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COMPLETE HOMOGENEOUS SYMMETRIC FUNCTIONS OF

THIRD AND SECOND-ORDER LINEAR RECURRENCE

SEQUENCES

NABIHA SABA, ALI BOUSSAYOUD AND ABDELHAMID ABDERREZZAK

Abstract. In this paper, we introduce an operator in order to derive a new

symmetric functions of third and second-order linear recurrence sequences.

1. Introduction and preliminaries

In [20], the Gaussian generalized Tribonacci numbers {GVn}n≥0 = {GVn (GV0, GV1, GV2)}n≥0

is defined by{
GVn = GVn−1 +GVn−2 +GVn−3, n ≥ 3

GV0 = c0 + i (c2 − c1 − c0) , GV1 = c1 + ic0, GV2 = c2 + ic1
.

Special cases of Gaussian generalized Tribonacci numbers GVn are Gaussian Tri-
bonacci numbers GVn (0, 1, 1 + i) = GTn and Gaussian Tribonacci-Lucas numbers
GVn (3− i, 1 + 3i, 3 + i) = GKn. We formally define them as follows:

Gaussian Tribonacci numbers is defined by

GTn = GTn−1 +GTn−2 +GTn−3, n ≥ 3,

with initial conditions GT0 = 0, GT1 = 1, GT2 = 1 + i and Gaussian Tribonacci-
Lucas numbers is defined by

GKn = GKn−1 +GKn−2 +GKn−3, n ≥ 3,

with initial conditions GK0 = 3− i, GK1 = 1 + 3i and GK2 = 3 + i .
The authors in [10] defined and studied the trivariate Fibonacci and Lucas poly-

nomials Hn (x, y, t) and Kn (x, y, t). They gave Binet’s formulas, explicit formulas
and some properties of these trivariate polynomials.

Definition 1 For any integer n ≥ 3, the trivariate Fibonacci polynomials,
denoted by (Hn (x, y, t))n≥3 is defined recursively by

Hn (x, y, t) = xHn−1 (x, y, t) + yHn−2 (x, y, t) + tHn−3 (x, y, t) ,
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with the initials

H0 (x, y, t) = 0, H1 (x, y, t) = 1 and H2 (x, y, t) = x.

Definition 2 For any integer n ≥ 3, the trivariate Lucas polynomials, denoted
by (Kn (x, y, t))n≥3 is defined recursively by

Kn (x, y, t) = xKn−1 (x, y, t) + yKn−2 (x, y, t) + tKn−3 (x, y, t) ,

with the initials

K0 (x, y, t) = 3, K1 (x, y, t) = x and K2 (x, y, t) = x2 + 2y.

The Binet’s formulas of trivariate Fibonacci and Lucas polynomials are

Hn (x, y, t) =
αn+1

(α− β) (α− γ)
+

βn+1

(β − α) (β − γ)
+

γn+1

(γ − α) (γ − β)
,

and

Kn (x, y, t) = αn + βn + γn,

respectively, where α, β and γ are the roots of the characteristic equation z3 −
xz2 − yz − t = 0.

In [9], Kocer consider the bivariate Vieta-Fibonacci and bivariate Vieta-Lucas
polynomials which are defined by the following recurrence relations, for n ≥ 2

Vn (x, y) = xVn−1 (x, y)− yVn−2 (x, y) with V0 (x, y) = 0, V1 (x, y) = 1,

and

vn (x, y) = xvn−1 (x, y)− yvn−2 (x, y) with v0 (x, y) = 2, v1 (x, y) = x.

In 2018, Catarino introduced the k-Pell and k-Pell Lucas polynomials which are
defined recursively by

Pk,n+2 (x) = 2xPk,n+1 (x) + kPk,n (x) with Pk,0 (x) = 0, Pk,1 (x) = 1,

and

Qk,n+2 (x) = 2xQk,n+1 (x) + kQk,n (x) with Qk,0 (x) = 2, Qk,1 (x) = 2x,

respectively, for more information see the paper [17].
In [15], N. Karaaslan and T. Yagmur defined the (p, q)-modified Pell numbers

by

MPp,q,n = 2pMPp,q,n−1 + qMPp,q,n−2, n ≥ 2,

with MPp,q,0 = 1 and MPp,q,1 = p.
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We define some Gaussian numbers (see [8, 13, 14]).

