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PERIODIC MILD SOLUTIONS OF INFINITE DELAY SECOND

ORDER EVOLUTION EQUATIONS WITH IMPULSES

SAÏD ABBAS, MOUFFAK BENCHOHRA, GASTON M. N’GUÉRÉKATA AND YONG ZHOU

Abstract. In this article, we study the existence of periodic mild solutions for

a class of second order evolution equations with not instantaneous impulses.
The techniques used are some fixed point theorems in Banach spaces (Darbo

and Kuratowski fixed point theorems), the Poincaré operator and the measure

of noncompactness.

1. Introduction

Functional evolution equations have recently been applied in various areas of en-
gineering, mathematics, and other applied sciences. For some fundamental results
in the theory of functional evolution equations we refer the reader to the mono-
graphs [1, 4, 16, 27, 29, 31] and the papers [2, 5, 6, 11, 25]. In [25], the authors
considered a class of evolution equations on unbounded intervals by using the Ti-
chonov’s fixed point theorem. However in the previous papers some restrictions like,
the compactness of the semigroup, the Lipschitz conditions on the nonlinear term
or the boundedness of the obtained mild solutions, are supposed. Functional dif-
ferential equations with non-instantaneous impulsive was studied in [3, 17, 26, 28].

In [21, 22, 23], the authors used the Poincaré operator and proved some results
concerning the existence of periodic solutions of infinite delay evolution equations.
In this paper, we discuss the existence of periodic mild solutions of the following
class of second order evolution equations with infinite delay and not instantaneous
impulses 

u′′(t) +A(t)u(t) = f(t, u(t), ut); if t ∈ Ik; k = 0, 1, . . . ,

u(t) = gk(t, u(t−k )); if t ∈ Jk; k = 1, 2, . . . ,

u(t) = φ(t); if t ∈ R− := (−∞, 0],

u′(sk) = ψk ∈ E; k = 0, . . . ,m, . . . ,

(1)

where I0 = [0, t1], Ik := (sk, tk+1], Jk := (tk, sk], 0 = s0 < t1 ≤ s1 ≤ t2 < · · · <
sm−1 ≤ tm ≤ sm ≤ tm+1 = T ≤ sm+1 ≤ tm+2 ≤ . . . < +∞, f : Ik × E × B →
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E; k = 0, . . . , gk : Jk × E → E; k = 1, 2, . . . , are given functions T−periodic
in t, T > 0, B is an abstract phase space to be specified later, φ : R− → E is
a given function, {A(t)}t>0 is a T−periodic family of unbounded operators from
E into E that generate an evolution system of operators {U(t, s)}(t,s)∈R+×R+

; for
(t, s) ∈ Λ := {(t, s) ∈ R+ ×R+ : 0 ≤ s ≤ t < +∞}, R+ := [0,∞), and (E, ‖ · ‖E) is
a real Banach space.

For any continuous function u and any t ∈ R+, we denote by ut the element of
B defined by ut(θ) = u(t + θ) for θ ∈ R− := (−∞, 0]. Here, ut(·) represents the
history of the state up to the present time t. We assume that the histories ut belong
to B.

This paper initiates the existence of periodic mild solutions for evolution equa-
tions with infinite delay and not instantaneous impulses. We use the classical Darbo
fixed point theorem, the Poincaré operator and the concept of measure of noncom-
pactness in Banach spaces. This extends the study of deriving periodic solutions
from bounded solutions to infinite delay differential equations in Banach spaces.
The paper is organized as follows. In Section 2 some preliminary results are intro-
duced. The main results is presented in Section 3, while the last section is devoted
to an illustrative example.

2. Preliminaries

Let I := [0, T ]; T > 0. By B(E) we denote the Banach space of all bounded
linear operators from E into E, with the norm

‖N‖B(E) = sup
‖u‖=1

‖N(u)‖.

Let L1(I, E) be the Banach space of measurable functions u : I → E which are
Bochner integrable and normed by

‖u‖L1 =

∫ T

0

‖u(t)‖dt.

