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A NOTE ON (m,n)-PARANORMAL OPERATORS

PREETI DHARMARHA AND SONU RAM

Abstract. In this paper, we prove properties of the class of (m,n)-paranormal
operators (a generalization of paranormal operators) on Hilbert space. Equal-
ity of the approximate point spectrum and the joint approximate point spec-

trum, for (m,n)-paranormal operators has been proved under certain given
conditions. Moreover, the point spectrum coincides with the joint point spec-
trum for the class of (m,n)-paranormal operators. We also discuss the SVEP,
normaloid and subnormality for the same class of operators.

1. Introduction

Throughout this note, B(H) be the C∗-algebra of all bounded linear operators
acting on infinite dimensional separable complex Hilbert space H . If T ∈ B(H),
then we shall write N(T ) and R(T ) for the null space and the range space of T ,
respectively. In this paper, C and N denote the set of all complex numbers and
the set of all natural numbers, respectively. The orthogonal complement S⊥ of a
subset S of Hilbert space is defined by S⊥ = {x ∈ H : ⟨x, y⟩ = 0 for all y ∈ S}.

For T , S in B(H), T ⊗S denotes the tensor product on the product space H⊗H.
If T ∈ B(H), then we write σ(T ), σp(T ), σjp(T ), σa(T ) and σja(T ) for the spectrum,
the point spectrum, the joint point spectrum, the approximate point spectrum and
the joint approximate point spectrum of T , respectively. An operator T in B(H) is
said to be:

1) positive (denoted T ≥ 0) if ⟨Tx, x⟩ ≥ 0, for all x ∈ H.
2) if T ∗T − TT ∗ ≥ 0, or equivalently, ∥Tx∥ ≥ ∥T ∗x∥ for all x ∈ H[15].
3) paranormal if ∥Tx∥2 ≤ ∥T 2x∥∥x∥, for all x ∈ H [15, 13].
4) (m,n)-paranormal and (m,n)∗-paranormal if ∥Tx∥n+1 ≤ m∥Tn+1x∥∥x∥n and
∥T ∗x∥n+1 ≤ m∥Tn+1x∥∥x∥n, respectively for all x in H, where m is a positive
real number and n is a positive integer [10].
5) normaloid, if its spectral radius coincides with its norm, that is, r(T ) = ∥T∥, or
equivalently, ∥Tn∥ = ∥T∥n for every positive integer n.
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2. (m,n)-paranormal operators

We begin this section with the following theorem for the class of (m,n)-paranormal
operators.

Theorem 2.1. Let T ∈ B(H⊕H) be a (m,n)-paranormal operator defined by 2×2

matrix representation T =

[
A C
0 B

]
. Then A is (m,n)-paranormal.

Proof. By [10, Theorem 2.1], the following matrix

m
2

n+1T ∗n+1Tn+1 − (n+ 1)anT ∗T +m
2

n+1nan+1I =

[
Q R
R∗ S

]
is positive for each a > 0, where

Q = m
2

n+1A∗n+1An+1 − (n+ 1)anA∗A+m
2

n+1nan+1I

R = m
2

n+1A∗n+1P − (n+ 1)anA∗C

and

S = m
2

n+1 (P ∗P +B∗n+1Bn+1)− (n+ 1)an(C∗C +B∗B) +m
2

n+1nan+1I

Here, we have

P = AnC +An−1CB +An−2CB2 + ...+ACBn−1 + CBn

Since T is (m,n)-paranormal, so Q is positive for each a > 0. Hence, A is (m,n)-
paranormal. �

Now, in the sequel of the above result, we have S is positive for each a > 0.
Thus, we have

m
2

n+1B∗n+1Bn+1 − (n+ 1)anB∗B +m
2

n+1nan+1I

≥ (n+ 1)anC∗C −m
2

n+1P ∗P.

Therefore, if we take (n + 1)anC∗C ≥ m
2

n+1P ∗P for each a > 0, then B is also
(m,n)-paranormal. This is our next result.

Proposition 2.2. Let T ∈ B(H ⊕H) be a (m,n)-paranormal operator defined by

2 × 2 matrix representation T =

[
A C
0 B

]
. Then B is (m,n)-paranormal provided

(n+ 1)anC∗C ≥ m
2

n+1P ∗P , for each a > 0.

Remark 2.3. It is well known that

[
x y
y∗ z

]
is positive if and only if x ≥ 0, z ≥ 0

and y = x
1
2wz

1
2 for some contraction w. Now, if we choose Q = 0 in Theorem 2.1,

then we have R = 0, that is,

m
2

n+1A∗n+1(AnC +An−1CB +An−2CB2 + · · ·+ACBn−1 + CBn)

= (n+ 1)anA∗C.