Gaussian numbers Linear recurrence sequences Initial conditions

Gaussian Perrin numbers Grn = Grn−2 +Grn−3, n ≥ 3

 Gr0 = −1 + 3i
Gr1 = 3
Gr2 = 2i

Gaussian Padovan numbers GPn = GPn−2 +GPn−3, n ≥ 3

 GP0 = 1
GP1 = 1 + i
GP2 = 1 + i

Gaussian Pell Padovan numbers GRn = 2GRn−2 +GRn−3, n ≥ 3

 GR0 = 1− i
GR1 = 1 + i
GR2 = 1 + i

Gaussian (p, q)-Pell numbers GPp,q,n = 2pGPp,q,n−1 + qGPp,q,n−2, n ≥ 2

{
GPp,q,0 = i
GPp,q,1 = 1

Gaussian (p, q)-Pell Lucas numbers GQp,q,n = 2pGQp,q,n−1 + qGQp,q,n−2, n ≥ 2

{
GQp,q,0 = 2− 2ip
GQp,q,1 = 2p+ 2iq

Gaussian (p, q)-Fibonacci numbers GFp,q,n = pGFp,q,n−1 + qGFp,q,n−2, n ≥ 2

{
GFp,q,0 = i
GFp,q,1 = 1

Gaussian (p, q)-Lucas numbers GLp,q,n = pGLp,q,n−1 + qGLp,q,n−2, n ≥ 2

{
GLp,q,0 = 2− ip
GLp,q,1 = p+ 2iq

Table 1. Gaussian numbers.

In this part we define some Gaussian polynomials.
Definition 3 [7] For n ∈ N, the generalized Gaussian Jacobsthal polynomials

{GJk,n (x)}n∈N is defined recurrently by

GJk,n+1 (x) = GJk,n (x) + 2kxGJk,n−1 (x) , for n ≥ 1,

with initial conditions GJk,0 (x) =
i
2 , GJk,1 (x) = 1.

Definition 4 [7] For n ∈ N, the generalized Gaussian Jacobsthal Lucas poly-
nomials {Gjk,n (x)}n∈N is defined recursively by

Gjk,n+1 (x) = Gjk,n (x) + 2kxGjk,n−1 (x) , for n ≥ 1,

with initial conditions Gjk,0 (x) = 2− i
2 , Gjk,1 (x) = 1 + 2xi.

Definition 5 For n ∈ N, the Gaussian Padovan polynomials, denoted by
{GPn (x)}n∈N is defined recurrently by{

GPn (x) = xGPn−2 (x) +GPn−3 (x) , n ≥ 3
GP0 (x) = 1, GP1 (x) = GP2 (x) = 1 + i

.

Definition 6 For n ∈ N, the Gaussian Pell Padovan polynomials, denoted by
{GRn (x)}n∈N is defined recursively by{

GRn (x) = 2xGRn−2 (x) +GRn−3 (x) , n ≥ 3
GR0 (x) = 1− i, GR1 (x) = GR2 (x) = 1 + i

.

Next, we recall some properties of the symmetric functions that we will need in
the sequel.

Definition 7 Let k and n be two positive integers and {p1, p2, ..., pn} are set of
given variables the k-th complete homogeneous symmetric function hk (p1, p2, ..., pn)
is defined by

hk (p1, p2, ..., pn) =
∑

i1+i2+...+in=k

pi11 pi22 ...pinn (0 ≤ k ≤ n) ,
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with i1, i2, ..., in ≥ 0.
Remark 1 Set h0 (p1, p2, ..., pn) = 1, by usual convention. For k < 0, we set

hk (p1, p2, ..., pn) = 0.
Definition 8 [1] Let A and P be any two alphabets. We define Sn(A− P ) by

the following form:

ΠpϵP (1− pz)

ΠaϵA(1− az)
=

∞∑
n=0

Sn(A− P )zn, (1)

with the condition Sn(A− P ) = 0 for n < 0.
Equation (1) can be rewritten in the following form

∞∑
n=0

Sn(A− P )zn =

( ∞∑
n=0

Sn(A)z
n

)
×

( ∞∑
n=0

Sn(−P )zn

)
, (2)

where

Sn(A− P ) =
n∑

j=0

Sn−j(−P )Sj(A).

Remark 2 Taking A = {0} in (1) gives

∞∑
n=0

Sn (−P ) zn =
∏
p∈P

(1− pz) .

Definition 9 [2] Given a function g on Rn, the divided difference operator is
defined as follows

∂pipi+1(g) =
g(p1, · · · , pi, pi+1, · · · pn)− g(p1, · · · pi−1, pi+1, pi, pi+2 · · · pn)

pi − pi+1
.

Definition 10 Let n be a positive integer and P = {p1, p2} be set of given
variables, then, the n-th symmetric function Sn(p1 + p2) is defined by

Sn(P ) = Sn(p1 + p2) =
pn+1
1 − pn+1

2

p1 − p2
,

with

S0(P ) = S0(p1 + p2) = 1,

S1(P ) = S1(p1 + p2) = p1 + p2,

S2(P ) = S2(p1 + p2) = p21 + p1p2 + p22,

...