Note that, a measurable function u : I → E is Bochner integrable if and only if
‖u‖ is Lebesgue integrable. For properties of the Bochner integral, see for instance,
Yosida [30].
As usual, C := C(I) denotes the Banach space of all continuous functions u : I → E
with the norm

‖u‖∞ = sup
t∈I
‖u(t)‖.

Consider the space

C̃((−∞, 0], E) = {u : (−∞, 0]→ E : u is continuous and there exist τk ∈ (−∞, 0);

k = 1, . . . ,m, such that u(τ−k ) and u(τ+
k ) exist with u(τ−k ) = u(τk)

}
,

and the Banach space

PC =
{
u : (−∞, T ]→ E : u|R− ∈ B, u|Jk = gk; k = 1, . . . ,m, u|Ik ; k = 1, . . . ,m

is continuous and there exist u(s−k ), u(s+
k ), u(t−k ) and u(t+k )

with u(s+
k ) = gk(sk, u(s−k )) and u(t−k ) = gk(tk, u(t−k ))

}
,
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with the norm

‖u‖PC = max{‖u‖∞, ‖φ‖B}.

In what follows, let {A(t), t ≥ 0} be a family of closed linear operators on the
Banach space E with domain D(A(t)) that is dense in E and independent of t.
The existence of solutions to our problem is related to the existence of an evolution
operator U(t, s) for the homogeneous problem

u′′(t) = A(t)u(t); t ∈ R+. (2)

This concept of evolution operator has been developed by Kozak [19].

Definition 2.1. A family U of bounded operators U(t, s) : E → E; (t, s) ∈ Λ}, is
called an evolution operator of the equation (2) if the following conditions hold;

(P1) For any u ∈ E, the map (t, s)→ U(t, s)u is continuously differentiable and:
(a) for any t ∈ R+ : U(t, t) = 0;
(b) for all (t, s) ∈ Λ and for any u ∈ E, ∂

∂tU(t, s)u|t=s = u and ∂
∂sU(t, s)u|t=s =

−u.
(P2) For all (t, s) ∈ Λ if u ∈ D(A(t)), then ∂

∂sU(t, s)u ∈ D(A(t)), the map

(t, s)→ U(t, s)u is of class C2, and

(a) ∂2

∂t2U(t, s)u = A(t)U(t, s)u;

(b) ∂2

∂s2U(t, s)u = U(t, s)A(s)u;

(c) ∂2

∂t∂sU(t, s)u|t=s = 0.

(P3) For all (t, s) ∈ Λ if u ∈ D(A(t)), then the map (t, s) → A(t) ∂∂sU(t, s)u is

continuous, ∂3

∂t2∂sU(t, s)u and ∂3

∂s2∂tU(t, s)u exist and

(a) ∂3

∂t2∂sU(t, s)u = A(t) ∂∂sU(t, s)u;

(b) ∂3

∂s2∂tU(t, s)u = A(t) ∂∂tU(t, s)A(s)u.

In this paper, we assume that the state space (B, ‖ · ‖B) is a seminormed linear
space of functions mapping R− into E, and satisfying the following fundamental
axioms introduced by Hale and Kato in [15].

(A1): If u ∈ PC and u0 ∈ B, then for every t ∈ I the following conditions
hold:
(i) ut ∈ B
(ii) ‖ut‖B ≤ K(t)

∫ t
0
‖u(s)‖ds+M(t)‖φ‖B,

(iii) ‖u(t)‖ ≤ H‖ut‖B, where H ≥ 0 is a constant, K : I → R+ is contin-
uous; M : R+ → R+ is locally bounded and H,K,M, are independent of
u(·).

(A2): For the function u(·) in (A1), ut is a B-valued continuous function on I.

(A3): The space B is complete.

Denote Kb = sup{K(t) : t ∈ I} and Mb = sup{M(t) : t ∈ I}.

Remark 2.2. Axiom (A1)(ii) is equivalent to ‖φ(0)‖ ≤ H‖φ‖B; for every φ ∈ B.
From this equivalence; we can see that for all φ, ψ ∈ B such that ‖φ−ψ‖B = 0, we
necessarily have φ(0) = ψ(0).
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Lemma 2.3. (Lemma 2.1 in [22]) There exists an integer k0 > 1 such that(
1

2

)k0−1

M < 1,

where M = sup
(t,s)∈Λ

‖U(t, s)‖B(E) is finite, and there exists a function h on R− such

that h(0) = 1, h(−∞) = +∞, h is decreasing on R−, and for d ≥ w0 := T
K0

one

has sup
s∈(−∞,0]

h(s)

h(s− d)
≤ 1

2
.

