right] \tag{14}
\end{align*}
$$

where

$$
\begin{gathered}
M\left(u, v, x_{2 n+1}, y_{2 n+1}\right)=\max \left\{d\left(f u, g x_{2 n+1}\right)+d\left(f v, g y_{2 n+1}\right), d(f u, F(u, v))+d(f v, F(v, u)),\right. \\
d\left(g x_{2 n+1}, G\left(x_{2 n+1}, y_{2 n+1}\right)\right)+d\left(g y_{2 n+1}, G\left(y_{2 n+1}, x_{2 n+1}\right)\right), \\
\left.\frac{d\left(f u, G\left(x_{2 n+1}, y_{2 n+1}\right)\right)+d\left(f v, G\left(y_{2 n+1}, x_{2 n+1}\right)\right)}{2 s}, \frac{d\left(g x_{2 n+1}, F(u, v)\right)+d\left(g y_{2 n+1}, F(v, u)\right)}{2 s^{2}}\right\} \\
=\max \left\{d\left(f u, z_{2 n}\right)+d\left(f v, w_{2 n}\right), d(f u, F(u, v))+d(f v, F(v, u)),\right. \\
\left.d\left(z_{2 n}, z_{2 n+1}\right)+d\left(w_{2 n}, w_{2 n+1}\right), \frac{d\left(f u, z_{2 n+1}\right)+d\left(f v, w_{2 n+1}\right)}{2 s}, \frac{d\left(z_{2 n}, f u\right)+d\left(w_{2 n}, f v\right)}{2 s^{2}}\right\}
\end{gathered}
$$

On taking limit superior as $n \rightarrow \infty$, we get
$\lim \sup M\left(u, v, x_{2 n+1}, y_{2 n+1}\right) \leq d(f u, F(u, v))+d(f v, F(v, u))$.
$\left.\begin{array}{l}n \rightarrow \infty \\ \text { On letting as } n \rightarrow \infty\end{array}\right)$ in (14), we have
$s^{3}[d(f u, u)+d(f v, v)] \leq k[d(f u, F(u, v))+d(f v, F(v, u))]<d(f u, F(u, v))+d(f v, F(v, u))$, a contradiction.
Therefore $f u=u$ and $f v=v$.
Thus $F(u, v)=f u=u$ and $F(v, u)=f v=v$.
Hence (u, v) is a common coupled fixed point of F and f.
By Proposition 2.2, we have
(u, v) is a unique common coupled fixed point of F, G, f and g.
Theorem 2.5. Let (X, d) be a b-metric space with coefficient $s \geq 1$. Let F, G : $X \times X \rightarrow X, f, g: X \rightarrow X$ be four mappings. Suppose that there exist $k_{1}, k_{2}, k_{3}, k_{4}$ and k_{5} in $[0,1)$ with $k_{1}+k_{2}+k_{3}+2 s k_{4}+2 s k_{5}<1$ such that

$$
\left\{\begin{align*}
& s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))] \leq k_{1}[d(f x, g u)+d(f y, g v)] \tag{15}\\
&+k_{2}[d(f x, F(x, y))+d(f y, F(y, x))] \\
&+k_{3}[d(g u, G(u, v))+d(g v, G(v, u))] \\
&+k_{4}[d(f x, G(u, v))+d(f y, G(v, u))] \\
&+k_{5}[d(g u, F(x, y))+d(g v, F(y, x))]
\end{align*}\right.
$$

for all $x, y, u, v \in X$. Also, suppose the following hypotheses:
(i) $F(X \times X) \subset g(X)$ and $G(X \times X) \subset f(X)$,
(ii) either $f(X)$ or $g(X)$ is a complete subspace of X ,
(iii) (F, f) and (G, g) are w-compatible.

Then F, G, f and g have a unique common coupled fixed point in $X \times X$.
Proof. We define the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ same as in Theorem 2.4.
Assume that $z_{n}=z_{n+1}$ and $w_{n}=w_{n+1}$ for some $n=\{0,1,2, \ldots\}$.
Case (i): n even.
We write $n=2 m, m \in \mathbb{N}$.
Now we consider and using (15), we have

$$
\begin{aligned}
& d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) \leq s^{4}\left[d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right] \\
&= s^{4}\left[d\left(F\left(x_{2 m+2}, y_{2 m+2}\right), G\left(x_{2 m+1}, y_{2 m+1}\right)\right)\right. \\
&\left.+d\left(F\left(y_{2 m+2}, x_{2 m+2}\right), G\left(y_{2 m+1}, x_{2 m+1}\right)\right)\right] \\
& \leq k_{1} d\left(f x_{2 m+2}, g x_{2 m+1}\right)+d\left(f y_{2 m+2}, g y_{2 m+1}\right) \\
&+k_{2} d\left(f x_{2 m+2}, F\left(x_{2 m+2}, y_{2 m+2}\right)\right)+d\left(f y_{2 m+2}, F\left(y_{2 m+2}, x_{2 m+2}\right)\right) \\
&+k_{3} d\left(g x_{2 m+1}, G\left(x_{2 m+1}, y_{2 m+1}\right)\right)+d\left(g y_{2 m+1}, G\left(y_{2 m+1}, x_{2 m+1}\right)\right) \\
&+k_{4} d\left(f x_{2 m+2}, G\left(x_{2 m+1}, y_{2 m+1}\right)\right)+d\left(f y_{2 m+2}, G\left(y_{2 m+1}, x_{2 m+1}\right)\right) \\
&+k_{5} d\left(g x_{2 m+1}, F\left(x_{2 m+2}, y_{2 m+2}\right)\right)+d\left(g y_{2 m+1}, F\left(y_{2 m+2}, x_{2 m+2}\right)\right) \\
&= k_{1} d\left(z_{2 m+1}, z_{2 m}\right)+d\left(w_{2 m+1}, w_{2 m}\right) \\
&+k_{2} d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) \\
&+k_{3} d\left(z_{2 m}, z_{2 m+1}\right)+d\left(w_{2 m}, w_{2 m+1}\right) \\
&+k_{4} d\left(z_{2 m+1}, z_{2 m+1}\right)+d\left(w_{2 m+1}, w_{2 m+1}\right) \\
&+k_{5} d\left(z_{2 m}, z_{2 m+2}\right)+d\left(w_{2 m}, w_{2 m+2}\right) \\
& \leq k_{2} d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) \\
&+s k_{5} d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)
\end{aligned}
$$