Definition 11 [3] Given an alphabet P = {p1, p2}, the symmetrizing operator
δkp1p2

is defined by

δkp1p2
g(p1) =

pk1g (p1)− pk2g (p2)

p1 − p2
, for all k ∈ N0. (3)

If g (p1) = p1, the operator (3) gives us

δkp1p2
g(p1) =

pk+1
1 − pk+1

2

p1 − p2
= Sk (p1 + p2) .
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2. Theorem and proof

The following theorem is one of the key tools of the proof of our main results. It
has been proved in [4]. For the completeness of the paper we state its proof here.

Theorem 1 Given two alphabets P = {p1, p2} and A = {a1, a2, a3} , we have

∞
n=0Sn(A)∂p1p2(p

n+1
1 )zn =

S0(−A)− p1p2S2(−A)z2 − p1p2S3(−A)S1(P )z3( ∞∑
n=0

Sn(−A)pn1 z
n

)( ∞∑
n=0

Sn(−A)pn2 z
n

) , (4)

with S0(−A) = 1, S2(−A) = a1a2 + a1a3 + a2a3, S3(−A) = −a1a2a3.

Proof. Let
∞∑

n=0
Sn(A)z

n and
∞∑

n=0
Sn(−A)zn be two sequences such that

∞∑
n=0

Sn(A)z
n =

1
∞∑

n=0
Sn(−A)zn

.On one hand, since g(p1) =
∞∑

n=0
Sn(A)p

n
1 z

n and g(p2) =
∞∑

n=0
Sn(A)p

n
2 z

n,

we have

δp1p2g(p1) = δp1p2

( ∞∑
n=0

Sn(A)p
n
1 z

n

)

=

p1
∞∑

n=0
Sn(A)p

n
1 z

n − p2
∞∑

n=0
Sn(A)pn2 z

n

p1 − p2

=
∞∑

n=0

Sn(A)

(
pn+1
1 − pn+1

2

p1 − p2

)
zn

=

∞∑
n=0

Sn(A)∂p1p2(p
n+1
1 )zn,

which is the right-hand side of (4). On the other part, since

g(p1) =
1

∞∑
n=0

Sn(−A)pn1 z
n

,

we have

δp1p2g(p1) =

p1
∞∑

n=0
Sn(−A)pn

1 z
n
− p2

∞∑
n=0

Sn(−A)pn
2 z

n

p1 − p2

=

p1
∞∑

n=0
Sn(−A)pn2 z

n − p2
∞∑

n=0
Sn(−A)pn1 z

n

(p1 − p2)

( ∞∑
n=0

Sn(−A)pn1 z
n

)( ∞∑
n=0

Sn(−A)pn2 z
n

)

=

∞∑
n=0

Sn(−A)
p1p

n
2 −p2p

n
1

p1−p2
zn( ∞∑

n=0
Sn(−A)pn1 z

n

)( ∞∑
n=0

Sn(−A)pn2 z
n

)
=

S0(−A)− p1p2S2(−A)z2 − p1p2S3(−A)S1 (P ) z3( ∞∑
n=0

Sn(−A)pn1 z
n

)( ∞∑
n=0

Sn(−A)pn2 z
n

) .
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This completes the proof.

3. Applications on third-order linear recurrence sequences

In this part, we now derive the generating functions of Gaussian generalized Tri-
bonacci numbers, Gaussian Padovan numbers and Gaussian Perrin numbers, Gauss-
ian Pell Padovan numbers, trivariate Fibonacci polynomials and trivariate Lucas
polynomials, Gaussian Padovan polynomials and Gaussian Pell Padovan polynomi-
als. The technique used is based on the theory of the so called symmetric functions.

• For the case A = {a1, a2, a3} and P = {1, 0} in theorem 1 we deduce the
following lemma.

Lemma 1 Given an alphabet A = {a1, a2, a3}, we have
∞∑

n=0

Sn (A) z
n =

1

(1− a1z) (1− a2z) (1− a3z)
. (5)

Based on the relationship (5) we have
∞∑

n=0

Sn−1 (A) z
n =

z

(1− a1z) (1− a2z) (1− a3z)
, (6)

and
∞∑

n=0

Sn−2 (A) z
n =

z2

(1− a1z) (1− a2z) (1− a3z)
, (7)

with (1− a1z) (1− a2z) (1− a3z) = 1− (a1 + a2 + a3)z+ (a1a2 + a1a3 + a2a3)z
2 −

a1a2a3z
3.

3.1. Construction of generating functions of some well-known numbers.
This part consists of three cases.

Case 1. The substitution of

 a1 + a2 + a3 = 1
a1a2 + a1a3 + a2a3 = −1
a1a2a3 = 1

in (5), (6) and (7),

we obtain
∞∑

n=0

Sn (A) z
n =

1

1− z − z2 − z3
, (8)

∞∑
n=0

Sn−1 (A) z
n =

z

1− z − z2 − z3
, (9)

∞∑
n=0

Sn−2 (A) z
n =

z2

1− z − z2 − z3
, (10)

respectively.
Multiplying the equation (8) by (GV0) and adding it to the equation obtained

by (9) multiplying by (GV1 −GV0) and adding it to the equation obtained by (10)
multiplying by (GV2 −GV1 −GV0), then we obtain the following proposition.