In all what follows, we consider the phase space

B :=
{
φ ∈ C̃((−∞, 0]), E) : sup

s∈(−∞,0]

‖φ(s)‖
h(s)

<∞
}
,

where h : R− → R+ is the function given in Lemma 2.3. We have that the space B
satisfies the condition (A3). Also; B satisfies conditions (A1) and (A2) if

sup
t∈I

sup
−∞<θ≤−t

φ(t+ θ)

h(θ)
<∞.

The space B endowed with the norm

‖φ‖B = sup
s∈(−∞,0]

‖φ(s)‖
h(s)

,

is a Banach space [9].

Now, we recall the Kuratowski measure of noncompactness.

Definition 2.4. [7, 20] Let X be a Banach space and ΩX the bounded subsets of
X. The Kuratowski measure of noncompactness is the map α : ΩX → [0,∞] defined
by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE ,

where

diam(Bi) = sup{‖u− v‖E : u, v ∈ Bi}.

The Kuratowski measure of noncompactness satisfies the following properties:

Lemma 2.5. [7, 18] Let A and B bounded sets.

(a) α(B) = 0⇔ B is compact (B is relatively compact), where B denotes the
closure of B.

(b) nonsingularity : α is equal to zero on every one element-set.
(c) If B is a finite set, then α(B) = 0.
(d) α(B) = α(B) = α(convB), where convB is the convex hull of B.
(e) monotonicity: A ⊂ B ⇒ α(A) ≤ α(B).
(f) algebraic semi-additivity : α(A+B) ≤ α(A) + α(B), where

A+B = {x+ y : x ∈ A, y ∈ B}.
(g) semi-homogencity: α(λB) = |λ|α(B); λ ∈ R. where λ(B) = {λx : x ∈ B}.
(h) semi-additivity : α(A

⋃
B) = max{α(A), α(B)}.

(i) α(A
⋂
B) = min{α(A), α(B)}.

(j) invariance under translations: α(B + x0) = α(B) for any x0 ∈ X.
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In all what follows, by α we denote the Kuratowski measure of noncompactness.

Lemma 2.6. [14] Let V ⊂ C(I, E) be a bounded and equicontinuous set, then

(i) the function t→ α(V (t)) is continuous on I, and

αc(V ) = sup
t∈I

α(V (t)).

(ii) α

(∫ T

0

u(s)ds : u ∈ V

)
≤
∫ T

0

α(V (s))ds,

where

V (t) = {u(t) : u ∈ V }; t ∈ I.

Lemma 2.7. [8] If Y is a bounded subset of a Banach space X , then for each ε > 0,
there is a sequence {yk}∞k=1 ⊂ Y such that

α(Y ) ≤ 2α({yk}∞k=1) + ε.

Lemma 2.8. [24] If {uk}∞k=1 ⊂ L1(I) is uniformly integrable, then α({uk}∞k=1) is
measurable and

α

({∫ t

0

uk(s)ds

}∞
k=1

)
≤ 2

∫ t

0

α({uk(s)}∞k=1)ds.

For our purpose we will need the following fixed point theorem.

Theorem 2.9. (Darbo’s Fixed Point Theorem) [12, 13]] Let X be a Banach space
and C be a bounded, closed, convex and nonempty subset of X. Suppose a continuous
mapping N : C → C is such that for all closed subsets D of C,

α(T (D)) ≤ kα(D), (3)

where 0 ≤ k < 1. Then T has a fixed point in C.

Remark 2.10. Mappings satisfying the Darbo-condition (3) have subsequently been
called k-set contractions.

Definition 2.11. Let X be a Banach space and α be a mesure of noncompactness.
An operator P : X → X is said to be condensing if P is continuous and takes
bounded sets into bounded sets, and α(P (B)) ≤ α(B) for every bounded set B of X
with α(B) > 0.