which implies that $\left(1-k_{2}-s k_{5}\right)\left[d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right] \leq 0$ so that
$z_{2 m+1}=z_{2 m+2}$ and $w_{2 m+1}=w_{2 m+2}$.
Hence $z_{2 m}=z_{2 m+1}=z_{2 m+2}$ and $w_{2 m}=w_{2 m+1}=w_{2 m+2}$.
In general, $z_{2 m}=z_{2 m+k}$ and $w_{2 m}=w_{2 m+k}$ for $k=0,1,2, \ldots$.
Case (ii): n odd.
We write $n=2 m+1, m \in \mathbb{N}$. Now we consider
$d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right) \leq s^{4}\left[d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right)\right]$

$$
=s^{4}\left[d\left(F\left(x_{2 m+2}, y_{2 m+2}\right), G\left(x_{2 m+3}, y_{2 m+3}\right)\right)\right.
$$

$$
\left.+d\left(F\left(y_{2 m+2}, x_{2 m+2}\right), G\left(y_{2 m+3}, x_{2 m+3}\right)\right)\right]
$$

$+k_{2} d\left(f x_{2 m+2}, F\left(x_{2 m+2}, y_{2 m+2}\right)\right)+d\left(f y_{2 m+2}, F\left(y_{2 m+2}, x_{2 m+2}\right)\right)$

$$
\leq k_{1} d\left(f x_{2 m+2}, g x_{2 m+3}\right)+d\left(f y_{2 m+2}, g y_{2 m+3}\right)
$$

$+k_{3} d\left(g x_{2 m+3}, G\left(x_{2 m+3}, y_{2 m+3}\right)\right)+d\left(g y_{2 m+3}, G\left(y_{2 m+3}, x_{2 m+3}\right)\right)$
$+k_{4} d\left(f x_{2 m+2}, G\left(x_{2 m+3}, y_{2 m+3}\right)\right)+d\left(f y_{2 m+2}, G\left(y_{2 m+3}, x_{2 m+3}\right)\right)$
$+k_{5} d\left(g x_{2 m+3}, F\left(x_{2 m+2}, y_{2 m+2}\right)\right)+d\left(g y_{2 m+3}, F\left(y_{2 m+2}, x_{2 m+2}\right)\right)$

$$
\leq k_{3} d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right)
$$

$$
+s k_{4} d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right)
$$

which implies that $\left(1-k_{3}-s k_{4}\right)\left[d\left(z_{2 m+2}, z_{2 m+3}\right)+d\left(w_{2 m+2}, w_{2 m+3}\right)\right] \leq 0$ so that
$z_{2 m+2}=z_{2 m+3}$ and $w_{2 m+2}=w_{2 m+3}$.
Hence $z_{2 m+1}=z_{2 m+2}=z_{2 m+3}$ and $w_{2 m+1}=w_{2 m+2}=w_{2 m+3}$.
In general, $z_{2 m+1}=z_{2 m+k}$ and $w_{2 m+1}=w_{2 m+k}$ for $k=0,1,2, \ldots$.
From Case (i) and Case (ii), we have $z_{n+k}=z_{n}$ and $w_{n+k}=w_{n}$ for $k=0,1,2, \ldots$.
Therefore, $\left\{z_{n+k}\right\}$ and $\left\{w_{n+k}\right\}$ are constant sequences and hence $\left\{z_{n+k}\right\}$ and $\left\{w_{n+k}\right\}$
are Cauchy sequences.
Now we assume that $z_{n} \neq z_{n+1}$ and $w_{n} \neq w_{n+1}$ for all $n \in \mathbb{N}$.
If n is odd, then $n=2 m+1, m \in \mathbb{N}$.
We now consider

$$
\left.\begin{array}{rl}
d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right) \leq & s^{4}[\\
\quad & \left.d\left(z_{2 m+1}, z_{2 m+2}\right)+d\left(w_{2 m+1}, w_{2 m+2}\right)\right] \\
& =s^{4}\left[d\left(F\left(x_{2 m+2}, y_{2 m+2}\right), G\left(x_{2 m+1}, y_{2 m+1}\right)\right)\right. \\
& \left.+d\left(F\left(y_{2 m+2}, x_{2 m+2}\right), G\left(y_{2 m+1}, x_{2 m+1}\right)\right)\right] \\
\leq & k_{1} d\left(f x_{2 m+2}, g x_{2 m+1}\right)+d\left(f y_{2 m+2}, g y_{2 m+1}\right)
\end{array}\right)
$$

and hence

$$
\begin{align*}
{\left[d\left(z_{n}, z_{n+1}\right)+d\left(w_{n}, w_{n+1}\right)\right] } & \leq \frac{\left(k_{1}+k_{3}+s k_{5}\right)}{\left(1-k_{2}-s k_{5}\right)}\left[d\left(z_{n-1}, z_{n}\right)+d\left(w_{n-1}, w_{n}\right)\right] \tag{16}\\
& =h_{1}\left[d\left(z_{n-1}, z_{n}\right)+d\left(w_{n-1}, w_{n}\right)\right]
\end{align*}
$$

where $h_{1}=\frac{k_{1}+k_{3}+s k_{5}}{1-k_{2}-s k_{5}}<1$.
On the similar lines, if n is even, it follows that

$$
\begin{align*}
{\left[d\left(z_{n}, z_{n+1}\right)+d\left(w_{n}, w_{n+1}\right)\right] } & \leq \frac{\left(k_{1}+k_{2}+s k_{4}\right)}{\left(1-k_{3}-s k_{4}\right)}\left[d\left(z_{n-1}, z_{n}\right)+d\left(w_{n-1}, w_{n}\right)\right] \tag{17}\\
& =h_{2}\left[d\left(z_{n-1}, z_{n}\right)+d\left(w_{n-1}, w_{n}\right)\right]
\end{align*}
$$

