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CONTROLLABILITY OF SECOND-ORDER STOCHASTIC

DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL

BROWNIAN MOTION

DIEM DANG HUAN

Abstract. In this paper, we study the controllability of a class of second-

order impulsive neutral stochastic differential equations driven by fractional
Brownian motion (fBm) with infinite delay in Hilbert spaces. The Banach

fixed point theorem and the theory of strongly continuous cosine families of
operators are used to investigate the sufficient conditions for the controllability

of the system considered. An example is provided to illustrate our results.

1. Introduction

Stochastic differential equations (SDEs) driven by Brownian motions are widely
used in practice, such as physical systems, finance and economic areas [12, 20, 23].
Among them, several properties of SDEs such as existence, uniqueness, stability
and controllability are studied for the first-order equations. But in many situations,
it is useful to investigate the second-order abstract differential equations directly
rather than to convert them to first-order systems introduced by Fitzgibbon [13].
The second-order stochastic differential equations are the right model in continuous
time to account for integrated processes that can be made stationary. For instance,
it is useful for engineers to model mechanical vibrations or charge on a capacitor or
condenser subjected to white noise excitation by second-order stochastic differential
equations [12].

Controllability, as a fundamental concept of control theory, plays an important
role both in stochastic and deterministic control problems such as stabilization of
unstable systems by feedback control. Control problems for stochastic distributed
parameter systems, is, in our opinion, still at its very beginning stage. Recently, by
using the cosine family of operators, stochastic analysis techniques, Muthukumar
and Rajivganthi [22] considered approximate controllability of second-order neutral
stochastic differential equations with infinite delay and Poisson jumps. Huan [17]
have studied approximate controllability of damped second-order impulsive neu-
tral stochastic integro-differential system with state-dependent delay. In [3], Arthi
and Balachandran established the controllability of damped second-order impulsive
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neutral functional differential systems with infinite delay by means of the Sadovskii
fixed point theorem combined with a noncompact condition on the cosine family
of operators. Balasubramaniam and Muthukumar [4] proved sufficient conditions
for the approximate controllability of second-order stochastic distributed implicit
functional differential systems with infinite. In [27], Sakthivel et al. studied approx-
imate controllability of second-order stochastic differential equations with impulsive
effects. Very recently, Huan et al. [19] established the approximate controllability
of the time-dependent impulsive neutral SDEs with memory by using the Holder’s
inequality, stochastic analysis and fixed point strategy.

On the other hand, there has not been very much study of the controllability
of impulsive neutral SDEs with delay and fBm, while these have begun to gain
attention recently. To be more precise, in [10], Chen considered the approximate
controllability for semilinear stochastic equations driven by fBm. By using sto-
chastic analysis theory and operator theory, Cui and Yan [11] investigated the con-
trollability for neutral stochastic evolution equations driven by fractional Brownian
motion with Hurst parameter H ∈ ( 1

2 , 1). Boudaoui and Lakhel [7] studied the
controllability results of impulsive neutral stochastic functional differential equa-
tions with infinite delay driven by fBm in a real separable Hilbert space. Moreover,
by using the Banach fixed point theorem, Ahmed [1] studied the controllability of
impulsive neutral stochastic functional differential equations with finite delay and
fBm in a Hilbert space. Up to now, to the best of the authors knowledge, no results
about the controllability of stochastic second-order differential systems with fBm
are available in the literature. The present paper is devoted to study the control-
lability of impulsive neutral SDEs with infinite delay and fBm in Hilbert spaces.
More precisely, we consider the following form:

d
[
x′(t)− g

(
t, xt,

∫ t
0
σ1(t, s, xs)ds

)]
=
[
Ax(t) + f

(
t, xt,

∫ t
0
σ2(t, s, xs)ds

)]
dt

+Bu(t)dt+ σ(t)dBH(t), t ∈ J := [0, T ],

∆x(tk) = I1k(xtk), k = 1, 2..,m,

∆x′(tk) = I2k(xtk), k = 1, 2..,m,

x′(0) = x1 ∈ H,
x0 = ϕ ∈ B, for a.e. s ∈ J0 := (−∞, 0],

(1)
where 0 < t1 < t2 < · · · < tn < T , n ∈ N; x(·) is a stochastic process taking values in
a real separable Hilbert space H; A : D(A) ⊂ H→ H is the infinitesimal generator of
a strongly continuous cosine family on H. The history xt : J0 → H, xt(θ) = x(t+θ)
for t ≥ 0, belongs to the phase space B, which will be described later. Assume that
the mappings f, g : J × B × H → H, σ : J → L0

2, σi : J × J × B → H, i = 1, 2,
I1k , I

2
k : B → H, k = 1, 2, ...,m are appropriate functions to be specified later. The

control function u(·) takes values in L2(J, U) of admissible control functions for
a separable Hilbert space U and B is a bounded linear operator from U into H.
Furthermore, let 0 = t0 < t1 < · · · < tm < tm+1 = T be prefixed points, and
∆x(tk) = x(t+k ) − x(t−k ), represents the jump of the function x at time tk with

Ik determining the size of the jump, where x(t+k ) and x(t−k ) represent the right

and left limits of x(t) at t = tk, respectively. Similarly x′(t+k ) and x′(t−k ) denote,
respectively, the right and left limits of x′(t) at tk.