Theorem 2.12. (Sadovskii’s fixed point theorem) [22]] Let X be a Banach space,
α be a mesure of noncompactness, and P : X → X be a condensing operator. If
P (H) ⊂ H for a convex, closed, and bounded set H of X then P has a fixed point
in H.
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3. Existence of Periodic Mild Solutions

Definition 3.1. By a periodic mild solution of problem (1) we mean a measurable
and T-periodic function u that satisfies

u(t) =



− ∂
∂sU(t, 0)φ(0) + U(t, 0)ψ0 +

∫ t

0

U(t, s) f(s, u(s), us)ds.; if t ∈ I0,

− ∂
∂sU(t, sk)gk(sk, u(s−k )) + U(t, sk)ψk

+

∫ t

sk

U(t, s) f(s, u(s), us)ds.; if t ∈ Ik; k = 1, . . . ,m,

gk(t, u(t−k )); if t ∈ Jk; k = 1, . . . ,m,

φ(t); if t ∈ R−.

The following hypotheses will be used in the sequel.

(H1) The functions f and gk are continuous in their variables, and they map
bounded sets into bounded sets,

(H2) The function t 7→ f(t, u, v) is measurable on Ik, k = 0, . . . ,m, for each
u, v ∈ E × B, and the functions u 7→ f(t, u, v) and v 7→ f(t, u, v) are
continuous on E × B for a.e. t ∈ Ik; k = 0, . . . ,m,

(H3) For a constant T > 0, f(t + T, u, v) = f(t, u, v), A(t + T ) = A(t); t ∈
Ik; k = 0, . . . ,m, (u, v) ∈ E × B, and gk(t + T, z) = gk(t, z) t ∈ Jk; k =
1, . . . ,m, z ∈ E,

(H4) There exist continuous functions p : Ik → R+, q : Jk → R+, such that

‖f(t, u, v)| ≤ p(t), for a.e. t ∈ Ik; k = 0, . . . ,m, and each u, v ∈ E × B,

and

‖gk(t, z)| ≤ q(t), for a.e. t ∈ Jk, and each z ∈ E, k = 0, . . . ,m,

(H5) For each bounded sets B(t) ⊂ E, and Bt ⊂ B; t ∈ R+, such that

B(t) = {u(t) : u ∈ C(I)}, and Bt = {ut : ut ∈ B},

we have

α(f(t, B(t), Bt)) ≤ p(t)α(B); for a.e. t ∈ Ik; k = 0, . . . ,m,

and

α(gk(t, B)) ≤ q(t)α(B); for a.e. t ∈ Jk; k = 1, . . . ,m.

Set

M0 = sup
(t,s)∈Λ

∥∥∥∥ ∂∂sU(t, s)

∥∥∥∥
B(E)

, p∗ = sup
t∈Ik

p(t), and q∗ = sup
t∈Jk

q(t).

Now, we shall prove the following theorem concerning the existence of periodic
mild solutions of problem (1).

Theorem 3.2. Assume that the hypotheses (H1)− (H5) hold. If ` := 4MTp∗ < 1,
then the problem (1) has at least one T-periodic mild solution defined on R.
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Proof. The proof will be given in two parts. Consider the problem
u′′(t) +A(t)u(t) = f(t, u(t), ut); if t ∈ Ik; k = 0, . . . ,m,

u(t) = gk(t, u(t−k )); if t ∈ Jk; k = 1, . . . ,m,

u(t) = φ(t); if t ∈ R− := (−∞, 0],

u′(sk) = ψk; k = 0, . . . ,m.

(4)

Part 1. Existence of mild solutions.

We prove that problem (4) has a mild solution u ∈ PC, with ‖u‖PC ≤ R where

R ≥ max{‖φ‖B, q∗,M0‖φ(0)‖+M‖ψ0‖+Mp∗,M0q
∗ +M‖ψk‖+Mp∗ +Mp∗}.