where $h_{2}=\frac{k_{1}+k_{2}+s k_{4}}{1-k_{3}-s k_{4}}<1$.
We take $h=\max \left\{h_{1}, h_{2}\right\}$, from (16) and (17), we have that
$\left[d\left(z_{n}, z_{n+1}\right)+d\left(w_{n}, w_{n+1}\right)\right] \leq h\left[d\left(z_{n-1}, z_{n}\right)+d\left(w_{n-1}, w_{n}\right)\right]$
By Lemma 2.3, it follows that
$\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ are Cauchy sequences in b-metric space (X, d).
Therefore $\left\{z_{2 n+1}\right\}$ and $\left\{w_{2 n+1}\right\}$ are Cauchy sequences in the subspace $(f(X), d)$.
Suppose that $f(X)$ is complete.
Since $\left\{z_{2 n+1}\right\} \subseteq f(X)$ and $\left\{w_{2 n+1}\right\} \subseteq f(X)$, it follows that
the sequences $\left\{z_{2 n+1}\right\}$ and $\left\{w_{2 n+1}\right\}$ are convergent in $(f(X), d)$.
Hence, there exist $u, v \in f(X)$ such that
$\lim _{n \rightarrow \infty} d\left(z_{2 n+1}, u\right)=0$ and $\lim _{n \rightarrow \infty} d\left(w_{2 n+1}, v\right)=0$.
Since $u, v \in f(X)$, there exist $s, t \in X$ such that $u=f s$ and $v=f t$.
Since $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ are Cauchy sequences in X and $\left\{z_{2 n+1}\right\} \rightarrow u$ and
$\left\{w_{2 n+1}\right\} \rightarrow v$ as $n \rightarrow \infty$, it follows that
$\left\{z_{2 n}\right\} \rightarrow u$ and $\left\{w_{2 n}\right\} \rightarrow v$ as $n \rightarrow \infty$.
Therefore $\lim _{n \rightarrow \infty} d\left(z_{2 n}, u\right)=0$ and $\lim _{n \rightarrow \infty} d\left(w_{2 n}, v\right)=0$.
By Lemma 1.7, we have
$\frac{1}{s} d(F(s, t), u) \leq \liminf _{n \rightarrow \infty} d\left(F(s, t), z_{2 n+1}\right) \leq \limsup _{n \rightarrow \infty} d\left(F(s, t), z_{2 n+1}\right) \leq s d(F(s, t), u)$
and
$\frac{1}{s} d(F(t, s), v) \leq \liminf _{n \rightarrow \infty} d\left(F(t, s), w_{2 n+1}\right) \leq \limsup _{n \rightarrow \infty} d\left(F(t, s), w_{2 n+1}\right) \leq s d(F(t, s), v)$.
We now prove that $F(s, t)=u=f s$ and $F(t, s)=v=f t$.
Suppose that $F(s, t) \neq u \neq f s$ and $F(t, s) \neq v \neq f t$.

Now we consider

$$
\left\{\begin{align*}
& d\left(F(s, t), z_{2 n+1}\right)+d\left(F(t, s), w_{2 n+1}\right)= d\left(F(s, t), G\left(x_{2 n+1}, y_{2 n+1}\right)\right) \\
&+d\left(F(t, s), G\left(y_{2 n+1}, x_{2 n+1}\right)\right) \\
& \leq s^{4}\left[d\left(F(s, t), G\left(x_{2 n+1}, y_{2 n+1}\right)\right)\right. \\
&\left.+d\left(F(t, s), G\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right] \\
& \leq k_{1}\left[d\left(f s, g x_{2 n+1}\right)+d\left(f t, g y_{2 n+1}\right)\right] \\
&+k_{2}[d(f s, F(s, t))+d(f t, F(t, s))] \\
&+k_{3}\left[d\left(g x_{2 n+1}, G\left(x_{2 n+1}, y_{2 n+1}\right)\right)\right. \\
&\left.+d\left(g y_{2 n+1}, G\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right] \\
&+k_{4}\left[d\left(f s, G\left(x_{2 n+1}, y_{2 n+1}\right)\right)\right. \\
&\left.+d\left(f t, G\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right] \\
&+k_{5}\left[d\left(g x_{2 n+1}, F(s, t)\right)+d\left(g y_{2 n+1}, F(t, s)\right)\right] \\
&= k_{1}\left[d\left(u, z_{2 n}\right)+d\left(v, w_{2 n}\right)\right] \\
&+k_{2}[d(u, F(s, t))+d(v, F(t, s))] \\
&+k_{3}\left[d\left(z_{2 n}, z_{2 n+1}\right)+d\left(w_{2 n}, w_{2 n+1}\right)\right] \\
&+k_{4}\left[d\left(u, z_{2 n+1}\right)+d\left(v, w_{2 n+1}\right)\right] \\
&+k_{5}\left[d\left(z_{2 n}, F(s, t)\right)+d\left(w_{2 n}, F(t, s)\right)\right] \\
& \leq k_{1}\left[d\left(u, z_{2 n}\right)+d\left(v, w_{2 n}\right)\right] \\
&+k_{2}[d(u, F(s, t))+d(v, F(t, s))] \\
&+k_{3}\left[d\left(z_{2 n}, z_{2 n+1}\right)+d\left(w_{2 n}, w_{2 n+1}\right)\right] \\
&+k_{4}\left[d\left(u, z_{2 n+1}\right)+d\left(v, w_{2 n+1}\right)\right] \\
&+s k_{5}\left[d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, F(s, t)\right)\right] \\
&+s k_{5}\left[d\left(w_{2 n}, w_{2 n+1}\right)+d\left(w_{2 n+1}, F(t, s)\right)\right] \tag{18}
\end{align*}\right.
$$

On taking limit superior as $n \rightarrow \infty$ in (18), we get

$$
\begin{aligned}
s^{4} \frac{1}{s}[d(u, F(s, t))+d(v, F(t, s))] \leq & \limsup _{n \rightarrow \infty} s^{4}\left[d\left(F(s, t), G\left(x_{2 n+1}, y_{2 n+1}\right)\right)\right. \\
& \left.\quad+d\left(F(t, s), G\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right] \\
\leq & k_{2}[d(u, F(s, t))+d(v, F(t, s))]+s^{2} k_{5}[d(u, F(s, t)) \\
& \quad+d(v, F(t, s))] \\
\leq & \left(k_{2}+s^{2} k_{5}\right)[d(u, F(s, t))+d(v, F(t, s))] \\
\leq & \left(s k_{2}+s^{2} k_{5}\right)[d(u, F(s, t))+d(v, F(t, s))] \\
< & s[d(u, F(s, t))+d(v, F(t, s))]
\end{aligned}
$$

which implies that
$\left(s^{3}-s\right)[d(u, F(s, t))+d(v, F(t, s))]<0$,
a contracdiction.
Therefore $d(u, F(s, t))+d(v, F(t, s))=0$
which implies that
$F(s, t)=u=f s$ and $F(t, s)=v=f t$.
Hence (s, t) is a coincidence point of F and f.
Since the pair (F, f) is w-compatible, we have
$f u=f(F(s, t))=F(f s, f t)=F(u, v)$ and
$f v=f(F(t, s))=F(f t, f s)=F(v, u)$.
We now prove that $f u=u$ and $f v=v$.
Suppose that $f u \neq u$ and $f v \neq v$.