The structure of this paper is as follows: In Section 2, we briefly present some
basic notations, preliminaries and assumptions. The main results in Section 3
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are devoted to study the controllability for the system (1) with their proofs. An
example is given in Section 4 to illustrate the theory.

2. Preliminaries

In this section, we introduce notations and preliminary results need to establish
our results. For more details on this section, we refer the reader to [2, 12, 21, 25,
26, 16].

Let (H, ‖ · ‖H, 〈·, ·〉) and (K, ‖ · ‖K, 〈·, ·〉) denote two real separable Hilbert spaces,
with their vectors norms and their inner products, respectively. We denote by
L(K;H) the set of all linear bounded operators from K into H, which is equipped
with the usual operator norm ‖ · ‖. Let (Ω,F , {Ft}t∈J ,P) be a complete filtered
probability space satisfying the usual condition (i.e., it is right continuous and F0

contains all P-null sets). Denote {BH(t)}t∈J an fBm to the filtration {Ft}t∈J .
An one-dimensional fBm with Hurst parameter H ∈ (0, 1) is a centered Gaussian

process βH = {βH(t)}t∈J with covariance function

R(t, s) = E[βH(t)βH(s)] =
1

2
(|t|2H + |s|2H − |t− s|2H).

We note that β
1
2 is a standard Brownian motion. It is known that βH(t) with

H ∈ ( 1
2 , 1) has the following Volterra representation:

βH(t) =

∫ t

0

KH(t, s)dβ(s), (2)

where β = {β(t)}t∈J is a Wiener process and the Volterra kernel KH(t, s) is given
by

KH(t, s) = cHs
1
2−H

∫ t

0

(u− s)H− 3
2uH−

1
2 du

where

cH =

√
H(2H − 1)

B(2− 2H,H − 1
2 )

with B(·, ·) being the Beta function for t > s. We put KH(t, s) = 0 if t ≤ s.
For the deterministic function ϕ ∈ L2(J), the fractional Wiener integral of ϕ

with respect to βH is defined by∫
J

ϕ(s)dβH(s) =

∫
J

K∗Hϕ(s)dβ(s),

where

K∗Hϕ(s) =

∫ T

s

ϕ(r)
∂K

∂r
(r, s)dr.

We assume that there exists a complete orthonormal system {ek}k≥1 in K, a
sequence of nonnegative real numbers λk such that Qek = λkek, k = 1, 2, ..., where
Q ∈ L(K;H) with finite trace tr(Q) =

∑∞
k=1 λk < ∞. We define the infinite

dimensional fractional Brownian motion on K with covariance Q as
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BH(t) =

∞∑
k=1

√
λkekβ

H
k (t),

where βHk are real, independent fBm’s. This process is a K-valued Gaussian starting
from 0 with zero mean and covariance:

E〈BH(t), x〉〈BH(s), y〉 = R(t, s)〈Q(x), y〉 ∀x, y ∈ K, ∀t, s ∈ J.
Let L0

2 = L2(Q
1
2K;H) be the space of all Hilbert-Schmidt operators from Q

1
2K

into H with the inner product 〈a, b〉L0
2

= Tr[aQb∗], where b∗ is the adjoint of the
operator b.

The fractional Wiener integral of Ψ : J → L0
2 with respect to Q-fBm is defined

by ∫ t

0

Ψ(s)dBH(s) =

∞∑
n=1

∫ t

0

√
λnΨ(s)endβ

H
n (s) (3)

=

∞∑
n=1

∫ t

0

√
λnK

∗
H(Ψen)dβn(s)

where βn is the standard Brownian motion used to present βHn as in (2).
We have the following inequality which is instrumental to prove our results. ([6],

Lemma 2) If Ψ : J → L0
2 satisfies

∫
J
‖Ψ(s)‖2L0

2
ds <∞ then the above sum in (2.2)

is well defined as a H-valued random variable, and we have

E
∥∥∥Ψ(s)dBH(s)

∥∥∥2 ≤ 2Ht2H−1
∫ t

0

‖Ψ(s)‖2L0
2
ds.

Next, to be able to access controllability for the system (1), we need to intro-
duce theory of cosine functions of operators and the second order abstract Cauchy
problem.