Proposition 1 For n ∈ N, the generating function of Gaussian generalized
Tribonacci numbers is given by

∞∑
n=0

GVnz
n =

GV0 + (GV1 −GV0)z + (GV2 −GV1 −GV0)z
2

1− z − z2 − z3
. (11)

We can state the following corollary.
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Corollary 1 The following identity holds true:

GVn = GV0Sn (A) + (GV1 −GV0)Sn−1 (A) + (GV2 −GV1 −GV0)Sn−2 (A) .

• Put GV0 = 0, GV1 = 1 and GV2 = 1 + i in the relationship (11), we can
state the following corollary.

Corollary 2 For n ∈ N, the generating function of Gaussian Tribonacci numbers
is given by

∞∑
n=0

GTnz
n =

z + iz2

1− z − z2 − z3
, with GTn = Sn−1(A) + iSn−2(A). (12)

• Put GV0 = 3 − i, GV1 = 1 + 3i and GV2 = 3 + i in the relationship (11),
we can state the following corollary.

Corollary 3 For n ∈ N, the generating function of Gaussian Tribonacci-Lucas
numbers is given by

∞∑
n=0

GKnz
n =

3− i− (2− 4i) z − (1 + i) z2

1− z − z2 − z3
, (13)

with GKn = (3− i)Sn(A)− (2− 4i)Sn−1(A)− (1 + i)Sn−2(A).

Case 2. The substitution

 a1 + a2 + a3 = 0
a1a2 + a1a3 + a2a3 = −1
a1a2a3 = 1

in (5), (6) and (7), we

obtain
∞∑

n=0

Sn (A) z
n =

1

1− z2 − z3
, (14)

∞∑
n=0

Sn−1 (A) z
n =

z

1− z2 − z3
, (15)

∞∑
n=0

Sn−2 (A) z
n =

z2

1− z2 − z3
, (16)

respectively.
Multiplying the equation (16) by (i) and adding it to the equation obtained by

(15) multiplying by (1 + i) and adding it to the equation (14), then we have the
following proposition.

Proposition 2 For n ∈ N, the generating function of Gaussian Padovan num-
bers is given by

∞∑
n=0

GPnz
n =

1 + (1 + i) z + iz2

1− z2 − z3
. (17)

We have the following corollary.
Corollary 4 The following identity holds true:

GPn = Sn(A) + (1 + i)Sn−1(A) + iSn−2 (A) .

Multiplying the equation (14) by (−1 + 3i) and adding it to the equation ob-
tained by (15) multiplying by (3) and adding it to the equation obtained by (16)
multiplying by (1− i), then we obtain
∞∑

n=0

((−1 + 3i)Sn(A) + 3Sn−1(A) + (1− i)Sn−2 (A)) z
n =

−1 + 3i+ 3z + (1− i) z2

1− z2 − z3
,
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and we have the following proposition.
Proposition 3 For n ∈ N, the generating function of Gaussian Perrin numbers

is given by
∞∑

n=0

Grnz
n =

−1 + 3i+ 3z + (1− i) z2

1− z2 − z3
, (18)

with Grn = (−1 + 3i)Sn(A) + 3Sn−1(A) + (1− i)Sn−2 (A) .

Case 3. The setting of

 a1 + a2 + a3 = 0
a1a2 + a1a3 + a2a3 = −2
a1a2a3 = 1

in (5), (6) and (7), we

obtain
∞∑

n=0

Sn (A) z
n =

1

1− 2z2 − z3
, (19)

∞∑
n=0

Sn−1 (A) z
n =

z

1− 2z2 − z3
, (20)

∞∑
n=0

Sn−2 (A) z
n =

z2

1− 2z2 − z3
, (21)

respectively.
Multiplying the equation (19) by (1− i) and adding it to the equation obtained

by (20) multiplying by (1 + i) and adding it to the equation obtained by (21)
multiplying by (−1 + 3i), then we deduce the following proposition and corollary.

Proposition 4 For n ∈ N, the generating function of Gaussian Pell-Padovan
numbers is given by

∞∑
n=0

GRnz
n =

1− i+ (1 + i) z + (−1 + 3i)z2

1− 2z2 − z3
. (22)

Corollary 5 The following identity holds true:

GRn = (1− i)Sn(A) + (1 + i)Sn−1(A) + (−1 + 3i)Sn−2 (A) .