We now consider

$$
\left\{\begin{array}{c}
s^{4}[d(f u, u)+d(f v, v)] \leq s^{5}\left[d\left(f u, z_{2 n+1}\right)+d\left(f v, w_{2 n+1}\right)\right] \\
+s^{5}\left[d\left(z_{2 n+1}, u\right)+d\left(w_{2 n+1}, v\right)\right] \\
=s\left(s ^ { 4 } \left[d\left(F(u, v), G\left(x_{2 n+1}, y_{2 n+1}\right)\right)\right.\right. \\
\left.\left.+d\left(F(v, u), G\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right]\right) \\
+s^{5}\left[d\left(z_{2 n+1}, u\right)+d\left(w_{2 n+1}, v\right)\right] \\
\leq s\left[k_{1}\left[d\left(f u, g x_{2 n+1}\right)+d\left(f v, g y_{2 n+1}\right)\right]\right. \\
+k_{2}[d(f u, F(u, v))+d(f v, F(v, u))] \\
+k_{3}\left[d\left(g x_{2 n+1}, G\left(x_{2 n+1}, y_{2 n+1}\right)\right)\right. \\
\left.+d\left(g y_{2 n+1}, G\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right] \\
\\
+k_{4}\left[d\left(f u, G\left(x_{2 n+1}, y_{2 n+1}\right)\right)+d\left(f v, G\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right] \\
\left.+k_{5}\left[d\left(g x_{2 n+1}, F(u, v)\right)+d\left(g y_{2 n+1}, F(v, u)\right)\right]\right] \\
+s^{5}\left[d\left(z_{2 n+1}, u\right)+d\left(w_{2 n+1}, v\right)\right] \\
=s\left[k_{1}\left[d\left(f u, z_{2 n}\right)+d\left(f v, w_{2 n}\right)\right]\right. \\
+k_{2}[d(f u, F(u, v))+d(f v, F(v, u))] \\
\\
+k_{3}\left[d\left(z_{2 n}, z_{2 n+1}\right)+d\left(w_{2 n}, w_{2 n+1}\right)\right] \\
+k_{4}\left[d\left(f u, z_{2 n+1}\right)+d\left(f v, w_{2 n+1}\right)\right] \tag{19}\\
+ \\
\left.+k_{5}\left[d\left(z_{2 n}, f u\right)+d\left(w_{2 n}, f v\right)\right]\right] \\
+s^{5}\left[d\left(z_{2 n+1}, u\right)+d\left(w_{2 n+1}, v\right)\right] .
\end{array}\right.
$$

On taking limit superior as $n \rightarrow \infty$ in 19, we get

$$
\begin{aligned}
s^{4}[d(f u, u)+d(f v, v)] & \leq s\left(s k_{1}+k_{2}+s k_{4}+s k_{5}\right)[d(f u, F(u, v))+d(f v, F(v, u))] \\
& \leq s\left(s k_{1}+s k_{2}+s^{2} k_{4}+s^{2} k_{5}\right)[d(f u, F(u, v))+d(f v, F(v, u))] \\
& \leq s^{2}[d(f u, F(u, v))+d(f v, F(v, u))]
\end{aligned}
$$

which implies that $\left(s^{2}-1\right)[d(f u, F(u, v))+d(f v, F(v, u))] \leq 0$ so that $d(f u, F(u, v))+d(f v, F(v, u))=0$.
Therefore $f u=u$ and $f v=v$.
Thus $F(u, v)=f u=u$ and $F(v, u)=f v=v$.
Hence (u, v) is a common coupled fixed point of F and f.
By Proposition 2.2, we have (u, v) is a unique common coupled fixed point of F, G, f and g.

Theorem 2.6. Let (X, d) be a b-metric space with coefficient $s \geq 1$. Let F, G : $X \times X \rightarrow X, f, g: X \rightarrow X$ be four mappings. Suppose that there exist $k_{1}, k_{2}, k_{3}, k_{4}$ and k_{5} in $[0,1)$ with
$k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}+2 s k_{7}+2 s k_{8}+2 s k_{9}+2 s k_{10}<1$ such that

$$
\begin{align*}
s^{4} d(F(x, y), G(u, v)) \leq & k_{1} d(f x, g u)+k_{2} d(f y, g v) \\
& +k_{3} d(f x, F(x, y))+k_{4} d(f y, F(y, x))+k_{5} d(g u, G(u, v)) \\
& +k_{6} d(g v, G(v, u))+k_{7} d(f x, G(u, v))+k_{8} d(f y, G(v, u)) \\
& +k_{9} d(g u, F(x, y))+k_{10} d(g v, F(y, x)) \tag{20}
\end{align*}
$$

for all $x, y, u, v \in X$. Also, suppose the following hypotheses:
(i) $F(X \times X) \subset g(X)$ and $G(X \times X) \subset f(X)$,
(ii) either $f(X)$ or $g(X)$ is a complete subspace of X ,
(iii) (F, f) and (G, g) are w-compatible.

Then F, G, f and g have a unique common coupled fixed point in $X \times X$.

Proof. Let $x, y, u, v \in X$ be arbitrary. Then from the inequality 20, we have

$$
\begin{align*}
s^{4} d(F(x, y), G(u, v)) \leq & k_{1} d(f x, g u)+k_{2} d(f y, g v)+k_{3} d(f x, F(x, y)) \\
& +k_{4} d(f y, F(y, x))+k_{5} d(g u, G(u, v))+k_{6} d(g v, G(v, u)) \\
& +k_{7} d(f x, G(u, v))+k_{8} d(f y, G(v, u))+k_{9} d(g u, F(x, y)) \\
& +k_{10} d(g v, F(y, x)) \tag{21}
\end{align*}
$$

and

$$
\begin{align*}
s^{4} d(F(y, x), G(v, u)) \leq & k_{1} d(f y, g v)+k_{2} d(f x, g u)+k_{3} d(f y, F(y, x)) \\
& +k_{4} d(f x, F(x, y))+k_{5} d(g v, G(v, u))+k_{6} d(g u, G(u, v)) \\
& +k_{7} d(f y, G(v, u))+k_{8} d(f x, G(u, v))+k_{9} d(g v, F(y, x)) \\
& +k_{10} d(g u, F(x, y)) . \tag{22}
\end{align*}
$$

From (21) and 22), we get

$$
\begin{aligned}
d(F(x, y), G(u, v))+d(F(y, x), G(v, u)) \leq & \left(k_{1}+k_{2}\right)[d(f x, g u)+d(f y, g v)] \\
& +\left(k_{3}+k_{4}\right)[d(f x, F(x, y))+d(f y, F(y, x))] \\
& +\left(k_{5}+k_{6}\right)[d(g u, G(u, v))+d(g v, G(v, u))] \\
& +s\left(k_{7}+k_{8}\right)[d(f x, G(u, v))+d(f y, G(v, u))] \\
& +s\left(k_{9}+k_{10}\right)[d(g u, F(x, y))+d(g v, F(y, x))]
\end{aligned}
$$

Therefore proof follows from Theorem 2.5.