(1) The one-parameter family {C(t)}t∈R ⊂ L(H) is said to be a strongly contin-
uous cosine family if the following hold:

(i) C(0) = I, I is the identity operators in H;
(ii) C(t)x is continuous in t on R for any x ∈ H;
(iii) C(t+ s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R.
(2) The corresponding strongly continuous sine family {S(t)}t∈R ⊂ L(H), asso-

ciated to the given strongly continuous cosine family {C(t)}t∈R ⊂ L(H) is defined
by

S(t)x =

∫ t

0

C(s)xds, t ∈ R, x ∈ H.

(3) The infinitesimal generator A : H→ H of {C(t)}t∈R ⊂ L(H) is given by

Ax =
d2

dt2
C(t)x

∣∣∣
t=0

,

for all x ∈ D(A) = {x ∈ H : C(·) ∈ C2(R,H)}. It is well known that the infinitesimal
generator A is a closed, densely defined operator on H, and the following properties
hold, see Travis and Webb [30]. Suppose that A is the infinitesimal generator of
a cosine family of operators {C(t)}t∈R. Then, the following hold:

(i) There exist a pair of constants MA ≥ 1 and α ≥ 0 such that ‖C(t)‖ ≤MAe
α|t|

and hence, ‖S(t)‖ ≤MAe
α|t|;
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(ii) A
∫ r
s
S(u)xdu = [C(r)− C(s)]x, for all 0 ≤ s ≤ r <∞;

(iii) There exist N ≥ 1 such that ‖S(s)−S(r)‖ ≤ N
∣∣ ∫ r
s
eα|s|ds

∣∣, 0 ≤ s ≤ r <∞.
Thanks to the Proposition 2.1 and the uniform boundedness principle, as a direct
consequence we see that both {C(t)}t∈J and {S(t)}t∈J are uniformly bounded by

M̃ = MAe
α|T |.

The existence of solutions for the second order linear abstract Cauchy problem{
x′′(t) = Ax(t) + h(t), t ∈ J,
x(0) = z, x′(0) = w,

(4)

where h : J → H is an integrable function has been discussed in reference [28].
Similarly, the existence of solutions of the semilinear second order abstract Cauchy
problem it has been treated in reference [30]. The function x(·) given by

x(t) = C(t)z + S(t)w +

∫ t

0

S(t− s)h(s)ds, t ∈ J,

is called a mild solution of (4), and that when z ∈ H, x(·) is continuously differen-
tiable and

x′(t) = AS(t)z + C(t)w +

∫ t

0

C(t− s)h(s)ds, t ∈ J.

For additional details about cosine function theory, we refer to the reader to ref-
erences [14, 28, 30].

The collection of all strongly-measurable, square-integrable H-valued random
variables, denoted by L2(Ω,H), is a Banach space equipped with norm ‖x‖L2 =(
E‖x‖2

) 1
2 . Let C(J,L2(Ω,H)) be the Banach space of all continuous map from

J to L2(Ω,H) satisfying the condition supt∈J E‖x(t)‖2 < ∞. An important sub-
space is given by L0

2(Ω,H) = {f ∈ L2(Ω,H) : f is F0-measurable}. Further, let
LF
2(0, T ;H) ={
g : J × Ω→ H : g(·) is F-progressively measurable and E

( ∫
J

‖g(t)‖2Hdt
)
<∞

}
.

Since the system (1) has impulsive effects, the phase space used in Balasubra-
maniam and Ntouyas [5] and Park et al. [24] cannot be applied to these systems.
So, we need introduce an abstract phase space B as follows.

Assume that l : J0 → (0,+∞) is a continuous function with l0 =
∫
J0
l(t)dt <∞.

For any a > 0, we define

B :=
{
ψ : J0 → H : (E‖ψ(θ)‖2)

1
2 is a bounded and measurable function on

[−a, 0] and ∫
J0
l(s) supθ∈[s,0](E‖ψ(θ)‖2)

1
2 ds < +∞

}
.

If B is endowed with the norm

‖ψ‖B =

∫
J0

l(s) sup
θ∈[s,0]

(E‖ψ(θ)‖2)
1
2 ds, ∀ψ ∈ B,

then it is clear that (B, ‖ · ‖B) is a Banach space (see, e.g. [15]).
Let JT = (−∞, T ]. We consider the space

BT :=
{
x : JT → H such that xk ∈ C(Jk,H) and there exist x(t−k ) and x(t+k )

with



206 DIEM DANG HUAN EJMAA-2021/9(1)

x(t−k ) = x(t+k ), x(0) = ϕ ∈ B, k = 1, 2, ...,m
}

,

where xk is the restriction of x to Jk = (tk, tk+1], k = 1, 2, ...,m. Set ‖ · ‖T be a
seminorm in BT defined by

‖x‖T = ‖ϕ‖B + sup
s∈J

(E‖x(s)‖2)
1
2 , x ∈ BT .