Consider the operator N : PC → PC defined by:

(Nu)(t) =



− ∂
∂sU(t, 0)φ(0) + U(t, 0)ψ0 +

∫ t

0

U(t, s) f(s, u(s), us)ds.; if t ∈ I0,

− ∂
∂sU(t, sk)gk(sk, u(s−k )) + U(t, sk)ψk

+

∫ t

sk

U(t, s) f(s, u(s), us)ds.; if t ∈ Ik; k = 1, . . . ,m,

gk(t, u(t−k )); if t ∈ Jk; k = 1, . . . ,m,

φ(t); if t ∈ R−.
(5)

Clearly, the fixed points of the operator N are mild solutions of problem (4).
For any u ∈ PC and each t ∈ I0, we have

‖(Nu)(t)‖ ≤ M0‖φ(0)‖+M‖ψ0‖+M

∫ t

0

‖f(s, u(s), us)‖ds

≤ M0‖φ(0)‖+M‖ψ0‖+Mp∗

≤ R.

Next, for any u ∈ PC and each t ∈ Ik; k = 1, . . . ,m, we have

‖(Nu)(t)‖ ≤ M0q
∗ +M‖ψk‖+M

∫ t

sk

‖f(s, u(s), us)‖ds

≤ M0q
∗ +M‖ψk‖+Mp∗

≤ R.

Also, for any u ∈ PC and each t ∈ Jk; k = 1, . . . ,m, we have

‖(Nu)(t)‖ ≤ q∗ ≤ R,

and for any u ∈ PC and each t ∈ R−, we have

‖(Nu)(t)‖ = ‖φ‖B ≤ R.

This proves that N transforms the ball BR := {w ∈ PC : ‖w‖PC ≤ R} into itself.
We shall show that the operator N : BR → BR satisfies all the assumptions of
Theorem 2.9. The proof will be given in two steps.

Step 1. N : BR → BR is continuous.
Let {un}n∈N be a sequence such that un → u in BR.
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For each t ∈ R− ∪ Jk; k = 1, . . . ,m, we have

‖(Nun)(t)− (Nu)(t)‖ = 0→ 0 as n→∞,

and for each t ∈ Ik; k = 0, . . . ,m, we have

‖(Nun)(t)− (Nu)(t)‖ ≤M
∫ t

0

‖f(s, un(s), usn)− f(s, u(s), us)‖ds. (6)

Since un → u as n → ∞ and f is continuous, then by the Lebesgue dominated
convergence theorem, equation (6) implies

‖(Nun)(t)− (Nu)(t)‖ → 0 as n→∞.

Hence

‖N(un)−N(u)‖PC → 0 as n→∞.
Step 2. For each closed subset D of C(I), α(N(D)) ≤ `α(D).
From Lemmas 2.7 and 2.8, for any D ⊂ BR and any ε > 0, there exists a sequence
{uk}∞k=0 ⊂ D, such that for all t ∈ Ik; k = 0, . . . ,m, we have

α((ND)(t)) = α

({
− ∂

∂s
U(t, 0)φ(0) + U(t, 0)ψ0

+

∫ t

0

U(t, s) f(s, u(s), us)ds; u ∈ D
})

≤ 2α

({∫ t

0

U(t, s)f(s, uk(s), uks)ds

}∞
k=1

)
+ ε

≤ 4

∫ t

0

α
(∥∥U(t, s)‖B(E){f(s, uk(s), uks)

}∞
k=1

)
ds+ ε

≤ 4M

∫ t

0

α ({f(s, uk(s), uks)}∞k=1) ds+ ε

≤ 4M

∫ t

0

p(s)α ({uk(s)}∞k=1) ds+ ε

≤ 4Mp∗
∫ t

0

α ({uk(s)}∞k=1) ds+ ε,

≤ 4MTp∗αc(D) + ε,

and, for all t ∈ Ik; k = 1, . . . ,m, we get

α((ND)(t)) = α

({
− ∂

∂s
U(t, sk)gk(sk, u(s−k )) + U(t, sk)ψk

+

∫ t

sk

U(t, s) f(s, u(s), us)ds; u ∈ D
})

≤ 2α

({∫ t

0

U(t, s)f(s, uk(s), uks)ds

}∞
k=1

)
+ ε

≤ 4MTp∗αc(D) + ε.

Since ε > 0 is arbitrary, then

αc(ND) ≤ `αc(D).
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As a consequence of these two steps together with Theorem 2.9, we can conclude
that N has a fixed point in u ∈ BR which is a mild solution of problem (1).