3. Examples and corollaries

The following is an example in support of Theorem 2.4.
Example 3.1. Let $X=[0, \infty)$ and let $d: X \times X \rightarrow \mathbb{R}^{+}$defined by

$$
d(x, y)=\left\{\begin{array}{cl}
0 & \text { if } x=y \\
4 & \text { if } x, y \in[0,1) \\
5+\frac{1}{x+y} & \text { if } x, y \in[1, \infty) \\
\frac{27}{10} & \text { otherwise }
\end{array}\right.
$$

Then clearly (X, d) is a complete b-metric space with coefficient $s=\frac{489}{480}(>1)$.
We define $F, G: X \times X \rightarrow X$ and $f, g: X \rightarrow X$ by

$f(x)=\left\{\begin{array}{cl}\frac{x(5-x)}{4} & \text { if } x \in[0,1) \\ \frac{1+x}{2} & \text { if } x \in[1, \infty)\end{array}\right.$ and $g(x)=\left\{\begin{array}{cl}x(2-x) & \text { if } x \in[0,1) \\ 2 x-1 & \text { if } x \in[1, \infty) .\end{array}\right.$
Clearly $F(X \times X) \subseteq g(X)$ and $G(X \times X) \subseteq f(X)$. The pairs (F, f) and (G, g) are w-compatible.
Without loss of generality, we assume that $x \geq y \geq u \geq v$.
Case (i). $x, y, u, v \in[0,1)$.
In this case,
$d(F(x, y), G(u, v))=\frac{27}{10}, d(F(y, x), G(v, u))=\frac{27}{10}, d(f x, g u)=4, d(f y, g v)=4$
$d(f x, F(x, y))=\frac{27}{10}, d(f y, F(y, x))=\frac{27}{10}, d(g u, G(u, v))=4, d(g v, G(v, u))=4$,
$d(f x, G(u, v))=4, d(f y, G(v, u))=4, d(g u, F(x, y))=\frac{27}{10}, d(g v, F(y, x))=\frac{27}{10}$ and
$\max \{d(f x, g u)+d(f y, g v), d(f x, F(x, y))+d(f y, F(y, x)), d(g u, G(u, v))+d(g v, G(v, u))$,

$$
\left.=\operatorname{cm} \frac{d(f x, G(u, v))+d(f y, G(v, u))}{2 s}, \frac{d(g u, F(x, y)+d(g v, F(y, x))}{2 s^{2}}\right\}
$$

Now we consider

$$
\begin{aligned}
s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))]= & \left(\frac{489}{480}\right)^{4}\left[\frac{27}{10}+\frac{27}{10}\right] \\
\leq & \left(\frac{4}{5}\right) 8 \\
\leq & k \max \{d(f x, g u)+d(f y, g v), \\
& d(f x, F(x, y))+d(f y, F(y, x)), \\
& d(g u, G(u, v))+d(g v, G(v, u)), \\
& \frac{d(f x, G(u, v))+d(f y, G(v, u))}{2 s}, \\
& \left.\frac{d(g u, F(x, y))+d(g v, F(y, x))}{2 s^{2}}\right\} .
\end{aligned}
$$

Case (ii). $x, y, u, v \in(1, \infty)$.
In this case, $d(F(x, y), G(u, v))=\frac{27}{10}, d(F(y, x), G(v, u))=\frac{27}{10}, d(f x, g u)=5+\frac{1}{x+y}$,
$d(f y, g v)=5+\frac{1}{x+y}, d(f x, F(x, y))=5+\frac{1}{x+y}, d(f y, F(y, x))=5+\frac{1}{x+y}$,
$d(g u, G(u, v))=\frac{27}{10}, d(g v, G(v, u))=\frac{27}{10}, d(f x, G(u, v))=\frac{27}{10}, d(f y, G(v, u))=\frac{27}{10}$,
$d(g u, F(x, y))=5+\frac{1}{x+y}, d(g v, F(y, x))=5+\frac{1}{x+y}$ and
$\max \{d(f x, g u)+d(f y, g v), d(f x, F(x, y))+d(f y, F(y, x)), d(g u, G(u, v))+d(g v, G(v, u))$, $\left.\frac{d(f x, G(u, v))+d(f y, G(v, u))}{2 s}, \frac{d(g u, F(x, y))+d(g v, F(y, x))}{2 s^{2}}\right\}$
$=\max \left\{10+\frac{2}{2 s}^{2 s}, 10+\frac{2}{x+y}, \frac{27}{5},\left(\frac{240}{489}\right)\left(\frac{27}{5}\right),\left(\frac{230400}{478242}\right)\left(10+\frac{2}{x+y}\right)\right\}=10+\frac{2}{x+y}$.
Now we consider

$$
\begin{aligned}
s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))]= & \left(\frac{489}{480}\right)^{4}\left[\frac{27}{10}+\frac{27}{10}\right] \\
\leq & \left(\frac{4}{5}\right)\left(10+\frac{2}{x+y}\right) \\
\leq & k \max \{d(f x, g u)+d(f y, g v), \\
& d(f x, F(x, y))+d(f y, F(y, x)), \\
& d(g u, G(u, v))+d(g v, G(v, u)), \\
& \frac{d(f x, G(u, v))+d(f y, G(v, u))}{2 s}, \\
& \left.\frac{d(g u, F(x, y))+d(g v, F(y, x))}{2 s^{2}}\right\} .
\end{aligned}
$$