Now, we recall the following useful lemma appeared in reference [9]. ([9]) Assume
that x ∈ BT , then for t ∈ J , xt ∈ B. Moreover,

l0
(
E‖x(t)‖2

) 1
2 ≤ ‖xt‖B ≤ ‖x0‖B + l0 sup

s∈[0,t]
(E‖x(s)‖2)

1
2 .

Next, we give the definition of mild solution for (1). An Ft-adapted stochastic
process x : JT → H is called a mild solution of (1) on JT if x0 = ϕ ∈ B and x′(0) =
x1 ∈ H satisfying ϕ, x1 ∈ L0

2(Ω,H), the functions C(t− s)g(s, xs,
∫ s
0
σ1(s, τ, xτ )dτ)

and S(t−s)f(s, xs,
∫ s
0
σ2(s, τ, xτ )dτ) are integrable on [0, T ) such that the following

conditions hold:
(i) {xt : t ∈ J} is a B-valued stochastic process;
(ii) For arbitrary t ∈ J , x(t) satisfies the following integral equation:

x(t) =C(t)x0) + S(t)[x1 − g(0, x0, 0)] +

∫ t

0

C(t− s)g(s, xs,

∫ s

0

σ1(s, τ, xτ )dτ)ds

+

∫ t

0

S(t− s)f(s, xs,

∫ s

0

σ2(s, τ, xτ )dτ)ds+

∫ t

0

S(t− s)Bu(s)ds

+

∫ t

0

S(t− s)σ(s)dBH(s) +
∑

0<tk<t

C(t− tk)I1k(xtk) +
∑

0<tk<t

S(t− tk)I2k(xtk);

(5)

(iii) ∆x(tk) = I1k(xtk), ∆x′(tk) = I2k(xtk), k = 1, 2, ...,m. The system (1) is
said to be controllable on the interval JT , if for every initial stochastic process
ϕ ∈ B defined on J0, x′(0) = x1 ∈ H and y1 ∈ H, there exists a stochastic control
u ∈ L2(J, U) which is adapted to the filtration {Ft}t∈J such that the solution x(·)
of the system (1.1) satisfies x(T ) = y1, where y1 and T are preassigned the terminal
state and time respectively. To prove our main results, we list the following basic
assumptions of this paper.

(H1) There exists positive constants MC , MS such that for all t ∈ J,
‖C(t)‖2 ≤MC , ‖S(t)‖2 ≤MS .

(H2) There exists a positive constant Mσ1
such that for all t, s ∈ J, x, y ∈ B

E
∥∥∥∫ t

0

[σ1(t, s, x)− σ1(t, s, y)]ds
∥∥∥2 ≤Mσ1

‖x− y‖2B.

(H3) The function g : J × B ×H → H is continuous and there exists a positive
constant Mg such that for all t ∈ J, x1, x2 ∈ B, y1, y2 ∈ L2(Ω,H)

E‖g(t, x1, y1)− g(t, x2, y2)‖2 ≤Mg(‖x1 − x2‖2B + E‖y1 − y2‖2).

(H4) For each (t, s) ∈ J × J , the function σ2 : J × J ×B → H is continuous and
there exists a positive constant Mσ2

such that for all t, s ∈ J, x, y ∈ B

E
∥∥∥∫ t

0

[σ2(t, s, x)− σ2(t, s, y)]ds
∥∥∥2 ≤Mσ2

‖x− y‖2B.
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(H5) The function f : J × B ×H→ H is continuous and there exists a positive
constant Mf such that for all t ∈ J, x1, x2 ∈ B, y1, y2 ∈ L2(Ω,H)

E‖f(t, x1, y1)− f(t, x2, y2)‖2 ≤Mf (‖x1 − x2‖2B + E‖y1 − y2‖2).

(H6) The functions I1k , I2k ∈ C(B,H), k = 1, 2, ...,m and there exist positive

constants MI1k
,M I1k

, MI2k
,M I2k

such that for all x, y ∈ B

E‖I1k(x)‖2 ≤MI1k
, E‖I2k(x)‖2 ≤MI2k

;

E‖I1k(x)− I1k(y)‖2 ≤M I1k
‖x− y‖2B, E‖I2k(x)− I2k(y)‖2 ≤M I2k

‖x− y‖2B.

(H7) The function σ : J → L0
2 satisfies the following conditions:

∫
J
‖σ(s)‖2L0

2
<

∞.
(H8) The linear operator W : L2(J, U)→ L2(Ω,H) defined by

Wu =

∫
J

S(T − s)Bu(s)ds

has an induced inverse W−1 which takes values in L2(J, U)/KerW (see [8]) and
there exist two positive constants MB and MW such that

‖B‖2 ≤MB and ‖W−1‖2 ≤MW .