Remark 2.4. In Theorem 2.1, if we set C = 0, then B is always (m,n)-paranormal.

Remark 2.5. If T =

[
A C
0 B

]
on H = M ⊕M⊥ is (m,n)-paranormal and M be a

closed invariant subspace of H under T , then T is (m,n)-paranormal on M .
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In the following theorem, we show the relationship between (m,n)-paranormal
and (m,n+ 1)-paranormal operators for n ≥ 2.

Theorem 2.6. [16, Lemma 1] Let T be a (m,n)-paranormal operator and for all
unit vectors in H, ∥Tnx∥∥Tx∥ ≤ ∥Tn+1x∥. Then T is (m,n+ 1)-paranormal.

Conversely, if T is (m,n + 1)-paranormal and ∥Tn+1x∥n ≤ m∥Tnx∥n+1 for all
unit vectors in H, then T is (m,n)-paranormal.

Proof. By using the (m,n)-paranormality of T and given condition, we have

∥Tx∥n+1 ≤ m∥Tnx∥∥Tx∥ ≤ m∥Tn+1x∥,
that is,

∥Tx∥n+1 ≤ m∥Tn+1x∥.
Conversely, with T (m,n+ 1)-paranormal and given condition, it follows that

∥Tx∥n(n+1) ≤ (m∥Tn+1x∥)n ≤ mn+1∥Tnx∥n+1,

that is,

∥Tx∥n ≤ m∥Tnx∥.
Hence, the result holds. �

It is a natural question to ask whether an operator T is normaloid or not. The
following example provides an operator which is (m,n)-paranormal but not nor-
maloid for m > 1.

Example 2.7. Let H = l2(N,C). Define weighted shift operator T by T (ek) =
wkek+1 for all positive integers k, with non zero weights wk and orthonormal basis
ek, where

wk = 1if k = 12if k = 23if k ≥ 3

Equivalently, for x ∈ l2(N,C), we have

T (x1, x2, ...) = (0, x1, 2x2, 3x3, 3x4, ...).

By [10, Theorem 2.9], T is (m,n)-paranormal if and only if

|wk|n−1 ≤ m|wk+1||wk+2| · · · |wk+n−1|, (2.1)

for n ≥ 2, all positive integers k and all unit vectors. Note that the inequality (2.1)
is satisfied for all m ≥ 1 by weighted sequences. Hence, T is (m,n)-paranormal.
Now, ∥T∥ = sup |wk| and so it is easy to see that ∥T∥ = 3. It is well known that
0 ≤ r(T ) ≤ ∥T∥. Thus, r(T ) ≤ 3.

Now, we claim that r(T ) < 3. Suppose if possible, r(T ) = 3. Then there exists
λ ∈ C such that |λ| = 3 and T − λI is not invertible. Note that

(T − λI)(x1, x2, ...) = (−λx1, x1 − λx2, 2x2 − λx3, 3x3 − λx4, 3x4 − λx5, ...)

It is easy to see that T −λI is one one and onto. Hence, T −λI is invertible, which
is a contradiction. Therefore, λ /∈ σ(T ) and r(T ) ̸= 3. Thus, r(T ) < 3. Hence, T is
not normaloid.

To the sequel, we sketch the following theorem which shows that a (m,n)-
paranormal operator is normaloid for m ≤ 1.

Theorem 2.8. [16, Proposition 1] If an operator T is (m,n)-paranormal for m ≤ 1,
then T is normaloid.
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The proof of the next theorem is similar to that of [11, Theorem 2.3].

Theorem 2.9. Let H be the direct sum of countably many isomorphic copies of
Hilbert spaces Hi. If Ti is (m,n)-paranormal operator on Hi for each i, then the
direct sum of Ti is also (m,n)-paranormal.

Lemma 2.10. [10, Theorem 2.9] Let an operator T : l2(Z,C) −→ l2(Z,C) be defined
by T (ek) = wk−1ek−1 with non zero weights (wk), and the orthonormal basis (ek).
Then T is (m,n)-paranormal if and only if

|wk−1|n−1 ≤ m|wk−2||wk−3| · · · |wk−n|

holds for all integers k, unit vectors and n ≥ 2.

In the following example, we show that the inverse of (m,n)-paranormal operator
need not be (m,n)-paranormal.

Example 2.11. Let H = l2(Z,C) and T be a weighted shift operator on H defined
by Tek = wkek+1 with non zero weights wk, and the orthonormal basis ek for all
integers k, where

wk =
1

2
if k ≤ 02if k = 14if k ≥ 2.