Case (iii). $x, y \in(1, \infty), u, v \in[0,1)$.
In this case,
$d(F(x, y), G(u, v))=\frac{27}{10}, d(F(y, x), G(v, u))=\frac{27}{10}, d(f x, g u)=\frac{27}{10}, d(f y, g v)=\frac{27}{10}$,
$d(f x, F(x, y))=5+\frac{1}{x+y}, d(f y, F(y, x))=5+\frac{1}{x+y}, d(g u, G(u, v))=4$,
$d(g v, G(v, u))=4, d(f x, G(u, v))=\frac{27}{10}, d(f y, G(v, u))=\frac{27}{10}, d(g u, F(x, y))=\frac{27}{10}$,
$d(g v, F(y, x))=\frac{27}{10}$ and
$\max \{d(f x, g u)+d(f y, g v), d(f x, F(x, y))+d(f y, F(y, x)), d(g u, G(u, v))+d(g v, G(v, u))$, $\left.\frac{d(f x, G(u, v))+d(f y, G(v, u))}{2 s}, \frac{d(g u, F(x, y))+d(g v, F(y, x))}{2 s^{2}}\right\}$
$=\max \left\{\frac{27}{5}, 10+\frac{2}{x+y}, 8,\left(\frac{240}{489}\right)\left(\frac{27}{5}\right),\left(\frac{230400}{478242}\right)\left(\frac{27}{5}\right)\right\}=10+\frac{2}{x+y}$.
Now we consider
$s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))]=\left(\frac{489}{480}\right)^{4}\left[\frac{27}{10}+\frac{27}{10}\right]$

$$
\begin{aligned}
\leq & \left(\frac{4}{5}\right)\left(10+\frac{2}{x+y}\right) \\
\leq & k \max \{d(f x, g u)+d(f y, g v), \\
& d(f x, F(x, y))+d(f y, F(y, x)), \\
& d(g u, G(u, v))+d(g v, G(v, u)), \\
& \frac{d(f x, G(u, v))+d(f y, G(v, u))}{2 s}, \\
& \left.\frac{d(g u, F(x, y))+d(g v, F(y, x))}{2 s^{2}}\right\} .
\end{aligned}
$$

Case (iv). $x=y=1, u, v \in[0,1$).
In this case,
$d(F(x, y), G(u, v))=\frac{27}{10}, d(F(y, x), G(v, u))=\frac{27}{10}, d(f x, g u)=\frac{27}{10}, d(f y, g v)=\frac{27}{10}$,
$d(f x, F(x, y))=0, d(f y, F(y, x))=0, d(g u, G(u, v))=4, d(g v, G(v, u))=4$,

$$
d(f x, G(u, v))=\frac{27}{10}, d(f y, G(v, u))=\frac{27}{10}, d(g u, F(x, y))=\frac{27}{10}, d(g v, F(y, x))=\frac{27}{10}
$$

and
$\max \{d(f x, g u)+d(f y, g v), d(f x, F(x, y))+d(f y, F(y, x)), d(g u, G(u, v))+d(g v, G(v, u))$, $\left.\frac{d(f x, G(u, v))+d(f y, G(v, u))}{2 s}, \frac{d(g u, F(x, y))+d(g v, F(y, x))}{2 s^{2}}\right\}$
$=\max \left\{\frac{27}{5}, 0,8,\left(\frac{240}{489}\right)\left(\frac{27}{5}\right),\left(\frac{230400}{478242}\right)\left(\frac{27}{5}\right)\right\} \stackrel{2 s^{2}}{=} 8$.
Now we consider

$$
\begin{aligned}
s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))]= & \left(\frac{489}{480}\right)^{4}\left[\frac{27}{10}+\frac{27}{10}\right] \\
\leq & \left(\frac{4}{5}\right)(8) \\
\leq & k \max \{d(f x, g u)+d(f y, g v), \\
& d(f x, F(x, y))+d(f y, F(y, x)), \\
& d(g u, G(u, v))+d(g v, G(v, u)), \\
& \frac{d(f x, G(u, v))+d(f y, G(v, u))}{2 s}, \\
& \left.\frac{d(g u, F(x, y))+d(g v, F(y, x))}{22^{2}}\right\} .
\end{aligned}
$$

From all the above cases, F, G, f and g satisfy all the hypotheses of Theorem 2.4 with $k=\frac{4}{5}$ and $(1,1)$ is a unique common coupled fixed point of F, G, f and g. The following is an example in support of Theorem 2.5.
Example 3.2. Let $X=[0, \infty)$ and let $d: X \times X \rightarrow \mathbb{R}^{+}$defined by

$$
d(x, y)=\left\{\begin{array}{cl}
0 & \text { if } x=y \\
4 & \text { if } x, y \in(0,1) \\
5+\frac{1}{x+y} & \text { if } x, y \in[1, \infty) \\
\frac{27}{10} & \text { otherwise }
\end{array}\right.
$$

Then clearly (X, d) is a complete b-metric space with coefficient $s=\frac{489}{480}(>1)$.
We define $F, G: X \times X \rightarrow X$ and $f, g: X \rightarrow X$ by
$F(x, y)=\left\{\begin{array}{cl}2 & \text { if } x, y \in(0,1) \\ \frac{x+y}{2} & \text { if } x, y \in[1, \infty) \\ 0 & \text { otherwise }\end{array} \quad G(x, y)=\left\{\begin{array}{cl}x y & \text { if } x, y \in(0,1) \\ \frac{2}{x^{2}+y^{2}} & \text { if } x, y \in[1, \infty) \\ 0 & \text { otherwise }\end{array}\right.\right.$
$f(x)=\left\{\begin{array}{cl}x(1-x) & \text { if } x \in[0,1) \\ 3 x-2 & \text { if } x \in[1, \infty)\end{array}\right.$ and $g(x)=\left\{\begin{array}{cl}x & \text { if } x \in[0,1) \\ 2 x^{2}-1 & \text { if } x \in[1, \infty) .\end{array}\right.$
Clearly $F(X \times X) \subseteq g(X)$ and $G(X \times X) \subseteq f(X)$. The pairs (F, f) and (G, g) are w-compatible.
Without loss of generality, we assume that $x \geq y \geq u \geq v$.
We choose $k_{1}=k_{2}=\frac{1}{11}, k_{3}=\frac{4}{5}, k_{4}=k_{5}=\frac{60}{14181}$.
Then clearly $k_{1}+k_{2}+k_{3}+2 s k_{4}+2 s k_{5}<1$.
Case (i). $x, y, u, v \in[0,1)$.
In this case,
$d(F(x, y), G(u, v))=\frac{27}{10}, d(F(y, x), G(v, u))=\frac{27}{10}, d(f x, g u)=4, d(f y, g v)=4$
$d(f x, F(x, y))=\frac{27}{10}, d(f y, F(y, x))=\frac{27}{10}, d(g u, G(u, v))=4, d(g v, G(v, u))=4$,
$d(f x, G(u, v))=4, d(f y, G(v, u))=4, d(g u, F(x, y))=\frac{27}{10}, d(g v, F(y, x))=\frac{27}{10}$.
Now we consider