(H9) Assume that the following relationship holds:

C1 : = T sup
(t,s)∈J×J

σ2
1(t, s, 0), C2 := sup

t∈J
‖g(t, 0, 0)‖2,

C3 : = T sup
(t,s)∈J×J

σ2
2(t, s, 0), C4 := sup

t∈J
‖f(t, 0, 0)‖2,

Σ := 56T 2l20
(
1 + 8T 2MBMSMW

)[
MCMg(1 + 2Mσ1

) +MSMf (1 + 2Mσ2
)
]
,

∆ :=

{
10l20

(
1 + 4T 2MBMSMW

)
×
[
T 2MCMg

(
1 +Mσ1

)
+ T 2MSMf

(
1 +Mσ2

)
+mMC

m∑
k=1

M I1k
+mMS

m∑
k=1

M I2k

]}
.

3. Main Theorems

In this section, we shall investigate the controllability of impulsive neutral SDEs
with infinite delay and fBm in Hilbert spaces.

The main result of this paper is the following theorem.
Theorem 3.1. Assume that the assumptions (H1)− (H9) hold. If Σ < 1 and

∆ < 1, then the system (1) is controllable on JT .
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Proof. Using the hypothesis (H8) for an arbitrary function x(·), define the control
process

uTx (t) =W−1
{
y1 − C(T )x0 − S(T )[x1 − g(0, x0, 0)]

−
∫ T

0

C(T − s)g(s, xs,

∫ s

0

σ1(s, τ, xτ )dτ)ds−
∑

0<tk<T

C(T − tk)I1k(xtk)

−
∫ T

0

S(T − s)f(s, xs,

∫ s

0

σ2(s, τ, xτ )dτ)ds−
∑

0<tk<T

S(T − tk)I2k(xtk)

−
∫ T

0

S(T − s)σ(s)dBH(s)
}

(t). (6)

We transform (1) into a fixed point problem. Consider the operator Π : BT → BT
defined by

Πx(t) =ϕ(t), t ∈ J0;

Πx(t) =C(t)x0 + S(t)[x1 − g(0, x0, 0)]

+

∫ t

0

C(t− s)g(s, xs,

∫ s

0

σ1(s, τ, xτ )dτ)ds

+

∫ t

0

S(t− s)f(s, xs,

∫ s

0

σ2(s, τ, xτ )dτ)ds+

∫ t

0

S(t− s)BuTx (s)ds

+

∫ t

0

S(t− s)σ(s)dBH(s)

+
∑

0<tk<t

C(t− tk)I1k(xtk) +
∑

0<tk<t

S(t− tk)I2k(xtk), for a.e. t ∈ J.

In what follows, we shall show that using the control uTx (·) the operator Π has a
fixed point, which is then a mild solution for system (1).

Clearly, Πx(T ) = y1.
For ϕ ∈ B, we defined ϕ̃ by

ϕ̃(t) =

{
ϕ(t) if t ∈ J0,
C(t)ϕ(0) if t ∈ J,

then ϕ̃ ∈ BT .
Set x(t) = z(t) + ϕ̃(t), t ∈ JT . It is easy to see that x satisfies (5) if and only if

z satisfies z0 = 0, x′(0) = x1 = z′(0) = z1 and

z(t) =S(t)[z1 − g(0, ϕ̃0, 0)] +

∫ t

0

C(t− s)g(s, zs + ϕ̃s,

∫ s

0

σ1(s, τ, zτ + ϕ̃τ )dτ)ds

+

∫ t

0

S(t− s)f(s, zs + ϕ̃s,

∫ s

0

σ2(s, τ, zτ + ϕ̃τ )dτ)ds

+

∫ t

0

S(t− s)BuTz+ϕ̃(s)ds+

∫ t

0

S(t− s)σ(s)dBH(s)

+
∑

0<tk<t

C(t− tk)I1k(ztk + ϕ̃tk) +
∑

0<tk<t

S(t− tk)I2k(ztk + ϕ̃tk), t ∈ J,

where uTz+ϕ̃(t) is obtained from (6) by replacing xt = zt + ϕ̃t.
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Let B0T = {z ∈ BT : z0 = 0 ∈ B}. For any y ∈B0T , we have

‖z‖T = ‖z0‖B + sup
s∈J

(E‖z(s)‖2)
1
2 = sup

s∈J
(E‖z(s)‖2)

1
2 ,

and thus (B0T , ‖ · ‖T ) is a Banach space. Set

Br = {z ∈ B0T : ‖z‖2T ≤ r} for some r ≥ 0,

then Br ⊆ B0
T is a bounded closed convex set, and for u ∈ Br, by Lemma 2.2, we

have

‖zt + ϕ̃t‖2B ≤ 2(‖zt‖2B + ‖ϕ̃t‖2B)