Equivalently, T is defined by

T (..., x−1, x0, x1, ...) = (...,
1

2
x−1,

1

2
x0, 2x1, 4x2, 4x3, ...)

By [10, Theorem 2.9], T is (m,n)-paranormal if and only if

|wk|n−1 ≤ m|wk+1||wk+2|...|wk+n−1|, (2.2)

for unit vectors and n ≥ 2. Thus, (2.2) holds for m ≥ 1. It is straightforward to
see that T is invertible. Also,

T−1(..., y−1, y0, y1, ...) = (..., 2y0, 2y1,
y2
2
,
y3
4
,
y4
4
, ...),

that is,

T−1ek = αk−1ek−1

with weighted sequence

αk = 2if k ≤ 0
1

2
if k = 1

1

4
if k ≥ 2

Now, we claim that T−1 is not (m,n)-paranormal. By using Lemma 2.10, T−1 is
(m,n)-paranormal if and only if

|αk−1|n−1 ≤ m|αk−2||αk−3| · · · |αk−n|, (2.3)

for unit vectors, all k and n ≥ 2. If we choose n = 3, k = 4 and m = 1
3 , then (2.3)

fails to hold. Hence, the claim holds.

The proof of the following theorem is similar to [11, Theorem 2.6].

Theorem 2.12. Let T be an (m,n)-paranormal operator. Then T ⊗ I and I ⊗ T
are also (m,n)-paranormal.

The following example shows that the tensor product of two (m,n)-paranormal
operators need not be (m,n)-paranormal.
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Example 2.13. For each positive integer k, assume that Hk = R× R. Let H be
a Hilbert space such that H = ⊕∞

k=1Hk. Now, we choose A and B to be positive

operators on Hk such that A =

[
2 0
0 2

]
and B4 =

[
4 1
1 3

]
. We simply assign the

operator T on H as:

T (x1, x2, ...) = (0, Ax1, Ax2, ..., Axn, Bxn+1, Bxn+2, ...).

Thus, the adjoint of T is given by

T ∗(x1, x2, ...) = (Ax2, Ax3, ..., Axn+1, Bxn+2, Bxn+3, ...).

For x = (..., 0, 0, xn, 0, 0, ...) in H, by [10, Theorem 2.1], an operator T is (2
3
2 , 2)-

paranormal if and only if

2AB4A− 3a2A2 + 4a3I ≥ 0,

for each a > 0. Now,

2AB4A− 3a2A2 + 4a3I =

[
4a3 − 12a2 + 32 8

8 4a3 − 12a2 + 24

]
is positive for each a > 0. Thus, T is (2

3
2 , 2)-paranormal. Similarly, by [10, Theorem

2.1], the operator T ⊗ T is (2
3
2 , 2)-paranormal if and only if

2(AB4A⊗AB4A)− 3a2(A2 ⊗A2) + 4a3(I ⊗ I) ≥ 0,

for each a > 0. For a = 10, the operator

2(AB4A⊗AB4A)− 3a2(A2 ⊗A2) + 4a3(I ⊗ I)

=


−288 128 128 32
128 −416 32 96
128 32 −416 96
32 96 96 −512


is not positive. Hence, our claim holds.

Embry [12] has proved that an operator T is subnormal if and only if
∑k

i,j=0

⟨
T i+jxi, T

i+jxj

⟩
is non-negative for all finite collection of vectors x0, x1, · · · , xk. In the following
theorem, by using this characterization, we prove that a (m,n) paranormal is sub-
normal under certain conditions.

Theorem 2.14. If an operator T is (m,n) paranormal and partial isometry with
m ≤ 1 and ∥Tn∥2 ≤ 1

m
2

n+1
, then T is subnormal.

Proof. As T is (m,n)-paranormal, so by [10, Theorem 2.1], we have

m
2

n+1T ∗n+1Tn+1 − (n+ 1)anT ∗T +m
2

n+1nan+1I ≥ 0,

for each a > 0. Also, it follows that

T ∗T (m
2

n+1T ∗n+1Tn+1 − (n+ 1)anT ∗T +m
2

n+1nan+1I)T ∗T ≥ 0 (2.4)

for each a > 0. Since T is a partial isometry, TT ∗T = T by [14, Corollary 3,
Problem 98]. Now, take a = 1 in (2.4). Then we have

m
2

n+1T ∗n+1Tn+1 − ((n+ 1)−m
2

n+1n)T ∗T ≥ 0,
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that is,

T ∗T ≤ m
2

n+1

(n+ 1)− nm
2

n+1

T ∗n+1Tn+1,

equivalently,

∥Tx∥2 ≤ m
2

n+1

(n+ 1)− nm
2

n+1

∥Tn+1x∥2

≤ m
2

n+1 ∥Tn+1x∥2

≤ m
2

n+1 ∥Tn∥2∥∥Tx∥2

≤ ||Tx||2.
Therefore, we have

T ∗T = m
2

n+1T ∗n+1Tn+1 for all n. (2.5)