$$
\begin{aligned}
s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))]= & \left(\frac{489}{40}\right)^{4}\left[\frac{27}{10}+\frac{27}{10}\right] \\
\leq & \left(\frac{1}{11}\right)(8)+\left(\frac{1}{11}\right)\left(\frac{27}{5}\right)+\left(\frac{4}{5}\right)(8)+\left(\frac{60}{14181}\right)(8) \\
& +\left(\frac{60}{14181}\right)\left(\frac{27}{5}\right) \\
\leq & k_{1}[d(f x, g u)+d(f y, g v)] \\
& +k_{2}[d(f x, F(x, y))+d(f y, F(y, x))] \\
& +k_{3}[d(g u, G(u, v))+d(g v, G(v, u))] \\
& +k_{4}[d(f x, G(u, v))+d(f y, G(v, u))] \\
& +k_{5}[d(g u, F(x, y))+d(g v, F(y, x))] .
\end{aligned}
$$

Case (ii). $x, y, u, v \in(1, \infty)$.
In this case, $d(F(x, y), G(u, v))=\frac{27}{10}, d(F(y, x), G(v, u))=\frac{27}{10}, d(f x, g u)=5+\frac{1}{x+y}$,
$d(f y, g v)=5+\frac{1}{x+y}, d(f x, F(x, y))=5+\frac{1}{x+y}, d(f y, F(y, x))=5+\frac{1}{x+y}$,
$d(g u, G(u, v))=\frac{27}{10}, d(g v, G(v, u))=\frac{27}{10}, d(f x, G(u, v))=\frac{27}{10}, d(f y, G(v, u))=\frac{27}{10}$,
$d(g u, F(x, y))=5+\frac{1}{x+y}, d(g v, F(y, x))=5+\frac{1}{x+y}$.
Now we consider
$s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))]=\left(\frac{489}{480}\right)^{4}\left[\frac{27}{10}+\frac{27}{10}\right]$

$$
\begin{aligned}
\leq & \left(\frac{1}{11}\right)\left(10+\frac{2}{x+y}\right) \\
& +\left(\frac{1}{11}\right)\left(10+\frac{2}{x+y}\right)+\left(\frac{4}{5}\right)\left(\frac{27}{5}\right)+\left(\frac{60}{14181}\right)\left(\frac{27}{5}\right) \\
& +\left(\frac{60}{14181}\right)\left(10+\frac{2}{x+y}\right) \\
\leq & k_{1}[d(f x, g u)+d(f y, g v)] \\
& +k_{2}[d(f x, F(x, y))+d(f y, F(y, x))] \\
& +k_{3}[d(g u, G(u, v))+d(g v, G(v, u))] \\
& +k_{4}[d(f x, G(u, v))+d(f y, G(v, u))] \\
& +k_{5}[d(g u, F(x, y))+d(g v, F(y, x))] .
\end{aligned}
$$

Case (iii). $x, y \in(1, \infty), u, v \in[0,1)$.
In this case,
$d(F(x, y), G(u, v))=\frac{27}{10}, d(F(y, x), G(v, u))=\frac{27}{10}, d(f x, g u)=\frac{27}{10}, d(f y, g v)=\frac{27}{10}$,
$d(f x, F(x, y))=5+\frac{1}{x+y}, d(f y, F(y, x))=5+\frac{1}{x+y}, d(g u, G(u, v))=4$,
$d(g v, G(v, u))=4, d(f x, G(u, v))=\frac{27}{10}, d(f y, G(v, u))=\frac{27}{10}, d(g u, F(x, y))=\frac{27}{10}$,
$d(g v, F(y, x))=\frac{27}{10}$.
Now we consider

$$
\begin{aligned}
s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))]= & \left(\frac{489}{480}\right)^{4}\left[\frac{27}{10}+\frac{27}{10}\right] \\
\leq & \left(\frac{1}{11}\right)\left(\frac{27}{5}\right)+\left(\frac{1}{11}\right)\left(10+\frac{2}{x+y}\right)+\left(\frac{4}{5}\right)(8) \\
& +\left(\frac{60}{14181}\right)\left(\frac{27}{5}\right)+\left(\frac{60}{14181}\left(\frac{27}{5}\right)\right. \\
\leq & k_{1}[d(f x, g u)+d(f y, g v)] \\
& +k_{2}[d(f x, F(x, y))+d(f y, F(y, x))] \\
& +k_{3}[d(g u, G(u, v))+d(g v, G(v, u))] \\
& +k_{4}[d(f x, G(u, v))+d(f y, G(v, u))] \\
& +k_{5}[d(g u, F(x, y))+d(g v, F(y, x))] .
\end{aligned}
$$

Case (iv). $x=y=1, u, v \in[0,1)$.
In this case,
$d(F(x, y), G(u, v))=\frac{27}{10}, d(F(y, x), G(v, u))=\frac{27}{10}, d(f x, g u)=\frac{27}{10}, d(f y, g v)=\frac{27}{10}$,
$d(f x, F(x, y))=0, d(f y, F(y, x))=0, d(g u, G(u, v))=4, d(g v, G(v, u))=4$,
$d(f x, G(u, v))=\frac{27}{10}, d(f y, G(v, u))=\frac{27}{10}, d(g u, F(x, y))=\frac{27}{10}, d(g v, F(y, x))=\frac{27}{10}$.
Now we consider
$s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))]=\left(\frac{489}{480}\right)^{4}\left[\frac{27}{10}+\frac{27}{10}\right]$

$$
\begin{aligned}
& \leq\left(\frac{1}{11}\right)\left(\frac{27}{5}\right)+\left(\frac{4}{5}\right)(8)+\left(\frac{60}{14181}\right)\left(\frac{27}{5}\right)+\left(\frac{60}{14181}\right)\left(\frac{27}{5}\right) \\
& \leq k_{1}[d(f x, g u)+d(f y, g v)] \\
&+k_{2}[d(f x, F(x, y))+d(f y, F(y, x))] \\
&+k_{3}[d(g u, G(u, v))+d(g v, G(v, u))] \\
&+k_{4}[d(f x, G(u, v))+d(f y, G(v, u))] \\
&+k_{5}[d(g u, F(x, y))+d(g v, F(y, x))]
\end{aligned}
$$

From all the above cases, F, G, f and g satisfy all the hypotheses of Theorem 2.5 and $(1,1)$ is a unique common coupled fixed point of F, G, f and g.