≤ 4
(
l20 sup
s∈[0,t]

(E‖z(s)‖2 + ‖z0‖2B + l20 sup
s∈[0,t]

(E‖ϕ̃(s)‖2 + ‖ϕ̃0‖2B
)

≤ 4l20

(
r +MCE‖ϕ(0)‖2

)
+ 4‖ϕ̃‖2B

=: k. (7)

Define the map Π : B0T → B0T defined by Πz(t) = 0, for t ∈ J0 and

Πz(t) =S(t)[z1 − g(0, ϕ̃0, 0)] +

∫ t

0

C(t− s)g(s, zs + ϕ̃s,

∫ s

0

σ1(s, τ, zτ + ϕ̃τ )dτ)ds

+

∫ t

0

S(t− s)f(s, zs + ϕ̃s,

∫ s

0

σ2(s, τ, zτ + ϕ̃τ )dτ)ds

+

∫ t

0

S(t− s)BuTz+ϕ̃(s)ds+

∫ t

0

S(t− s)σ(s)dBH(s)

+
∑

0<tk<t

C(t− tk)I1k(ztk + ϕ̃tk) +
∑

0<tk<t

S(t− tk)I2k(ztk + ϕ̃tk), t ∈ J.

Obviously, the operator Π has a fixed point which is equivalent to prove that Π
has a fixed point. Note that, by our assumptions, we infer that all the functions
involved in the operator are continuous therefore Π is continuous.

Let z, z ∈ B0T . From (6), by our assumptions, Hölder’s inequality, Lemma 2.1,

Lemma 2.2, in view of (7) and using the fact that
(∑n

i=1 ai

)2
≤ n

∑n
i=1 a

2
i , for

any positive real numbers ai, i = 1, 2, ..., n, we obtain the following estimates:

E‖uTz+ϕ̃(t)‖2

≤ 8MW

{
E‖y1‖2 +MCE‖ϕ(0)‖2 + 2MS

[
E‖x1‖2 + 2(Mg‖ϕ̃‖2B + C2)

]
+ 2T 2MC

[
Mg

(
[1 + 2Mσ1

]k + 2C1

)
+ C2

]
+ 2T 2MS

[
Mf

(
[1 + 2Mσ2

]k

+ 2C3

)
+ C4

]
+ 2MSHT

2H

∫ T

0

‖σ(s)‖2L0
2
d(s)

+mMC

m∑
k=1

MI1k
+mMS

m∑
k=1

MI2k

}
=: Ξ, t ∈ J,
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and

E‖uTz+ϕ̃(t)− uTz+ϕ̃(t)‖2

≤ 8l20MW

{
T 2MCMg

(
1 +Mσ1

)
+ T 2MSMf

(
1 +Mσ2

)
+mMC

m∑
k=1

M I1k
+mMS

m∑
k=1

M I2k

}
sup
s∈J

E‖z(t)− z(t)‖2.

Under the assumptions of Theorem 3.1, then there exists r > 0 such that Π(Br) ⊆
Br.

Proof. If this property is false, then for each r > 0, there exists a function zr(·) ∈
Br, but Π(zr) /∈ Br, i.e. ‖Π(zr)(t)‖2 > r for some t ∈ J . However, by our
assumptions and Lemma 2.1, we have

r < E‖Π(zr)(t)‖2

≤ 7

[
2MS

[
E‖x1‖2 + 2(Mg‖ϕ̃‖2B + C2)

]
+ 2T 2MC

[
Mg

(
[1 + 2Mσ1

]k + 2C1

)
+ C2

]
+ 2T 2MS

[
Mf

(
[1 + 2Mσ2

]k + 2C3

)
+ C4

]
+ T 2MSMBΞ + 2MSHT

2H

∫ T

0

‖σ(s)‖2L0
2
d(s)

+mMC

m∑
k=1

MI1k
+mMS

m∑
k=1

MI2k

]
,

≤ Θ + 14T 2(1 + 8T 2MBMSMW )

×
(
MCMg(1 + 2Mσ1

) +MSMf (1 + 2Mσ2
)
)
k, (8)

where

Θ := 56(1 + 8T 2MBMSMW )

×
[
E‖y1‖2 +MC(E‖ϕ(0)‖2)

]
+ 7(1 + 8T 2MBMSMW )

×

[
2MS

[
E‖x1‖2 + 2(Mg‖ϕ̃‖2B + C2)

]
+ 2T 2MC(2MgC1 + C2)

+ 2T 2MS(2MfC3 + C4) + 2MSHT
2H

∫ T

0

‖σ(s)‖2L0
2
d(s)

+mMC

m∑
k=1

MI1k
+mMS

m∑
k=1

MI2k

]
.