Further, let x0, x1, ..., xk be a finite collection of vectors, then by using (2.5) we
get

m4
k∑

i,j=0

⟨
T i+jxi, T

i+jxj

⟩
= m4

(
⟨x0, x0⟩+ ⟨T ∗Tx0, x1⟩+ ⟨T ∗Tx1, x0⟩

)
+

k∑
i,j=0

i+j ̸=0,1

m4m
−2
i+j

⟨
m

2
i+j T ∗i+jT i+jxi, xj

⟩
= m4

(
⟨x0, x0⟩+ ⟨T ∗Tx0, x1⟩+ ⟨T ∗Tx1, x0⟩

)
+

k∑
i,j=0

i+j ̸=0,1

m4m
−2
i+j ⟨T ∗Txi, xj⟩ .

Since T ∗T is a projection by [14, Problem 98], we have

m4
k∑

i,j=0

⟨
T i+jxi, T

i+jxj

⟩
= m4

(
⟨x0, x0⟩+ ⟨T ∗Tx0, T

∗Tx1⟩+ ⟨T ∗Tx1, T
∗Tx0⟩

)
+

k∑
i,j=0,

i+j ̸=0,1

m4m
−2
i+j

⟨
(T ∗T )

i+j
xi, (T

∗T )i+jxj

⟩
= m4

(
⟨x0, x0⟩+ ⟨T ∗Tx0, T

∗Tx1⟩+ ⟨T ∗Tx1, T
∗Tx0⟩

)
+

∑
i+j=2

m3
⟨
(T ∗T )2xi, (T

∗T )2xj

⟩
+ · · ·

+
∑

i+j=2k−1

m2( 4k−3
2k−1 )

⟨
(T ∗T )2k−1xi, (T

∗T )2k−1xj

⟩
+

∑
i+j=2k

m( 4k−1
k )

⟨
(T ∗T )2kxi, (T

∗T )2kxj

⟩
.

As m ≤ 1, we obtain the following relation

m3 ≥ · · · ≥ m2( 4k−3
2k−1 ) ≥ m( 4k−1

k ) ≥ m4.
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By using the above relation we obtain

m4
k∑

i,j=0

⟨
T i+jxi, T

i+jxj

⟩
≥ m4

k∑
i,j=0

⟨
(T ∗T )i+jxi, (T

∗T )i+jxj

⟩
.

Since T ∗T is self adjoint, T ∗T is subnormal and so we have

k∑
i,j=0

⟨
T i+jxi, T

i+jxj

⟩
≥ 0.

Hence, the result holds. �
In the sequel, we give the following example to show that there also exists a

(m,n)-paranormal operator, which is not subnormal.

Example 2.15. Let T be an operator defined by T : R2 −→ R2 as a 2×2 matrix

T =

[
1 2
0 1

]
. By [10, Theorem 2.1], T is (2

3
2 , 2) paranormal if and only if 2T ∗3T 3−

3a2T ∗T + 4a3I ≥ 0, for each a ≥ 0.
It is easy to see that the matrix

2T ∗3T 3 − 3a2T ∗T + 4a3I =

[
6a2 + 4a3 12− 6a2

12− 6a2 75− 15a2 + 4a3

]
is positive for each a > 0. Hence, T is (2

3
2 , 2) is paranormal.

We next move to show that T is not subnormal. Consider
1∑

i,j=0

⟨
T i+jxi, T

i+jxj

⟩
= ⟨x0, x0⟩+ ⟨Tx0, Tx1⟩+ ⟨Tx1, Tx0⟩

+⟨T 2x1, T
2x1⟩.

Choose x0 =

[
x′
0

x′′
0

]
=

[
1
1

]
, x1 =

[
x′
1

x′′
1

]
=

[
−1
−1
4

]
. Then

1∑
i,j=0

⟨
T i+jxi, T

i+jxj

⟩
=

−55

16

is not positive. Hence, T is not subnormal.