Corollary 3.3. Let (X, d) be a b-metric space with coefficient $s \geq 1$. Let $F, G: X \times X \rightarrow X, g: X \rightarrow X$ be three mappings. Suppose that there exists with $k \in[0,1)$ such that
$s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))] \leq k M(x, y, u, v)$ for all $x, y, u, v \in X$, where

$$
\begin{gathered}
M(x, y, u, v)=\max \{d(g x, g u)+d(g y, g v), d(g x, F(x, y))+d(g y, F(y, x)), \\
d(g u, G(u, v))+d(g v, G(v, u)), \frac{d(g x, G(u, v))+d(g y, G(v, u))}{2 s}, \\
\left.\frac{d(g u, F(x, y))+d(g v, F(y, x))}{2 s^{2}}\right\} .
\end{gathered}
$$

Also, suppose the following hypotheses:
(i) $F(X \times X) \subset g(X)$ and $G(X \times X) \subset g(X)$,
(ii) $g(X)$ is a complete subspace of X ,
(iii) (F, g) and (G, g) are w-compatible.

Then F, G and g have a unique common coupled fixed point in $X \times X$.
Proof. Follows by choosing $f=g$ in Theorem 2.4.
Corollary 3.4. Let (X, d) be a b-metric space with coefficient $s \geq 1$. Let F, G : $X \times X \rightarrow X, f, g: X \rightarrow X$ be four mappings. Suppose that there exists with $k \in[0,1)$ such that
$s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))] \leq k[d(f x, g u)+d(f y, g v)]$ for all $x, y, u, v \in X$. Also, suppose the following hypotheses:
(i) $F(X \times X) \subset g(X)$ and $G(X \times X) \subset f(X)$,
(ii) either $f(X)$ or $g(X)$ is a complete subspace of X ,
(iii) (F, f) and (G, g) are w-compatible.

Then F, G, f and g have a unique common coupled fixed point in $X \times X$.
Corollary 3.5. Let (X, d) be a b-metric space with coefficient $s \geq 1$. Let F, G : $X \times X \rightarrow X, g: X \rightarrow X$ be three mappings. Suppose that there exists with $k \in\left[0, \frac{1}{s}\right)$ such that
$s^{4}[d(F(x, y), G(u, v))+d(F(y, x), G(v, u))] \leq k[d(g u, F(x, y))+d(g v, F(y, x))]$
for all $x, y, u, v \in X$. Also, suppose the following hypotheses:
(i) $F(X \times X) \subset g(X)$ and $G(X \times X) \subset g(X)$,
(ii) $g(X)$ is a complete subspace of X ,
(iii) (F, g) and (G, g) are w-compatible.

Then F, G and g have a unique common coupled fixed point in $X \times X$.

References

[1] M. Abbas, M. A. Khan and S. Radenovic, Common coupled fixed point theorem in cone metric space for w-compatible mappings, Appl. Math. Comput., 217(2010), 195-202.
[2] A. Aghajani, M. Abbas and J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64(4)(2014), 941-960.
[3] H. Aydi, M-F. Bota, E. Karapınar and S. Mitrović, A fixed point theorem for set-valued quasi contractions in b-metric spaces, Fixed Point Theory Appl., 88(2012), 8 pages.
[4] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Func. Anal. Gos. Ped. Inst. Unianowsk, 30(1989), 26-37.
[5] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65(2006), 1379-1393.
[6] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4(3)(2009), 285-301.
[7] M. Boriceanu, M-F. Bota and A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8(2)(2010), 367-377.
[8] N. Bourbaki, Topologie Generale, Herman: Paris, France, 1974.
[9] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1(1993), 5-11.
[10] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti del Seminario Matematico e Fisico (DellUniv. di Modena), 46(1998), 263-276.
[11] F. Gu and W. Shatanawi, Some new results on common coupled fixed points of two hybrid pairs of mappings in partial metric spaces, J. Nonlinear Funct. Anal., 2019(2019), Articled ID 13, 1-16.
[12] H. Huang, G. Deng and S. Radenović, Fixed point theorems in b-metric spaces with applications to diffential equations, J. Fixed Point Theory. Appl., 2018, 24 pages.
[13] N. Hussain, V. Paraneh, J. R. Roshan and Z. Kadelburg, Fixed points of cycle weakly (ψ, φ, L, A, B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl., 2013(2013), 256, 18 pages.
[14] N. Hussain, J. R. Roshan, V. Parvaneh and M. Abbas, Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications, J. Inequal. Appl., 2013(2013), 486, 21 pages.
[15] P. Kumam and W. Sintunavarat, The existence of fixed point theorems for partial q-set valued quasi-contractions in b-metric spaces and related results, Fixed point theory appl., 2014(2014): 226, 20 pages.
[16] V. Lakshmikantham and Lj. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70(2009), 4341-4349.
[17] N. Malhotra and B. Bansal, Some common coupled fixed point theorems for generalized contraction in b-metric spaces, J. Nonlinear Sci. Appl., 8(2015), 8-16.
[18] S. G. Matthews, Partial metric topology, in : S. Andima et al. (Eds.) Proceedings of the $8^{t h}$ Summer Conference on General Topology and its Applications, Queens college, 1992, Ann. New York Acad. Sci., Vol.728, 1994, 183-197.
[19] W. Shatanawi, Fixed and common fixed point for mappings satisfying some nonlinear contractions in b-metric spaces, J. Math. Anal., 7(4)(2016), 1-12.
[20] W. Shatanawi and M. B. Hani, A coupled fixed point theorem in b-metric spaces, Inter. J. Pure and Applied Math., 109(4)(2016), 889-897.
[21] W. Shatanawi, B. Samet and M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comp. Modelling, 55(2012), 680-687.
N. Siva Prasad

Research Scholar, Department of Mathematics, Rayalaseema University, Kurnool-530
003, India
Permanent address: Department of Mathematics, PBR VITS, Kavali-524 201, India
Email address: n.sivaprasadmsc@gmail.com
D. Ratna Babu

Department of Mathematics, PSCMRCET, Vijayawada, India - 520001
Email address: ratnababud@gmail.com
V. Amarendra Babu

Deparment of Mathematics, Acharya Nagarjuna University, Guntur, India - 522510
Email address: amarendravelisela@ymail.com

[^0]: 2010 Mathematics Subject Classification. 47H10, 54H25.
 Key words and phrases. common coupled fixed points, common coincidence point, w compatible maps, b-metric space..

 Submitted March 30, 2020. Revised May 8, 2020.