3.2. Construction of generating functions of some well-known polynomi-
als. This part consists of three cases.

Case 1. The Setting of

 a1 + a2 + a3 = x
a1a2 + a1a3 + a2a3 = −y
a1a2a3 = t

in (5), (6) and (7), we

obtain
∞∑

n=0

Sn (A) z
n =

1

1− xz − yz2 − tz3
, (23)

∞∑
n=0

Sn−1 (A) z
n =

z

1− xz − yz2 − tz3
, (24)

∞∑
n=0

Sn−2 (A) z
n =

z2

1− xz − yz2 − tz3
, (25)

respectively, and we have the following corollary.
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Corollary 6 For n ∈ N, the generating function of trivariate Fibonacci poly-
nomials is given by

∞∑
n=0

Hn (x, y, t) z
n =

z

1− xz − yz2 − tz3
, with Hn (x, y, t) = Sn−1(A). (26)

Multiplying the equation (23) by (3) and adding it to the equation obtained by
(24) multiplying by (−2x) and adding it to the equation obtained by (25) multi-
plying by (−y), then we deduce the following proposition and corollary.

Proposition 5 For n ∈ N, the generating function of trivariate Lucas polyno-
mials is given by

∞∑
n=0

Kn (x, y, t) z
n =

3− 2xz − yz2

1− xz − yz2 − tz3
. (27)

Corollary 7 The following identity holds true:

Kn (x, y, t) = 3Sn(A)− 2xSn−1(A)− ySn−2 (A) .

• Writing x2 instead of x, x instead of y and taking t = 1 in (26) and (27),
we have the following corollaries.

Corollary 8 For n ∈ N, the generating function of Tribonacci polynomials is
given by

∞∑
n=0

Tn (x) z
n =

z

1− x2z − xz2 − z3
, with Tn (x) = Sn−1(A).

Corollary 9 For n ∈ N, the generating function of Tribonacci Lucas polyno-
mials is given by

∞∑
n=0

Kn (x) z
n =

3− 2x2z − xz2

1− x2z − xz2 − z3
, with Kn (x) = 3Sn(A)−2x2Sn−1(A)−xSn−2 (A) .

• Based on the relationships (26) and (27) and with x = y = t = 1, we obtain
the following corollaries.

Corollary 10 For n ∈ N, the generating function of Tribonacci numbers is
given by

∞∑
n=0

Tnz
n =

z

1− z − z2 − z3
, with Tn = Sn−1(A).

Corollary 11 [12] For n ∈ N, the generating function of Tribonacci Lucas
numbers is given by

∞∑
n=0

Knz
n =

3− 2z − z2

1− z − z2 − z3
, with Kn = 3Sn(A)− 2Sn−1(A)− Sn−2 (A) .

Case 2. The substitution of

 a1 + a2 + a3 = 0
a1a2 + a1a3 + a2a3 = −x
a1a2a3 = 1

in (5), (6) and (7),

we obtain
∞∑

n=0

Sn (A) zn =
1

1− xz2 − z3
, (28)
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∞∑
n=0

Sn−1 (A) z
n =

z

1− xz2 − z3
, (29)

∞∑
n=0

Sn−2 (A) z
n =

z2

1− xz2 − z3
, (30)

respectively.
Multiplying the equation (30) by (1− x+ i) and adding it to the equation ob-

tained by (29) multiplying by (1 + i) and adding it to the equation (28), then we
obtain

∞∑
n=0

(Sn(A) + (1 + i)Sn−1(A) + (1− x+ i)Sn−2 (A)) z
n =

1 + (1 + i) z + (1− x+ i) z2

1− xz2 − z3
,

and we have the following proposition.
Proposition 6 For n ∈ N, the generating function of Gaussian Padovan poly-

nomials is given by

∞∑
n=0

GPn (x) z
n =

1 + (1 + i) z + (1− x+ i) z2

1− xz2 − z3
, (31)

with GPn (x) = Sn(A) + (1 + i)Sn−1(A) + (1− x+ i)Sn−2 (A) .

Case 3. Taking

 a1 + a2 + a3 = 0
a1a2 + a1a3 + a2a3 = −2x
a1a2a3 = 1

in (5), (6) and (7), we obtain

∞∑
n=0

Sn (A) z
n =

1

1− 2xz2 − z3
, (32)

∞∑
n=0

Sn−1 (A) z
n =

z

1− 2xz2 − z3
, (33)

∞∑
n=0

Sn−2 (A) z
n =

z2

1− 2xz2 − z3
, (34)

respectively.
Multiplying the equation (32) by (1− i) and adding it to the equation obtained

by (33) multiplying by (1 + i) and adding it to the equation obtained by (34)
multiplying by (1 − 2x + i (1 + 2x)), then we have the following proposition and
corollary.

Proposition 7 For n ∈ N, the generating function of Gaussian Pell-Padovan
polynomials GRn (x) is given by

∞∑
n=0

GRn (x) z
n =

1− i+ (1 + i) z + (1− 2x+ i (1 + 2x))z2

1− 2xz2 − z3
. (35)

Corollary 12 The following identity holds true:

GRn (x) = (1− i)Sn(A) + (1 + i)Sn−1(A) + (1− 2x+ i (1 + 2x))Sn−2 (A) .
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4. Applications on second-order linear recurrence sequences

In this part, we now derive the generating functions of Gaussian (p, q) numbers,
(p, q)-modified Pell numbers and bivariate Vieta polynomials, Gaussian generalized
polynomials, k-Pell polynomials and k-Pell Lucas polynomials.