Dividing both sides of (8) by r and noting that

k = 4l20

(
r +MCE‖ϕ(0)‖2

)
+ 4‖ϕ̃‖2B

r →∞−−−−→∞

then taking the limit as r →∞, we obtain 1 ≤ Σ, which contradicts our assumption.
Thus, for some positive number r, Π(Br) ⊆ Br. This completes the proof of Lemma
3.1. �
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Under the assumptions of Theorem 3.1, then Π : B0T → B0T is a contraction
mapping.

Proof. Let z, z ∈ B0T . Then, by our assumptions, Hölder’s inequality, Lemma 2.1,
Lemma 2.2 and since ‖z0‖2B = 0 and ‖z0‖2B = 0, for each t ∈ J , we see that

E‖(Πz)(t)− (Πz)(t)‖2

≤ 10l20

{
T 2MCMg

(
1 +Mσ1

)
+ T 2MSMf

(
1 +Mσ2

)
+mMC

m∑
k=1

M I1k
+mMS

m∑
k=1

M I2k

}
sup
s∈J

E‖z(t)− z(t)‖2

+ 5T 2MSMBE‖uTz+ϕ̃(t)− uTz+ϕ̃(t)‖2

≤

{
10l20

(
1 + 4T 2MBMSMW

)
×
[
T 2MCMg

(
1 +Mσ1

)
+ T 2MSMf

(
1 +Mσ2

)
+mMC

m∑
k=1

M I1k
+mMS

m∑
k=1

M I2k

]}
sup
s∈J

E‖z(t)− z(t)‖2.

Taking the supremum over t, we obtain ‖(Πz)− (Πz)‖2T ≤ ∆‖z − z‖2T .
By our assumption, we conclude that Π is a contraction on B0T . Thus we have

completed the proof of Lemma 3.2. �

On the other hand, by Banach fixed point theorem there exists a unique fixed
point x(·) ∈ B0T such that (Πx)(t) = x(t). This fixed point is then the mild
solution of the system (1). Clearly, x(T ) = (Πx)(T ) = y1. Thus, the system (1) is
controllable on JT . The proof for Theorem 3.1 is thus complete. �

4. Application

In this section, we apply the results established in the previous section to dis-
cuss the controllability of the second-order stochastic nonlinear wave equation with
infinite delay and fBm. Now, we consider only a simple type of stochastic wave
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equation driven by fBm in the following form:

∂

∂t

[ ∂
∂t
y(t, ξ)−

∫ t

−∞
δ1(t, ξ, s− t, )P1(y(s, ξ))ds

−
∫ t

0

∫ s

−∞
b1(s− τ)P2(y(τ, ξ))dτds

]
=
[ ∂2
∂ξ2

y(t, ξ) +

∫ t

−∞
δ2(t, ξ, s− t, )G1(y(s, ξ))ds

+

∫ t

0

∫ s

−∞
b2(s− τ)G2(y(τ, ξ))dτds

+ b(ξ)u(t)
]
dt+ σ(t)dBH(t), tk 6= t ∈ J, ξ ∈ [0, π],

∆y(tk)(ξ) =
∫ tk
−∞ ηk(tk − s)y(s, ξ)ds, k = 1, 2, ..,m, ξ ∈ [0, π],

∆y′(tk)(ξ) =
∫ tk
−∞ ρk(tk − s)y(s, ξ)ds, k = 1, 2, ..,m, ξ ∈ [0, π],

y(t, 0) = y(t, π) = 0, t ∈ J,
∂
∂ty(0, ξ) = x1(ξ), ξ ∈ [0, π],

y(t, ξ) = ϕ(t, ξ), t ∈ J0, ξ ∈ [0, π],

(9)

where BH is is a fractional Brownian motion ; 0 < t1 < t2 < · · · < tn < T , n ∈ N;
0 = t0 < t1 < · · · < tm < tm+1 < T are prefixed numbers, and ϕ ∈ B.

To rewrite (9) into the abstract from of (1) we consider the space H = K = U =

L2([0, π]) with the norm ‖ · ‖.. Let en(ξ) :=
√

2
π sinnξ, n = 1, 2, 3, ... denote the

completed orthogonal basics in H.

Defined A : H → H by A = ∂2

∂ξ2 , with domain D(A) = H2([0, π]) ∩ H1
0([0, π]),

where

H1
0([0, π]) = {w ∈ L2([0, π]) :

∂w

∂z
∈ L2([0, π]), w(0) = w(π) = 0}

and

H2([0, π]) = {w ∈ L2([0, π]) :
∂w

∂z
,
∂2w

∂z2
∈ L2([0, π])}.