Part 2. Periodic mild solutions.
A standard approach in deriving T−periodic solutions is to define the Poincaré
operator P : B → B given by P (φ) = uT (φ) such that

(Pφ)(s) = uT (s, φ) = u(T + s, φ); s ∈ R−,

which maps an initial function (or value) φ along the unique mild solution u(φ) to
our problem (1) by T− units (i.e., T units along the unique solution u(·, φ) deter-
mined by the initial function φ).
We show that P is a condensing operator with respect to Kuratowski’s measure of
non-compactness in the phase space B, then the given conditions such that the fixed
point theorem (Theorem 2.12) can be applied to get fixed points for the Poincaré
operator, which give rise to periodic solutions. We do this in two steps.

Step 1. The fixed points of P give rise to periodic mild solutions of (1).
Let φ ∈ B be such that p(φ) = φ. Then for the solution u(·) = u(·, φ) with u0(·, φ) =
φ, we can define v(t) = u(t+ T ). Now, for t > 0, we can use the known properties
of U(t, s), and the fact that A(t), f and gk are T -periodic functions in t, to obtain
that v is also a solution with v0(·, φ) = uT (φ) = u(·, φ). Indeed; we can obtain that

v(t) =



− ∂
∂sU(t, 0)φ(0) + U(t, 0)ψ0 +

∫ t

0

U(t, s) f(s, v(s), vs)ds.; if t ∈ I0,

− ∂
∂sU(t, sk)gk(sk, u(s−k )) + U(t, sk)ψk

+

∫ t

sk

U(t, s) f(s, v(s), vs)ds.; if t ∈ Ik; k = 1, . . . ,m,

gk(t, v(t−k )); if t ∈ Jk; k = 1, . . . ,m,

φ(t); if t ∈ R−.

Then the uniqueness of {U(t, s)}(t,s)∈Λ implies that v(t) = u(t), so that u(t) =
u(t+ T ) is a T -periodic solution.

Step 2. P is condensing.
Now, we prove that the operator P : B → B is condensing. Let D ⊂ B be bounded
with αc(D) > 0. From Theorem 4.1 in [22], we get

αc(P (D)) ≤
(

1

2

)k0−1

Mαc(D) < αc(D).

Thus from Theorem 2.12, P has a fixed point which gives rise to a periodic mild
solution of our problem (1).
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4. An Example

Consider the following functional evolution problem

∂2z

∂t2
(t, x) = a(t, x)

∂2z

∂x2
(t, x) +Q(t, z(t, x), zt(·, x)); x ∈ [0, π], t ∈ Ik; k = 0, · · · ,

z(t, x) = gk(t, x); x ∈ [0, π], t ∈ Jk; k = 1, · · · ,

z(t, 0) = z(t, π) = 0; t ∈ R+,

z(0, x) = Φ(x); x ∈ [0, π],
z(t, x) = φ(t, x); t ∈ R−, x ∈ [0, π],

(7)
where a(t, x) : R+ × [0, π] → R is a continuous function and is uniformly Hölder
continuous in t, Q : R+ × R × B → R, Φ : [0, π] → R and φ : R− × [0, π] → R are
continuous functions such that Φ(x) = φ(0, x); x ∈ [0, π].

Consider E = L2([0, π],R) and define A(t) by A(t)w = a(t, x)w′′ with domain

D(A) = {w ∈ E : w,w′ are absolutely continuous, w′′ ∈ E, w(0) = w(π) = 0}.
Then A(t) generates an evolution system U(t, s) (see [10]).

For x ∈ [0, π], we have

y(t)(x) = z(t, x); t ∈ R+,

f(t, u(t), ut, x) = Q(t, z(t, x), zt(·, x); t ∈ R+,

u0(x) = Φ(x); x ∈ [0, π],

u(t, x) = φ(t, x); x ∈ [0, π], t ∈ R−.

Thus, under the above definitions of f , u0 and A(·), the system (7) can be rep-
resented by the functional evolution problem (1). Furthermore, more appropriate
conditions on Q ensure the hypotheses (H1) − (H5). Consequently, Theorem 3.2
implies that the evolution problem (7) has at least one periodic mild solution.
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