• For the case A = {a1,−a2, 0} and P = {1, 0} in theorem 1 we deduce the
following lemma.

Lemma 2 Given an alphabet A = {a1,−a2}, we have

∞∑
n=0

Sn (a1 + [−a2]) z
n =

1

1− (a1 − a2) z − a1a2z2
. (36)

Based on the relationship (36) we have

∞∑
n=0

Sn−1 (a1 + [−a2]) z
n =

z

1− (a1 − a2) z − a1a2z2
. (37)

4.1. Construction of generating functions for Gaussian (p, q)-numbers
and (p, q)-modified Pell numbers. This part consists of two cases.

Case 1. The substitution of

{
a1 − a2 = p
a1a2 = q

in (36) and (37), we obtain

∞∑
n=0

Sn (a1 + [−a2]) z
n =

1

1− pz − qz2
, (38)

∞∑
n=0

Sn−1 (a1 + [−a2]) z
n =

z

1− pz − qz2
, (39)

respectively.
Multiplying the equation (38) by (i) and adding it to the equation obtained by

(39) multiplying by (1− pi), then we obtain the following proposition.
Proposition 8 For n ∈ N, the generating function of Gaussian (p, q)-Fibonacci

numbers GFp,q,n is given by

∞∑
n=0

GFp,q,nz
n =

i+ (1− pi) z

1− pz − qz2
, (40)

with GFp,q,n = iSn(a1 + [−a2]) + (1− pi)Sn−1(a1 + [−a2]).
Multiplying the equation (38) by (2− pi) and adding it to the equation obtained

by (39) multiplying by
(
i
(
p2 + 2q

)
− p
)
, then we have the following proposition.

Proposition 9 For n ∈ N, the generating function of Gaussian (p, q)-Lucas
numbers GLp,q,n is given by

∞∑
n=0

GLp,q,nz
n =

(2− pi) +
(
i
(
p2 + 2q

)
− p
)
z

1− pz − qz2
, (41)

with GLp,q,n = (2− pi)Sn(a1 + [−a2]) +
(
i
(
p2 + 2q

)
− p
)
Sn−1(a1 + [−a2]).

• Based on the relationships (40) and (41) and with p = q = 1, we obtain the
following corollaries.



EJMAA-2021/9(1) COMPLETE HOMOGENEOUS SYMMETRIC FUNCTIONS 237

Corollary 13 [18] For n ∈ N, the generating function of Gaussian Fibonacci
numbers GFn is given by

∞∑
n=0

GFnz
n =

i+ (1− i) z

1− z − z2
, with GFn = iSn(a1+[−a2])+(1− i)Sn−1(a1+[−a2]).

Corollary 14 [18] For n ∈ N, the generating function of Gaussian Lucas
numbers GLn is given by

∞∑
n=0

GLnz
n =

(2− i) + (3i− 1) z

1− z − z2
, with GLn = (2− i)Sn(a1+[−a2])+(3i− 1)Sn−1(a1+[−a2]).

Case 2. Assuming that

{
a1 − a2 = 2p
a1a2 = q

in (36) and (37), we get

∞∑
n=0

Sn (a1 + [−a2]) z
n =

1

1− 2pz − qz2
, (42)

∞∑
n=0

Sn−1 (a1 + [−a2]) z
n =

z

1− 2pz − qz2
, (43)

respectively.
Multiplying the equation (42) by (i) and adding it to the equation obtained by

(43) multiplying by (1− 2pi), then we have the following proposition and corollary.
Proposition 10 For n ∈ N, the generating function of Gaussian (p, q)-Pell

numbers GPp,q,n is given by

∞∑
n=0

GPp,q,nz
n =

i+ (1− 2pi) z

1− 2pz − qz2
. (44)

Corollary 15 The following identity holds true:

GPp,q,n = iSn(a1 + [−a2]) + (1− 2pi)Sn−1(a1 + [−a2]).

Multiplying the equation (42) by (2− 2pi) and adding it to the equation obtained
by (43) multiplying by

(
i
(
4p2 + 2q

)
− 2p

)
, then we obtain the following proposition.

Proposition 11 For n ∈ N, the generating function of Gaussian (p, q)-Pell
Lucas numbers GQp,q,n is given by

∞∑
n=0

GQp,q,nz
n =

(2− 2pi) +
(
i
(
4p2 + 2q

)
− 2p

)
z

1− 2pz − qz2
, (45)

with GQp,q,n = (2− 2pi)Sn(a1 + [−a2]) +
(
i
(
4p2 + 2q

)
− 2p

)
Sn−1(a1 + [−a2]).