3. Spectral properties

In this section we prove some spectral properties on (m,n)-paranormal operators.
The spectrum set of an operator T ∈ B(H), denoted by σ(T ), is the set of complex
number λ such that T−λI is not invertible. A complex number λ is said to be in the
point spectrum σp(T ) of T if there is a nonzero x ∈ H such that (T −λ)x = 0. If in
addition, (T ∗−λ̄)x = 0, then λ is said to be in the joint point spectrum σjp(T ) of T .
Analogously, a complex number λ is said to be in the approximate point spectrum
σa(T ) of T if there is a sequence (xn) of unit vectors in H such that (T −λ)xn → 0.
If in addition, (T ∗ − λ̄)xn → 0, then λ is said to be in the joint approximate point
spectrum σja(T ) of T . In general, σp(T ) ̸= σjp(T ), σa(T ) ̸= σja(T ).

Some researchers showed that, for some classes of nonnormal operators T , the
nonzero points of its point spectrum and joint point spectrum are identical, the
nonzero points of its approximate point spectrum and joint approximate point
spectrum are identical [8, 9, 19, 20, 21]. The reader can refer to the recent papers
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[1, 2, 3, 4, 5, 6, 7, 17, 18, 22, 23] for the spectrum and fine spectrum of certain
linear operators represented by a triangle matrix over some sequence spaces.

The proof of the following theorem is similar to [11, Theorem 3.1].

Theorem 3.1. If T ∈ B(H) is a (m,n)-paranormal and hyponormal operator, then
σa(T ) = σja(T ) for unit vectors.

If an operator T is (m,n)-paranormal but not hyponormal, then the above result
does not holds. We prove it in the following example.

Example 3.2. Let T : l2(N,C) −→ l2(N,C) be weighted shift operator defined by
T (ek) = wkek−1, that is,

T (x1, x2, ...) = (x2, x3, ...)

with weighted sequence (wk) such that wk = 1 for all positive integers k and adjoint
of T is given by

T ∗(x1, x2, ...) = (0, x1, x2, ...).

By [10, Theorem 2.9], T is (m,n)-paranormal for unit vectors and m ≥ 1. Since it
is easy to check that ∥Tx∥ � ∥T ∗x∥ for some x in H, T is not hyponormal. Next,
we move to prove that σa(T ) ̸= σja(T ). Now, we choose 0 = λ ∈ σa(T ), a unit
vector x = (1, 0, 0, ...) and a sequence {xn}∞n=1 = {x, x, ...}. Then

∥(T − λI)xn∥ = ∥Txn∥ = 0 as n −→ ∞

but ∥(T − λI)∗xn∥ = ∥T ∗xn∥ = ∥(0, 1, 0, 0, · · · )∥ 9 0 as n −→ ∞.

This shows that 0 /∈ σja(T ).

Definition 3.3. An operator T is said to have single valued extension property
(abbreviated as SVEP) at γ0 ∈ C, if for every open neighborhood G of γ0, the only
analytic function f : G → H which satisfies the equation (T − γI)f(γ) = 0 for all
γ ∈ G is the function f = 0.

An operator T has SVEP if T has SVEP at every γ ∈ C.

We can prove the following theorem in a similar fashion as that of [11, Theorem
3.4].

Theorem 3.4. Let T ∈ B(H) be a (m,n)-paranormal and hyponormal operator.
Then T has SVEP.

The proof of following proposition is similar to [11, Proposition 3.5].

Proposition 3.5. Let T ∈ B(H) be a (m,n)-paranormal and hyponormal operator.
Then N(T − λI) ⊆ N(T ∗ − λ̄I) for unit vectors and for all λ ∈ C.

The proof of the following theorem is similar to Theorem 3.1.

Theorem 3.6. If T is a (m,n)-paranormal and hyponormal operator, then

σp(T ) = σjp(T )

for all unit vectors.

Proposition 3.7. If T is a (m,n)-paranormal operator for m ≤ 1 and {xk} is a se-
quence of unit vectors in H, which satisfies lim

k→∞
∥Txk∥ = ∥T∥, then lim

k→∞
∥Tn+1xk∥ =

∥T∥n+1.
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Proof. As T is (m,n)-paranormal, so we have the inequality

∥Tx∥n+1 ≤ m∥Tn+1x∥∥x∥n.
For m ≤ 1, we have

∥Txk∥n+1 ≤ m∥Tn+1xk∥
≤ ∥T∥ ∥T∥ · · · ∥T∥
= ∥T∥n+1.

Equivalently,

∥Txk∥n+1 ≤ ∥Tn+1xk∥ ≤ ∥T∥n+1

As lim
k→∞

∥Txk∥ = ∥T∥, therefore by using squeeze principal, we have

lim
k→∞

∥Tn+1xk∥ = ∥T∥n+1.

�
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