Then

Ax = −
∞∑
n=1

n2〈x, en〉en, x ∈ D(A), (10)

(see Ref. [29]). Using (10), one can easily verify that the operators C(t) defined by

C(t)x =

∞∑
n=1

cos(nt)〈x, en〉en, t ∈ R,

form a cosine function on H, with associated sine function

S(t)x =

∞∑
n=1

sin(nt)

n
〈x, en〉en, t ∈ R.

It is clear that (see Ref. [28]), for all x ∈ H, t ∈ R, C(·)x and S(·)x are periodic
functions with ‖C(t)‖ ≤ 1 and ‖S(t)‖ ≤ 1. Thus, (H1) is true.

Define the fractional Brownian motion in K by

BH(t) =

∞∑
n=1

√
λnβ

H
n (t)en,
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where H ∈ ( 1
2 , 1) and {βHn }n∈N is a sequence of one-dimensional fractional Brow-

nian motions mutually independent.
Next, we give a special B-space. Let l(s) = e2s, s ≤ 0, then l0 =

∫
J0
l(s)ds = 1

2

and define

‖ψ‖B =

∫
J0

l(s) sup
θ∈[s,0]

(E‖ψ(θ)‖2)
1
2 ds, ∀ψ ∈ B.

It follows from [15], that (B, ‖ · ‖B) is a Banach space. Hence for (t, ψ) ∈ J × B,
where ψ(θ)x = ψ(θ, x), (θ, x) ∈ J0 × [0, π]. Let y(t)(ξ) = y(t, ξ).

To study the system (9), we assume the following conditions hold:
(i) Let B ∈ L(R,H) be defined as

Bu(ξ) = b(ξ)u, 0 ≤ ξ ≤ π, u ∈ R, b(ξ) ∈ L2([0, π]).

(ii) The linear operator W : L2(J, U)→ H defined by

Wu =

∫
J

S(T − s)b(ξ)u(s)ds

is a bounded linear operator but not necessarily one-to-one. Let KerW = {u ∈
L2(J, U) : Wu = 0} be null space of W and [KerW ]⊥ be its orthogonal comple-
ment in L2(J, U). Let W ∗ : [KerW ]⊥ → Range(W ) be the restriction of W to
[KerW ]⊥, W ∗ is necessarily one-to-one operator. The inverse mapping theorem
says that (W ∗)−1 is bounded since [KerW ]⊥ and Range(W ) are Banach spaces.
So that inverse operator W−1 is bounded and takes values in L2(J, U)/KerW , the
assumption (H10) is satisfied.

(iii) The functions ηk, ρk ∈ C(R,R) such that for k = 1, 2, ..,m,

M I1k
=

∫
J0

l(s)η2k(s)ds <∞, M I2k
=

∫
J0

l(s)ρ2k(s)ds <∞.

We define the functions g, f : J × B × H → H, σ : J → L0
2, and I1k , I

2
k : B → H,

k = 1, 2, ..,m, by

g(t, ψ, V1ψ)(ξ) =

∫
J0

δ1(t, ξ, θ)P1(ψ(θ)(ξ))dθ + V1ψ(ξ),

f(t, ψ, V2ψ)(ξ) =

∫
J0

δ2(t, ξ, θ)G1(ψ(θ)(ξ))dθ + V2ψ(ξ),

I1k(t, ψ)(ξ) =

∫
J0

ηk(−s)ψ(θ)(ξ)ds, k = 1, 2, ...,m,

I2k(t, ψ)(ξ) =

∫
J0

ρk(−s)ψ(θ)(ξ)ds, k = 1, 2, ...,m,

where

V1ψ(ξ) =

∫ t

0

∫
J0

b1(s− θ)P2(ψ(θ)(ξ))dθds,

V2ψ(ξ) =

∫ t

0

∫
J0

b2(s− θ)G2(ψ(θ)(ξ))dθds.
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Then, the system (9) can be written in the abstract form as the system (1):

d
[
x′(t)− g

(
t, xt,

∫ t
0
σ1(t, s, xs)ds

)]
=
[
Ax(t) + f

(
t, xt,

∫ t
0
σ2(t, s, xs)ds

)]
dt

+Bu(t)dt+ σ(t)dBH(t), t ∈ J := [0, T ],

∆x(tk) = I1k(xtk), k = 1, 2..,m,

∆x′(tk) = I2k(xtk), k = 1, 2..,m,

x′(0) = x1 ∈ H,
x0 = ϕ ∈ B, for a.e. s ∈ J0 := (−∞, 0],

Furthermore, we can impose some suitable conditions on the above defined func-
tions as those in the assumptions (H1)− (H9). Therefore, by Theorem 3.1, we can
conclude that the system (9) is controllable on JT .
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