Multiplying the equation (43) by (−p) and adding it to the equation (42), then
we have the following proposition and corollary.

Proposition 12 For n ∈ N, the generating function of (p, q)-modified Pell
numbers MPp,q,n is given by

∞∑
n=0

MPp,q,nz
n =

1− pz

1− 2pz − qz2
. (46)

Corollary 16 The following identity holds true:

MPp,q,n = Sn(a1 + [−a2])− pSn−1(a1 + [−a2]).
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• Based on the relationships (44), (45) and (46) and with p = q = 1, we
obtain the following corollaries.

Corollary 17 [18] For n ∈ N, the generating function of Gaussian Pell numbers
GPn is given by

∞∑
n=0

GPnz
n =

i+ (1− 2i) z

1− 2z − z2
, with GPn = iSn(a1+[−a2])+(1− 2i)Sn−1(a1+[−a2]).

Corollary 18 [18] For n ∈ N, the generating function of Gaussian Pell Lucas
numbers GQn is given by

∞∑
n=0

GQnz
n =

(2− 2i) + (6i− 2) z

1− 2z − z2
,

with GQn = (2− 2i)Sn(a1 + [−a2]) + (6i− 2)Sn−1(a1 + [−a2]).
Corollary 19 [19] For n ∈ N, the generating function of modified Pell numbers

qn is given by

∞∑
n=0

qnz
n =

1− z

1− 2z − z2
, with qn = Sn(a1 + [−a2])− Sn−1(a1 + [−a2]).

4.2. Construction of generating functions of bivariate Vieta-Fibonacci
and Lucas polynomials. This part consists of three cases.

Case 1. The substitution of

{
a1 − a2 = x
a1a2 = −y

in (36) and (37), we obtain

∞∑
n=0

Sn (a1 + [−a2]) z
n =

1

1− xz + yz2
, (47)

∞∑
n=0

Sn−1 (a1 + [−a2]) z
n =

z

1− xz + yz2
, (48)

respectively, and we have the following corollary.
Corollary 20 For n ∈ N, the generating function of bivariate Vieta-Fibonacci

polynomials Vn (x, y) is given by

∞∑
n=0

Vn (x, y) z
n =

z

1− xz + yz2
, with Vn (x, y) = Sn−1 (a1 + [−a2]) . (49)

Multiplying the equation (47) by (2) and adding it to the equation obtained by
(48) multiplying by (−x), then we have the following proposition.

Proposition 13 For n ∈ N, the generating function of bivariate Vieta-Lucas
polynomials vn (x, y) is given by

∞∑
n=0

vn (x, y) z
n =

2− xz

1− xz + yz2
, (50)

with vn (x, y) = 2Sn(a1 + [−a2])− xSn−1(a1 + [−a2]).

• Based on the relationships (49) and (50) and with y = 1, we obtain the
following corollaries.
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Corollary 21 For n ∈ N, the generating function of Vieta-Fibonacci polyno-
mials Vn (x) is given by

∞∑
n=0

Vn (x) z
n =

z

1− xz + z2
, with Vn (x) = Sn−1 (a1 + [−a2]) .

Corollary 22 For n ∈ N, the generating function of Vieta-Lucas polynomials
vn (x) is given by
∞∑

n=0

vn (x) z
n =

2− xz

1− xz + z2
, with vn (x) = 2Sn (a1 + [−a2])− xSn−1 (a1 + [−a2]) .

Case 2. Assuming that

{
a1 − a2 = 2x
a1a2 = k

in (36) and (37), we obtain

∞∑
n=0

Sn (a1 + [−a2]) z
n =

1

1− 2xz − kz2
, (51)

∞∑
n=0

Sn−1 (a1 + [−a2]) z
n =

z

1− 2xz − kz2
, (52)

respectively, and we have the following corollary.
Corollary 23 For n ∈ N, the generating function of k-Pell polynomials Pk,n (x) is

given by
∞∑

n=0

Pk,n (x) z
n =

z

1− 2xz − kz2
, with Pk,n (x) = Sn−1 (a1 + [−a2]) . (53)

Multiplying the equation (51) by (2) and adding it to the equation obtained by
(52) multiplying by (−2x), then we have the following proposition and corollary.

Proposition 14 For n ∈ N, the generating function of k-Pell Lucas polynomials
Qk,n (x) is given by

∞∑
n=0

Qk,n (x) z
n =

2− 2xz

1− 2xz − kz2
. (54)

Corollary 24 The following identity holds true:

Qk,n (x) = 2Sn(a1 + [−a2])− 2xSn−1(a1 + [−a2]).

• Based on the relationships (53) and (54) and with x = 1, we obtain the
following corollaries.

Corollary 25 For n ∈ N, the generating function of k-Pell numbers Pk,n is
given by

∞∑
n=0

Pk,nz
n =

z

1− 2z − kz2
, with Pk,n = Sn−1 (a1 + [−a2]) .

Corollary 26 For n ∈ N, the generating function of k-Pell Lucas numbers Qk,n

is given by
∞∑

n=0

Qk,nz
n =

2− 2z

1− 2z − kz2
, with Qk,n = 2Sn (a1 + [−a2])− 2Sn−1 (a1 + [−a2]) .

• Put k = 1 in the relationships (53) and (54), we obtain the following corol-
laries.
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Corollary 27 For n ∈ N, the generating function of Pell polynomials Pn (x) is
given by

∞∑
n=0

Pn (x) z
n =

z

1− 2xz − z2
, with Pn (x) = Sn−1 (a1 + [−a2]) .

Corollary 28 For n ∈ N, the generating function of Pell Lucas polynomials
Qn (x) is given by
∞∑

n=0

Qn (x) z
n =

2− 2xz

1− 2xz − z2
, with Qn (x) = 2Sn(a1+[−a2])−2xSn−1(a1+[−a2]).

Case 3. By taking

{
a1 − a2 = 1
a1a2 = 2kx

in (36) and (37), we obtain

∞∑
n=0

Sn (a1 + [−a2]) z
n =

1

1− z − 2kxz2
, (55)

∞∑
n=0

Sn−1 (a1 + [−a2]) z
n =

z

1− z − 2kxz2
, (56)

respectively.
Multiplying the equation (55) by

(
i
2

)
and adding it to the equation obtained by

(56) multiplying by (1− i
2 ), then we have the following proposition.

Proposition 15 For n ∈ N, the generating function of generalized Gaussian
Jacobsthal polynomials GJk,n (x) is given by

∞∑
n=0

GJk,n (x) z
n =

i+ (2− i) z

2− 2z − 2k+1xz2
, (57)

with GJk,n (x) =
i
2Sn(a1 + [−a2]) +

(
1− i

2

)
Sn−1(a1 + [−a2]).

Multiplying the equation (55) by
(
2− i

2

)
and adding it to the equation obtained

by (56) multiplying by
(
i
(
2x+ 1

2

)
− 1
)
, then we obtain the following proposition.

Proposition 16 For n ∈ N, the generating function of generalized Gaussian
Jacobsthal Lucas polynomials Gjk,n (x) is given by

∞∑
n=0

Gjk,n (x) z
n =

4− i+ (i (4x+ 1)− 2) z

2− 2z − 2k+1xz2
, (58)

with Gjk,n (x) =
(
2− i

2

)
Sn(a1 + [−a2]) +

(
i
(
2x+ 1

2

)
− 1
)
Sn−1(a1 + [−a2]).

• Based on the relationships (57) and (58) and with x = 1, we obtain the
following corollaries.

Corollary 29 For n ∈ N, the generating function of generalized Gaussian
Jacobsthal numbers GJk,n is given by

∞∑
n=0

GJk,nz
n =

i+ (2− i) z

2− 2z − 2k+1z2
, with GJk,n =

i

2
Sn(a1+[−a2])+

(
1− i

2

)
Sn−1(a1+[−a2]).

Corollary 30 For n ∈ N, the generating function of generalized Gaussian
Jacobsthal Lucas numbers Gjk,n is given by

∞∑
n=0

Gjk,nz
n =

4− i+ (5i− 2) z

2− 2z − 2k+1z2
,
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with Gjk,n =
(
2− i

2

)
Sn(a1 + [−a2]) +

(
5i
2 − 1

)
Sn−1(a1 + [−a2]).

• Put k = 1 in the relationships (57) and (58), we obtain the following corol-
laries.

Corollary 31 [18] For n ∈ N, the generating function of Gaussian Jacobsthal
polynomials GJn (x) is given by

∞∑
n=0

GJn (x) z
n =

i+ (2− i) z

2− 2z − 4xz2
,

with GJn (x) =
i
2Sn(a1 + [−a2]) +

(
1− i

2

)
Sn−1(a1 + [−a2]).

Corollary 32 [18] For n ∈ N, the generating function of Gaussian Jacobsthal
Lucas polynomials Gjn (x) is given by

∞∑
n=0

Gjn (x) z
n =

4− i+ (i (4x+ 1)− 2) z

2− 2z − 4xz2
,

with Gjn (x) =
(
2− i

2

)
Sn(a1 + [−a2]) +

(
i
(
2x+ 1

2

)
− 1
)
Sn−1(a1 + [−a2]).

5. Conclusion

In this paper, we have derived theorem 1 by making use of symmetrizing operator
given by definition 11. By making use of theorem 1, we have obtained propositions
and corollaries which is led to generating function for a class of new family of
complete functions.

In our forthcoming investigation, we plan to establish further results and prop-
erties associated with some generalized forms of the above mentioned families of
new class of generating functions of binary products of some special numbers and
polynomials.
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